首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pleckstrin homology domains of tec family protein kinases.   总被引:2,自引:0,他引:2  
Pleckstrin homology (PH) domains have been shown to be involved in different interactions, including binding to inositol compounds, protein kinase C isoforms, and heterotrimeric G proteins. In some cases, the most important function of PH domains is transient localisation of proteins to membranes, where they can interact with their partners. Tec family protein tyrosine kinases contain a PH domain. In Btk, also PH domain mutations lead into an immunodeficiency, X-linked agammaglobulinemia (XLA). A new disease-causing mutation was identified in the PH domain. The structures for the PH domains of Bmx, Itk, and Tec were modelled based on Btk structure. The domains seem to have similar scaffolding and electrostatic polarisation but to have some differences in the binding regions. The models provide new insight into the specificity, function, and regulation of Tec family kinases.  相似文献   

2.
The Tec family is a recently emerging subfamily of non-receptor protein-tyrosine kinases (PTKs) represented by its first member, Tec. This family is composed of five members, namely Tec, Btk, Itk/Emt/Tsk, Bmx and Txk/Rlk. The most characteristic feature of this family is the presence of a pleckstrin homology (PH) domain in their protein structure. The PH domain is known to bind phosphoinositides; on this basis, Tec family PTKs may act as merge points of phosphotyrosine-mediated and phospholipid-mediated signaling systems. Many Tec family proteins are abundantly expressed in hematopoietic tissues, and are presumed to play important roles in the growth and differentiation processes of blood cells. Supporting this, mutations in the Btk gene cause X chromosome-linked agammaglobulinemia (XLA) in humans and X chromosome-linked immunodeficiency (Xid) in mice, indicating that Btk activity is indispensable for B-cell ontogeny. In addition, Tec family kinases have been shown to be involved in the intracellular signaling mechanisms of cytokine receptors, lymphocyte surface antigens, heterotrimeric G-protein-coupled receptors and integrin molecules. Efforts are being made to identify molecules which interact with Tec kinases to transfer Tec-mediated signals in vivo. Candidates for such second messengers include PLC-γ2, guanine nucleotide exchange factors for RhoA and TFII-I/BAP-135. This review summarizes current knowledge concerning the input and output factors affecting the Tec kinases.  相似文献   

3.
4.
Bruton's tyrosine kinase (Btk) is tyrosine phosphorylated and enzymatically activated following ligation of the B-cell antigen receptor. These events are temporally regulated, and Btk activation follows that of various members of the Src family of protein tyrosine kinases, thus raising the possibility that Src kinases participate in the Btk activation process. We have evaluated the mechanism underlying Btk enzyme activation and have explored the potential regulatory relationship between Btk and Src protein kinases. We demonstrate in COS transient-expression assays that Btk can be activated through intramolecular autophosphorylation at tyrosine 551 and that Btk autophosphorylation is required for Btk catalytic functions. Coexpression of Btk with members of the Src family of protein tyrosine kinases, but not Syk, led to Btk tyrosine phosphorylation and activation. Using a series of point mutations in Blk (a representative Src protein kinase) and Btk, we show that Src kinases activate Btk through an indirect mechanism that requires membrane association of the Src enzymes as well as functional Btk SH3 and SH2 domains. Our results are compatible with the idea that Src protein tyrosine kinases contribute to Btk activation by indirectly stimulating Btk intramolecular autophosphorylation.  相似文献   

5.
《FEBS letters》1994,350(2-3):263-265
The pleckstrin homology (PH) domain is extended in the Btk kinase family by a region designated the TH (Tec homology) domain, which consists of about 80 residues preceding the SH3 domain. The TH domain contains a conserved 27 amino acid stretch designated the Btk motif and a proline-rich region. Sequence similarity was found to a putative Ras GTPase activating protein and a human interferon-γ binding protein both in the PH domain and the Btk motif region. SLK1/SSP31 protein kinase and a non-catalytic p85 subunit of PI-3 kinase had similarity only with the proline rich region. The identification of a PH domain extension in some signal transduction proteins in different species suggests that this region is involved in protein—protein interactions.  相似文献   

6.
A fraction of Bruton's tyrosine kinase (Btk) co-localizes with actin fibers upon stimulation of mast cells via the high affinity IgE receptor (FcepsilonRI). In this study, a molecular basis of the Btk co-localization with actin fibers is presented. Btk and other Tec family tyrosine kinases have a pleckstrin homology (PH) domain at their N termini. The PH domain is a short peptide module frequently found in signal-transducing proteins and cytoskeletal proteins. Filamentous actin (F-actin) is shown to be a novel ligand for a subset of PH domains, including that of Btk. The actin-binding site was mapped to a 10-residue region of the N-terminal region of Btk. Basic residues in this short stretch are demonstrated to be involved in actin binding. Isolated PH domains induced actin filament bundle formation. Consistent with these observations, Btk binds F-actin in vitro and in vivo. Wild-type Btk protein is in part translocated to the cytoskeleton upon FcepsilonRI cross-linking, whereas Btk containing a mutated PH domain is not. Phosphatidylinositol 3,4, 5-trisphosphate-mediated membrane translocation of Btk was enhanced in cytochalasin D-pretreated, FcepsilonRI-stimulated mast cells. These data indicate that PH domain-mediated F-actin binding plays a role in Btk co-localization with actin filaments.  相似文献   

7.
Itk and Rlk are members of the Tec kinase family of nonreceptor protein tyrosine kinases that are expressed in T cells, NK cells, and mast cells. These proteins are involved in the regulation of signaling processes downstream of the TCR in CD4(+) T cells, particularly in the phosphorylation of phospholipase C-gamma1 after TCR activation; furthermore, both Itk and Rlk are important in CD4(+) T cell development, differentiation, function, and homeostasis. However, few studies have addressed the roles of these kinases in CD8(+) T cell signaling and function. Using Itk(-/-) and Itk(-/-)Rlk(-/-) mice, we examined the roles of these Tec family kinases in CD8(+) T cells, both in vitro and in vivo. These studies demonstrate that the loss of Itk and Rlk impairs TCR-dependent signaling, causing defects in phospholipase C-gamma1, p38, and ERK activation as well as defects in calcium flux and cytokine production in vitro and expansion and effector cytokine production by CD8(+) T cells in response to viral infection. These defects cannot be rescued by providing virus-specific CD4(+) T cell help, thereby substantiating the important role of Tec kinases in CD8(+) T cell signaling.  相似文献   

8.
Bruton's tyrosine kinase (Btk), a nonreceptor cytoplasmic tyrosine kinase belonging to the Tec family of kinases, has been shown to be critical for B cell proliferation, differentiation, and signaling. Loss-of-function mutations in the Btk gene lead to X-linked agammaglobulinemia (XLA), a primary immunodeficiency in humans, and the less severe condition xid in mice. Although Btk is mainly localized in the cytoplasm under steady state conditions, it translocates to the plasma membrane upon growth factor stimulation and cross-linking of the B cell receptor. Nevertheless, in ectopically as well as endogenously Btk-expressing cells, it can also translocate to the nucleus. Deletion of the pleckstrin homology (PH) domain (DeltaPH1) leads, however, to an even redistribution of Btk within the nucleus and cytoplasm in the majority of transfected cells. In contrast, an SH3-deleted (DeltaSH3) mutant of Btk has been found to be predominantly nuclear. We also demonstrate that the nuclear accumulation of DeltaPH1 is dependent on Src expression. This nucleocytoplasmic shuttling is sensitive to the exportin 1/CRM1-inactivating drug, leptomycin B, indicating that Btk utilizes functional nuclear export signals. In addition, while the DeltaPH1 mutant of Btk was found to be active and tyrosine-phosphorylated in vivo, DeltaSH3 displayed decreased autokinase activity and was not phosphorylated. Our findings indicate that the nucleocytoplasmic shuttling of Btk has implications regarding potential targets inside the nucleus, which may be critical in gene regulation during B cell development and differentiation.  相似文献   

9.
10.
Tec, the prototypical member of the Tec family of tyrosine kinases, is abundantly expressed in T cells and other hemopoietic cell types. Although the functions of Itk and Txk have recently been investigated, little is known about the role of Tec in T cells. Using antisense oligonucleotide treatment to deplete Tec protein from primary T cells, we demonstrate that Tec plays a role in TCR signaling leading to IL-2 gene induction. Interestingly, Tec kinases are the only known family of tyrosine kinases containing a pleckstrin homology (PH) domain. Using several PH domain mutants overexpressed in Jurkat T cells, we show that the Tec PH domain is required for Tec-mediated IL-2 gene induction and TCR-mediated Tec tyrosine phosphorylation. Furthermore, we show that Tec colocalizes with the TCR after TCR cross-linking, and that both the Tec PH and Src homology (SH) 2 domains play a role in this association. Wortmannin, a phosphatidylinositol 3-kinase inhibitor, abolishes Tec-mediated IL-2 gene induction and Tec tyrosine phosphorylation, and partially suppresses Tec colocalization with the activated TCR. Thus, our data implicate the Tec kinase PH domain and phosphatidylinositol 3-kinase in Tec signaling downstream of the TCR.  相似文献   

11.
BACKGROUND: The Btk (Bruton's tyrosine kinase) gene has been shown to be mutated in the human immunodeficiency disease, XLA (X-linked agammaglobulinemia). Btk is a member of the Tec family of cytosolic protein tyrosine kinases with distinct functional domains PH, TH, SH3, SH2, and kinase. Mutations have been observed in each of the Btk subdomains in XLA. We have analyzed the Btk gene in six XLA patients from five unrelated families. MATERIALS AND METHODS: DNA was prepared from the patients peripheral blood. The Btk exons including the junctional sequences were analyzed by single-strand conformation polymorphism (SSCP) followed by direct nucleotide sequencing after PCR-amplification. For structural analysis, the missense mutations were introduced into three-dimensional models of the PH and kinase domains of Btk and the outcome was predicted based on the knowledge of the protein function. RESULTS: Five novel mutations and two novel polymorphisms, all of which resulted from single-base alterations, were identified. Three of the five mutations were in the PH domain and two were in the kinase domain of Btk. Three of these mutations were of the missense type, two of which altered the same codon in the PH domain; the third one was located in the kinase domain. The fourth mutation was a point deletion in the PH domain causing a frameshift followed by premature termination. The fifth mutation was a splice donor-site mutation within the kinase domain which could result in an exon skipping. In four of the five instances, mothers of the patients were shown to be obligate carriers. In one instance, a sibling sister was identified as a heterozygote establishing her as a carrier. CONCLUSIONS: Functional consequences of the mutations causing frameshifts and altered splicing can be inferred directly. Functional consequences of the missense mutations were interpreted by 3-dimensional structural modeling of Btk domains. It is proposed that the two PH domain mutations will interfere with membrane localization while the kinase domain mutation will interfere with the enzymatic function of Btk. This study provides further insight into the role of Btk in XLA.  相似文献   

12.
Tec family protein tyrosine kinases (TFKs) play a central role in hematopoietic cellular signaling. Initial activation takes place through specific tyrosine phosphorylation situated in the activation loop. Further activation occurs within the SH3 domain via a transphosphorylation mechanism, which for Bruton's tyrosine kinase (Btk) affects tyrosine 223. We found that TFKs phosphorylate preferentially their own SH3 domains, but differentially phosphorylate other member family SH3 domains, whereas non-related SH3 domains are not phosphorylated. We demonstrate that SH3 domains are good and reliable substrates. We observe that transphosphorylation is selective not only for SH3 domains, but also for dual SH3SH2 domains. However, the dual domain is phosphorylated more effectively. The major phosphorylation sites were identified as conserved tyrosines, for Itk Y180 and for Bmx Y215, both sites being homologous to the Y223 site in Btk. There is, however, one exception because the Tec-SH3 domain is phosphorylated at a non-homologous site, nevertheless a conserved tyrosine, Y206. Consistent with these findings, the 3D structures for SH3 domains point out that these phosphorylated tyrosines are located on the ligand-binding surface. Because a number of Tec family kinases are coexpressed in cells, it is possible that they could regulate the activity of each other through transphosphorylation.  相似文献   

13.
Bruton's tyrosine kinase (Btk), a member of the Tec family of protein-tyrosine kinases, has been shown to be crucial for B cell development, differentiation, and signaling. Mutations in the Btk gene lead to X-linked agammaglobulinemia in humans and X-linked immunodeficiency in mice. Using a co-transfection approach, we present evidence here that Btk interacts physically with caveolin-1, a 22-kDa integral membrane protein, which is the principal structural and regulatory component of caveolae membranes. In addition, we found that native Bmx, another member of the Tec family kinases, is associated with endogenous caveolin-1 in primary human umbilical vein endothelial cells. Second, in transient transfection assays, expression of caveolin-1 leads to a substantial reduction in the in vivo tyrosine phosphorylation of both Btk and its constitutively active form, E41K. Furthermore, a caveolin-1 scaffolding peptide (amino acids 82--101) functionally suppressed the autokinase activity of purified recombinant Btk protein. Third, we demonstrate that mouse splenic B-lymphocytes express substantial amounts of caveolin-1. Interestingly, caveolin-1 was found to be constitutively phosphorylated on tyrosine 14 in these cells. The expression of caveolin-1 in B-lymphocytes and its interaction with Btk may have implications not only for B cell activation and signaling, but also for antigen presentation.  相似文献   

14.
15.
Phospholipase Cgamma (PLCgamma) isoforms are regulated through activation of tyrosine kinase-linked receptors. The importance of growth factor-stimulated phosphorylation of specific tyrosine residues has been documented for PLCgamma1; however, despite the critical importance of PLCgamma2 in B-cell signal transduction, neither the tyrosine kinase(s) that directly phosphorylate PLCgamma2 nor the sites in PLCgamma2 that become phosphorylated after stimulation are known. By measuring the ability of human PLCgamma2 to restore calcium responses to the B-cell receptor stimulation or oxidative stress in a B-cell line (DT40) deficient in PLCgamma2, we have demonstrated that two tyrosine residues, Tyr(753) and Tyr(759), were important for the PLCgamma2 signaling function. Furthermore, the double mutation Y753F/Y759F in PLCgamma2 resulted in a loss of tyrosine phosphorylation in stimulated DT40 cells. Of the two kinases that previously have been proposed to phosphorylate PLCgamma2, Btk, and Syk, purified Btk had much greater ability to phosphorylate recombinant PLCgamma2 in vitro, whereas Syk efficiently phosphorylated adapter protein BLNK. Using purified proteins to analyze the formation of complexes, we suggest that function of Syk is to phosphorylate BLNK, providing binding sites for PLCgamma2. Further analysis of PLCgamma2 tyrosine residues phosphorylated by Btk and several kinases from the Src family has suggested multiple sites of phosphorylation and, in the context of a peptide incorporating residues Tyr(753) and Tyr(759), shown preferential phosphorylation of Tyr(753).  相似文献   

16.
M Hyv?nen  M Saraste 《The EMBO journal》1997,16(12):3396-3404
Bruton''s tyrosine kinase (Btk) is an enzyme which is involved in maturation of B cells. It is a target for mutations causing X-linked agammaglobulinaemia (XLA) in man. We have determined the structure of the N-terminal part of Btk by X-ray crystallography at 1.6 A resolution. This part of the kinase contains a pleckstrin homology (PH) domain and a Btk motif. The structure of the PH domain is similar to those published previously: a seven-stranded bent beta-sheet with a C-terminal alpha-helix. Individual point mutations within the Btk PH domain which cause XLA can be classified as either structural or functional in the light of the three-dimensional structure and biochemical data. All functional mutations cluster into the positively charged end of the molecule around the predicted binding site for phosphatidylinositol lipids. It is likely that these mutations inactivate the Btk pathway in cell signalling by reducing its affinity for inositol phosphates, which causes a failure in translocation of the kinase to the cell membrane. A small number of signalling proteins contain a Btk motif that always follows a PH domain in the sequence. This small module has a novel fold which is held together by a zinc ion bound by three conserved cysteines and a histidine. The Btk motif packs against the second half of the beta-sheet of the PH domain, forming a close contact with it. Our structure opens up new ways to study the role of the PH domain and Btk motif in the cellular function of Btk and the molecular basis of its dysfunction in XLA patients.  相似文献   

17.
RGS proteins comprise a family of proteins named for their ability to negatively regulate heterotrimeric G protein signaling. Biochemical studies suggest that members of this protein family act as GTPase-activating proteins for certain Galpha subunits, thereby accelerating the turn-off mechanism of Galpha and terminating signaling by both Galpha and Gbetagamma subunits. In the present study, we used confocal microscopy to examine the intracellular distribution of several RGS proteins in COS-7 cells expressing RGS-green fluorescent protein (GFP) fusion proteins and in cells expressing RGS proteins endogenously. RGS2 and RGS10 accumulated in the nucleus of COS-7 cells transfected with GFP constructs of these proteins. In contrast, RGS4 and RGS16 accumulated in the cytoplasm of COS-7 transfectants. As observed in COS-7 cells, RGS4 exhibited cytoplasmic localization in mouse neuroblastoma cells, and RGS10 exhibited nuclear localization in human glioma cells. Deletion or alanine substitution of an N-terminal leucine repeat motif present in both RGS4 and RGS16, a domain identified as a nuclear export sequence in HIV Rev and other proteins, promoted nuclear localization of these proteins in COS-7 cells. In agreement with this observation, treatment of mouse neuroblastoma cells with leptomycin B to inhibit nuclear protein export by exportin1 resulted in accumulation of RGS4 in the nucleus of these cells. GFP fusions of RGS domains of RGS proteins localized in the nucleus, suggesting that nuclear localization of RGS proteins results from nuclear targeting via RGS domain sequences. RGSZ, which shares with RGS-GAIP a cysteine-rich string in its N-terminal region, localized to the Golgi complex in COS-7 cells. Deletion of the N-terminal domain of RGSZ that includes the cysteine motif promoted nuclear localization of RGSZ. None of the RGS proteins examined were localized at the plasma membrane. These results demonstrate that RGS proteins localize in the nucleus, the cytoplasm, or shuttle between the nucleus and cytoplasm as nucleo-cytoplasmic shuttle proteins. RGS proteins localize differentially within cells as a result of structural differences among these proteins that do not appear to be important determinants for their G protein-regulating activities. These findings suggest involvement of RGS proteins in more complex cellular functions than currently envisioned.  相似文献   

18.
Ceramide kinase (CERK) and the ceramide kinase-like protein (CERKL), two related members of the diacylglycerol kinase family, are ill-defined at the molecular level. In particular, what determines their distinctive subcellular localization is not well understood. Here we show that the Pleckstrin Homology (PH) domain of CERK, which is required for Golgi complex localization, can substitute for the N-terminal region of CERKL and allow for wild-type CERKL localization, which is typified by nucleolar accumulation. This demonstrates that determinants for localization of these two enzymes do not lie solely in their PH domain-containing N-terminal regions. Moreover, we present evidence for a previously unrecognized participation of CERK distal sequences in structural stability, localization and activity of the full-length protein. Progressive deletion of CERK and CERKL from the C-terminus revealed similar sequential organization in both proteins, with nuclear import signals in their N-terminal part, and nuclear export signals in their C-terminal part. Furthermore, mutagenesis of individual cysteine residues of a CERK-specific CXXXCXXC motif severely compromised both exportation of CERK from the nucleus and its association with the Golgi complex. Altogether, this work identifies conserved domains in CERK and CERKL as well as new determinants for their subcellular localization. It further suggests a nucleocytoplasmic shuttling mechanism for both proteins that may be defective in CERKL mutant proteins responsible for retinal degenerative diseases.  相似文献   

19.
The nonreceptor Bruton's tyrosine kinase (Btk) has been previously shown to associate physically and functionally with members of the protein kinase C (PKC) family of serine/threonine kinases in a variety of cell types. Here we show evidence for a novel interaction between Btk and PKCtheta; in platelets activated through the adhesion receptors GP Ib-V-IX and GP VI. Alboaggregin A, a snake venom component capable of activating both receptors in combination, leads to tyrosine phosphorylation of Btk downstream of Src family kinases. Inhibition of Btk by the selective antagonist LFM-A13 causes a reduction in calcium entry, although secretion of 5-hydroxytryptamine is potentiated. Btk is also phosphorylated on threonine residues in a PKC-dependent manner and associates with PKCtheta; upon platelet activation by either alboaggregin A or activation of GP Ib-V-IX alone by von Willebrand factor/ristocetin. PKCtheta; in turn becomes tyrosine-phosphorylated in a manner dependent upon Src family and Btk kinase activity. Inhibition of Btk activity by LFM-A13 leads to enhancement of PKCtheta; activity, whereas nonselective inhibition of PKC activity by bisindolylmaleimide I leads to reduction in Btk activity. We propose a reciprocal feedback interaction between Btk and PKCtheta; in platelets, in which PKCtheta; positively modulates activity of Btk, which in turn feeds back negatively upon PKCtheta;.  相似文献   

20.
The phosphatidylinositol 3' kinase (PI3K)-signaling pathway plays a critical role in a variety of cellular responses such as modulation of cell survival, glucose homeostasis, cell division, and cell growth. PI3K generates important lipid second messengers-phosphatidylinositides that are phosphorylated at the 3' position of their inositol ring head-group. These membrane restricted lipids act by binding with high affinity to specific protein domains such as the pleckstrin homology (PH) domain. Effectors of PI3K include molecules that harbor such domains such as phosphoinositide-dependent kinase (PDK1) and protein kinase B (PKB), also termed Akt. The mammalian genome encodes three different PKB genes (alpha, beta, and gamma; Akt1, 2, and 3, respectively) and each is an attractive target for therapeutic intervention in diseases such as glioblastoma and breast cancer. A second family of three protein kinases, termed serum and glucocorticoid-regulated protein kinases (SGKs), is structurally related to the PKB family including regulation by PI3K but lack a PH domain. However, in addition to PH domains, a second class of 3' phosphorylated inositol phospholipid-binding domains exists that is termed Phox homology (PX) domain: this domain is found in one of the SGKs (SGK3). Here, we summarize knowledge of the three SGK isoforms and compare and contrast them to PKB with respect to their possible importance in cellular regulation and potential as therapeutic targets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号