首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Silymarin, a known standardized extract obtained from seeds of Silybum marianum is widely used in treatment of several diseases of varying origin. In the present paper, we clarified the antioxidant activity of silymarin by employing various in vitro antioxidant assay such as 1,1-diphenyl-2-picryl-hydrazyl free radical (DPPH·) scavenging, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging activity, total antioxidant activity determination by ferric thiocyanate, total reducing ability determination by Fe3+ ? Fe2+ transformation method and Cuprac assay, superoxide anion radical scavenging by riboflavin/methionine/illuminate system, hydrogen peroxide scavenging and ferrous ions (Fe2+) chelating activities. Silymarin inhibited 82.7% lipid peroxidation of linoleic acid emulsion at 30 μg/mL concentration; butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol and trolox indicated inhibition of 83.3, 82.1, 68.1 and 81.3% on peroxidation of linoleic acid emulsion at the same concentration, respectively. In addition, silymarin had an effective DPPH· scavenging, ABTS√+ scavenging, superoxide anion radical scavenging, hydrogen peroxide scavenging, ferric ions (Fe3+) reducing power by Fe3+ ? Fe2+ transformation, cupric ions (Cu2+) reducing ability by Cuprac method, and ferrous ions (Fe2+) chelating activities. Also, BHA, BHT, α-tocopherol and trolox, were used as the reference antioxidant and radical scavenger compounds. Moreover, this study, which clarifies antioxidant mechanism of silymarin, brings new information on the antioxidant properties of silymarin. According to the present study, silymarin had effective in vitro antioxidant and radical scavenging activity. It could be used in the pharmacological and food industry because of its antioxidant properties.  相似文献   

2.
In the present study, we determined the antioxidant activity of cepharanthine and fangchinoline from Stephania rotunda by performing different in vitro antioxidant assays, including 1,1-diphenyl-2-picryl-hydrazyl (DPPH) free radical scavenging, 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging, N,N- dimethyl-p-phenylenediamine dihydrochloride (DMPD) radical scavenging, superoxide anion (O2?–) radical scavenging, hydrogen peroxide scavenging, total antioxidant activity, reducing power, and ferrous ion (Fe2+) chelating activities. Cepharanthine and fangchinoline showed 94.6 and 93.3% inhibition on lipid peroxidation of linoleic acid emulsion at 30 μg/mL concentration, respectively. On the other hand, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), α-tocopherol, and trolox indicated inhibitions of 83.3, 92.2, 72.4, and 81.3% on peroxidation of linoleic acid emulsion at the same concentration (30 μg/mL), respectively. According to the results, cepharanthine and fangchinoline have effective antioxidant and radical scavenging activity.  相似文献   

3.
Chlorogenic acid (CGA) is considered to act as an antioxidant. However, the inhibitory effects of CGA on specific radical species are not well understood. Electron spin resonance (ESR) in combination with spin trapping techniques was utilized to detect free radicals. 5,5-Dimethyl-1-pyrroline-N-oxide (DMPO) was used as a spin trapping reagent while the Fenton reaction was used as a source of hydroxyl radical (·OH). We found that CGA scavenges ·OH in a dose-dependent manner. The kinetic parameters, IC50 and Vmax, for CGA scavenging of ·OH were 110 and 1.27 M/sec, respectively. The rate constant for the scavenging of ·OH by CGA was 7.73 × 109 M–1 sec–1. Our studies suggest that the antioxidant properties of CGA may involve a direct scavenging effect of CGA on ·OH.  相似文献   

4.
Human catestatin CgA352–372 (SL21) is an endogenous neuropeptide with multiple biological functions. The present study aimed to evaluate the antioxidant, antibacterial, cytotoxic, and DNA damage protective effects of SL21 neuropeptide. SL21 neuropeptide generated from the C‐terminus of chromogranin A (CgA) was synthesized by solid‐phase method. Synthetic peptide was subjected to various in vitro antioxidant assays including the scavenging of 1,1‐diphenyl‐2‐pycryl‐hydrazyl (DPPH), 2,2‐azino‐bis(3‐ethylbenzothiazoline‐6‐sulfonic acid) (ABTS·+), and hydroxyl free radicals, metal ion chelation, inhibition of lipid peroxidation, and reducing power. Moreover, protective effect of SL21 on H2O2‐induced DNA damage was analyzed using pTZ57/RT plasmid. Methylthiazoltetrazolium assay was also performed to study the cytotoxic effect of SL21 neuropeptide on human peripheral blood mononuclear cells. Furthermore, antibacterial and hemolysis assays were conducted. The results demonstrated high activities of SL21 in scavenging free radicals (DPPH, ABTS·+, and hydroxyl), chelating of Cu2+/Fe2+ metal ions, reducing power, and inhibition of lipid peroxidation in a concentration‐dependent manner. SL21 neuropeptide revealed a protective effect on DNA damage caused by hydroxyl radicals. Interestingly, the peptide exhibited no significant cytotoxicity towards peripheral blood mononuclear cells. Furthermore, SL21 peptide displayed antimicrobial activity against Staphylococcus aureus and Pseudomonas aeruginosa without any hemolytic activity on human red blood cells. Conclusively, the present study established SL21 (catestatin) as a novel antioxidative peptide that could further be investigated for its potential use as a pharmaceutical agent. Copyright © 2014 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

5.
Radioprotective properties of apple polyphenols: An in vitro study   总被引:2,自引:0,他引:2  
Present study was undertaken to evaluate the radioprotective ability of total polyphenols extracted from edible portion (epicarp and mesocarp) of apple. Prior administration of apple polyphenols to murine thymocytes significantly countered radiation induced DNA damage (evaluated by alkaline halo assay) and cell death (trypan blue exclusion method) in a dose dependent manner maximally at a concentration of 2 and 0.2 mg/ml respectively. Apple polyphenols in a dose dependent fashion inhibited both radiation or Fenton reaction mediated 2-deoxyribose (2-DR) degradation indicating its ability to scavenge hydroxyl radicals and this activity was found to be unaltered in presence of simulated gastric juice. Similarly apple polyphenols in a dose dependent fashion scavenged DPPH radicals (maximum 69% at 1 mg/ml), superoxide anions (maximum 88% at 2 mg/ml), reduced Fe3 + to Fe2 + (maximum at 1 mg/ml) and inhibited Fenton reaction mediated lipid peroxidation (maximum 66% at 1.5 mg/ml) further establishing its antioxidative properties. Studies carried out with plasmid DNA revealed the ability of apple polyphenols to inhibit radiation induced single as well as double strand breaks. The results clearly indicate that apple polyphenols have significant potential to protect cellular system from radiation induced damage and ability to scavenge free radicals might be playing an important role in its radioprotective manifestation.  相似文献   

6.
Lidocaine, a local anaesthetic, has been shown to reduce ventricular arrhythmias associated with myocardial infarction and ischemic myocardial injury and its protective effects has been attributed to its membrane stabilizing properties. Since oxygen radicals are known to be produced during ischemia induced tissue damage, we have investigated the possible antioxidant properties of lidocaine and found that lidocaine does not scavenge 02 · radicals at 1 to 20 mM concentrations. However, lidocaine was found to be a potent scavenger of hydroxyl radicals and singlet oxygen. Hydroxyl radicals were produced in a Fenton type reaction and detected as DMPO-OH adducts by electron paramagnetic resonance spectroscopic techniques. Lidocaine inhibited DMPO-OH adduct formation in a dose dependent manner. The amount of lidocaine needed to cause 50% inhibition of that rate was found to be approximately 80 M and at 300 M concentration it virtually eliminated the DMPO-OH adduct formation. The production of OH-dependent TBA reactive products of deoxyribose was also inhibited by lidocaine in a dose dependent manner. Lidocaine was also found to inhibit the 1O2-dependent 2,2,6,6-tetramethylpiperidine N-oxyl (TEMPO) formation in a dose dependent manner. 1O2 was produced in a photosensitizing system using Rose Bengal or Methylene Blue as photosensitizers and was detected as TEMP-1O2 adduct by EPR spectroscopy. The amount of lidocaine required to cause 50% inhibition of TEMP-1O2 adduct formation was found to be 500 M. These results suggest that the protective effect of lidocaine on myocardial injury may, in part, be due to its reactive oxygen scavenging properties. These results may also explain the membrane stabilizing actions of lidocaine by scavenging OH · and 1O2 that are implicated in membrane lipid peroxidation.  相似文献   

7.
Deferiprone (L1) is an effective iron-chelating drug that is widely used for the treatment of iron-overload diseases. It is known that in aqueous solutions Fe2+ and Fe3+ ions can produce hydroxyl radicals via Fenton and photo-Fenton reactions. Although previous studies with Fe2+ have reported ferroxidase activity by L1 followed by the formation of Fe3+ chelate complexes and potential inhibition of Fenton reaction, no detailed data are available on the molecular antioxidant mechanisms involved. Similarly, in vitro studies have also shown that L1–Fe3+ complexes exhibit intense absorption bands up to 800 nm and might be potential sources of phototoxicity. In this study we have applied an EPR spin trapping technique to answer two questions: (1) does L1 inhibit the Fenton reaction catalyzed by Fe2+ and Fe3+ ions and (2) does UV–Vis irradiation of the L1–Fe3+ complex result in the formation of reactive oxygen species. PBN and TMIO spin traps were used for detection of oxygen free radicals, and TEMP was used to trap singlet oxygen if it was formed via energy transfer from L1 in the triplet excited state. It was demonstrated that irradiation of Fe3+ aqua complexes by UV and visible light in the presence of spin traps results in the appearance of an EPR signal of the OH spin adduct (TMIO–OH, a(N)=14.15 G, a(H)=16.25 G; PBN–OH, a(N)=16.0 G, a(H)=2.7 G). The presence of L1 completely inhibited the OH radical production. The mechanism of OH spin adduct formation was confirmed by the detection of methyl radicals in the presence of dimethyl sulfoxide. No formation of singlet oxygen was detected under irradiation of L1 or its iron complexes. Furthermore, the interaction of L1 with Fe2+ ions completely inhibited hydroxyl radical production in the presence of hydrogen peroxide. These findings confirm an antioxidant targeting potential of L1 in diseases related to oxidative damage.  相似文献   

8.
9.
The antioxidant activities of the flaxseed lignan secoisolariciresinol diglycoside (SDG) and its mammalian lignan metabolites, enterodiol (ED) and enterolactone (EL), were evaluated in both lipid and aqueous in vitro model systems. All three lignans significantly (p 0.05) inhibited the linoleic acid peroxidation at both 10 and 100 M over a 24-48 h of incubation at 40°C. In a deoxyribose assay, which evaluates the non site-specific and site-specific Fenton reactant-induced ·OH scavenging activity, SDG demonstrated the weakest activity compared to ED and EL at both 10 and 100 M; the greatest ·OH scavenging for ED and EL was observed at 100 M in both assays. The incubation of pBR322 plasmid DNA with Fenton reagents together with SDG, ED or EL showed that the inhibition of DNA scissions was concentration dependent. The greatest non site-specific activity of lignans was at 100 M, thus, confirming the results of the deoxyribose test. In contrast, the protective effect of SDG and EL in the site-specific assay was lost and that of ED was minimal. Therefore, the results indicate a structure-activity difference among the three lignans with respect to specific antioxidant efficacy. All three lignans did not exhibit reducing activity compared to ascorbic acid, therefore, did not possess indirect prooxidant activity related to potential changes in redox state of transition metals. The efficacy of SDG and particularly the mammalian lignans ED and EL to act as antioxidants in lipid and aqueous in vitro model systems, at relatively low concentrations (i.e. 100 M), potentially achievable in vivo, is an evidence of a potential anticarcinogenic mechanism of flaxseed lignan SDG and its mammalian metabolites ED and EL.  相似文献   

10.
The antioxidant activity of epigallocatechin gallate (EGCG) was studied in different in vitro model systems, which enabled evaluation of both chemical and physical factors involved in assessing the role of EGCG in oxidative reactions. EGCG suppressed the initiation rate and prolonged the lag phase duration of peroxyl radical-induced oxidation in a phospholipid liposome model to a greater extent (p < 0.01) compared to both Trolox and -tocopherol. Effectiveness of these antioxidants to prolong the peroxyl radical-induced lag phase was inversely related to lipophilic character. EGCG also protected against both peroxyl radical and hydroxyl radical-induced supercoiled DNA nicking. The rate constant describing EGCG reaction against hydroxyl radical was 4.22 ± 0.07 × 1010 M–1·sec–1, which was comparable to those of Trolox and -tocopherol, respectively. EGCG exhibited a synergistic effect with -tocopherol in scavenging 1,1-diphenyl-2-picylhydrazyl (DPPH) radical, thus displaying a direct free radical scavenging capacity. In vitro Cu2+-induced-human LDL oxidation was accelerated in the presence of EGCG and attributed to the conversion of Cu2+ to Cu+. We conclude that the particularly effective antioxidant properties of EGCG noted in both chemical and biological biphasic systems were related to a unique hydrophilic and lipophilic balance which enabled effective free radical scavenging. The same chemical-physical properties of EGCG also enabled prooxidant activity, only when in contact with unbound transition metal ions in a multiphasic system.  相似文献   

11.
A new hypothesis describing the role of the redox inactive Ca2+ ion in the expression of physiological oxidative damage is described. The hypothesis is based on the optimization of the chelation characteristics of iron complexes for pro-oxidant activity. In a previous investigation it was found that an excess of ligand kinetically hindered the Fenton reaction activity of the FeII/IIIEDTA complex (Bobier et al. 2003). EDTA, citrate, NTA, and glutamate were selected as models for the coordination sites likely encountered by mobile iron, i.e. proteins. The optimal [EDTA]:[FeIII] ratio for Fenton reaction activity as measured by electrocatalytic voltammetry in a solution was found to be 1:1. An excess of EDTA in the amount of 10:1 [ligand]:[metal] suppresses the Fenton reaction activity to nearly the control. It is expected that the physiological coordination characteristics of mobile Fe would have a very large excess of [ligand]:[metal] and thus not be optimized for the Fenton reaction. Introduction of Ca2+ in to a ratio of 10:10:1 [Ca2+]:[EDTA]:[FeIII] to the system reinvigorated the Fenton reaction activity to nearly the value of the optimal 1:1 [EDTA]:[FeIII] complex. The pH distribution diagrams of Ca2+ in the presence of EDTA and FeII/III indicate that Ca2+ has the ability to uptake excess EDTA without displacing either FeII of FeIII from their respective complexed forms. The similarity in the presence for hard ligand sites albeit with a lower binding constant for Ca2+ accounts for this action.  相似文献   

12.
Factors affecting the free radical scavenging behavior of chitosan sulfate   总被引:1,自引:0,他引:1  
Scavenging activity of hydroxyethyl chitosan sulfate (HCS) against 2,2-diphenyl-1-picrylhydrazyl (DPPH), hydroxyl and carbon-centered radical species were studied using electron spin resonance (ESR) spectroscopy. In addition, its antioxidant activity to retard lipid peroxidation was also evaluated in a linoleic acid model system. HCS could scavenge DPPH (33.78%, 2.5 mg/mL) and carbon-centered radicals (67.74%, 0.25 mg/mL) effectively. However, chitosan sulfate did not exhibit any scavenging activity against hydroxyl radicals, but increased its generation. This was different from the published literature and was presumed due to the loss of chelating ability on Fe2+. This assumption could further confirm from the results obtained for Fe2+-ferrozine method that upon sulfation chitooligosaccharides lost its chelation properties. Therefore, HCS can be identified as antioxidant that effectively scavenges carbon centered radicals to retard lipid peroxidation.  相似文献   

13.
The purpose of this study was to identify the antioxidant activity of 16 compounds isolated from Piper cubeba (CNCs) through the extent of their capacities to scavenge free radicals, hydroxyl radical (HO?), superoxide anion radical () and 2,2‐diphenyl‐1‐picrylhydrazyl radical (DPPH?), in different systems. Electron paramagnetic resonance (EPR) and 5,5‐dimethyl‐1‐pyrroline‐N‐oxide, DMPO, as the spin trap, and chemiluminescence techniques were applied. Using the Fenton‐like reaction [Fe(II) + H2O2], CNCs were found to inhibit DMPO? OH radical formation ranging from 5 to 57% at 1.25 mmol L?1 concentration. The examined CNCs also showed a high DPPH antiradical activity (ranging from 15 to 99% at 5 mmol L?1 concentration). Furthermore, the results indicated that seven of the 16 tested compounds may catalyse the conversion of superoxide radicals generated in the potassium superoxide/18‐crown‐6 ether system, thus showing superoxide dismutase‐like activity. The data obtained suggest that radical scavenging properties of CNCs might have potential application in many plant medicines. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

14.
Nitric oxide (NO·) is a free radical characterized by a high spontaneous chemical reactivity with many other molecules including the superoxide radical (O2·). This complex interaction may generate a peroxynitrite anion (ONOO), which behaves as an important mediator of oxidative stress in many pathological states. In the present study, in vitro experiments were performed to assess directly the O2· and hydroxyl (·OH) radical scavenging effects of various NO· donor drugs, i.e. sodium nitroprusside (SNP), sodium nitrite (NaNO2), molsidomine and SIN 1, at pH 7.4, 7 or 6. Concentrations of NO· in the incubation medium containing the different NO· donor drugs were measured by the assay based on the reaction of Fe-N-methyl-D-glucamine dithiocarbamate (MGD) with NO· that yields a stable spin-adduct measured by electron paramagnetic resonance (EPR). O2· and ·OH generation was characterized by EPR spin trapping techniques, using the spin trap 5,5-dimethyl-1-pyrroline-1-oxide (DMPO). These free radicals were generated from the enzymatic system xanthine-xanthine oxidase, in phosphate buffer adjusted at pH 7.4, 7 and 6. Under these experimental conditions, SNP exhibited the strongest superoxide scavenging properties, characterized by IC50 values expressed in the µmolar range, which decreased at low pH. Addition of SNP (800 µM) to solution containing MGD and Fe2+ (5:1) at pH 7 4 produced a three line EPR spectrum which is identified to [(MGD)2-Fe2+-NO]. In control experiments no EPR signal was observed. We obtained the same results with NaNO2 and an augmentation of the spin-adduct level was noted with the prolongation of the incubation period. In return, molsidomine (2 mM) did not produce, in our conditions, a detectable production of NO·. NaNO2 displayed a significant superoxide scavenging effect only at pH 6, whilst neither molsidomine nor SIN 1 had any effect. Therefore, the superoxide scavenging properties of SNP, NaNO2, and molsidomine appeared to be closely related to their potential for NO· release, which partially depends on the pH conditions. The behaviour of SIN 1 is more complicated, the speed of oxygen diffusion probably acting as a limiting factor in NO· formation in our conditions. The production of NO· was detected in presence of SIN 1. The intensity of the complex is comparable with the signal founded with NaNO2. By contrast, all molecules exhibited hydroxyl radical scavenging properties, highlighting the capacity of ·OH to react with a wide range of molecules. In conclusion, considering the poor chemical reactivity of O2·, the NO· donor drugs/O2· interactions suggest a special relationship between these two radical species, which, in certain pathological states, could lead to the generation of cytotoxic end-products with strong oxidizing properties.  相似文献   

15.
16.
Dynamic equilibria in iron uptake and release by ferritin   总被引:7,自引:0,他引:7  
The function of ferritins is to store and release ferrous iron. During oxidative iron uptake, ferritin tends to lower Fe2+ concentration, thus competing with Fenton reactions and limiting hydroxy radical generation. When ferritin functions as a releasing iron agent, the oxidative damage is stimulated. The antioxidant versus pro-oxidant functions of ferritin are studied here in the presence of Fe2+, oxygen and reducing agents. The Fe2+-dependent radical damage is measured using supercoiled DNA as a target molecule. The relaxation of supercoiled DNA is quantitatively correlated to the concentration of exogenous Fe2+, providing an indirect assay for free Fe2+. After addition of ferrous iron to ferritin, Fe2+ is actively taken up and asymptotically reaches a stable concentration of 1–5 m. Comparable equilibrium concentrations are found with plant or horse spleen ferritins, or their apoferritins. After addition of ascorbate, iron release is observed using ferrozine as an iron scavenger. Rates of iron release are dependent on ascorbate concentration. They are about 10 times larger with pea ferritin than with horse ferritin. In the absence of ferrozine, the reaction of ascorbate with ferritins produces a wave of radical damage; its amplitude increases with increased ascorbate concentrations with plant ferritin; the damage is weaker with horse ferritin and less dependent on ascorbate concentrations.  相似文献   

17.
《Free radical research》2013,47(5):469-478
The antioxidant activities of methanol and ethyl ether extracts obtained from Thymus zygis, collected during the flowering or non-flowering period, were evaluated and compared. To investigate this potential, extracts were tested on their capacity to react with diphenyl-picrylhydrazyl (DPPH) in a homogeneous medium, and to inhibit Fe2+/ascorbate-induced membrane lipid peroxidation, as estimated by the formation of thiobar-bituric acid-reactive substances (TBARS). Although methanol extracts reduce DPPH radicals more efficiently than ethyl ether extracts, suggesting a potent radical scavenger activity, the ethyl ether extracts were found to be most active in inhibiting lipid peroxidation in sarcoplasmic reticulum (SR) membranes. In addition, both extracts present peroxyl and superoxide radical scavenging activities. Peroxyl radicals were generated by the water soluble 2, 2A-azobis(2-amidinopropane) dihydrochloride (AAPH) azoinitiator, and the scavenging activities of the extracts were measured by the inhibition of cis-parinaric acid (PnA) fluorescence decay in SR. Superoxide radicals were generated either by an enzymatic or a non-enzymatic system, and the scavenger ability was evaluated by the inhibition of nitrob-lue tetrazolium reduction. Methanolic extracts are more potent as scavengers of peroxyl and super oxide radicals than the ethyl ether extracts. Apparently, there is a relationship between antioxidant potency and the total phenolic groups content in each extract.  相似文献   

18.
4种珍稀食用菌水提物的抗氧化活性研究   总被引:1,自引:0,他引:1  
用DPPH自由基清除法、羟基自由基清除法和超氧阴离子自由基清除法对4种珍稀食用菌灵芝、云芝、茶树菇、松茸的水提物进行抗氧化活性评价,为更好评价其抗氧化活性,以维生素C作为阳性对照。实验结果显示:4种食用菌水提物具有不同程度的抗氧化活性。云芝对DPPH自由基的清除能力最强,其IC50值为1.46 mg/mL,维生素C清除DPPH自由基的IC50为0.046 mg/mL;茶树菇对清除羟基自由基的清除能力最强,其IC50值为1.41 mg/mL,云芝和松茸也有较强清除羟自由基能力,其IC50值分别为1.56、1.57 mg/mL,三者的清除能力均明显优于阳性对照样品,维生素C清除羟自由基的IC50为2.41 mg/mL;灵芝和云芝有较强清除超氧阴离子自由基能力,其IC50值分别为124.48、138.28 mg/mL。  相似文献   

19.
In this study, three alginate fractions with different molecular weights and ratios of mannuronic acid (M) to guluronic acid (G) were prepared by enzymatic hydrolysis and ultrafiltration to assess the antioxidant property of alginates from Laminaria japonica with molecular weight below 10 kDa. The antioxidant properties of different molecular weight alginates were evaluated by determining the scavenging abilities on superoxide, hydroxyl, and hypochlorous acid and inhibitory effect on Fe2+-induced lipid peroxidation in yolk homogenate. The results showed that low molecular weight alginates exhibited high scavenging capacities on superoxide, hydroxyl, and hypochlorous acid radicals and good inhibition of Fe2+-induced lipid peroxidation in yolk. By comparison, alginate A1 with molecular weight below 1 kDa and M/G of 1.84 had better scavenging activity on superoxide, hydroxyl, and hypochlorous acid radicals in vitro than A2 (1–6 kDa), A3 (6–10 kDa), ascorbic acid, and carnosine. With similar M/G ratio, A2 exhibited better antioxidant activity on superoxide and hypochlorous acid radicals than A3. However, fraction A3 with molecular weight of 6–10 kDa exhibited higher inhibitory ability on lipid peroxidation in yolk in vitro than A1 and A2. The results indicated that molecular weight played a more important role than M/G ratio on alginate to determine the antioxidant ability. By comparison, low molecular weight alginates composed of guluronic acid and mannuronic acid exhibited better antioxidant ability on oxygen free radicals than sulfated polysaccharides from L. japonica in our previous study and represent a good source of marine polysaccharide with potential application as natural antioxidant.  相似文献   

20.
Fish protein hydrolysates (FPH) from horse mackerel were produced by employing an enzyme mixture of subtilisin and trypsin. The antioxidant activity of fish hydrolysates (DPPH scavenging activity, Fe2+ chelating activity and Fe3+ reducing power) was modelled as a function of the operating conditions for the hydrolysis (i.e. protein concentration, temperature and composition of the enzyme mixture). The antioxidant activities showed different behavior depending on whether their controlling pathway was the transference of electrons/protons (i.e. DPPH scavenging activity and Fe3+ reducing power) or metal chelation. In the first case, the antioxidant activities increased with the decrease of substrate concentration and temperature when pure trypsin (DPPH scavenging activity) or a mixture of enzymes (Fe3+ reducing capacity) was employed. Contrarily, hydrolysates showed higher Fe2+ chelating activities at moderate concentration and high temperature (i.e. 5 g/L and 55 °C) employing solely subtilisin. The conflictive behavior among the antioxidant properties suggested using a multiobjective optimization technique. The ε-constraint method was chosen for this purpose. This approach allows determining the most adequate operational conditions for producing hydrolysate with a specific antioxidant profile which is the first approximation to the production of taylor-made antioxidant hydrolysates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号