首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
F Volke  A Pampel 《Biophysical journal》1995,68(5):1960-1965
The position on a subnanometer scale and the dynamics of structurally important water in model membranes was determined using a combination of proton magic-angle spinning NMR (MAS) with two-dimensional NOESY NMR techniques. Here, we report studies on phosphocholine lipid bilayers that were then modified by the addition of a nonionic surfactant that is shown to dehydrate the lipid. These studies are supplemented by 13C magic-angle spinning NMR investigations to get information on the dynamics of segmental motions of the membrane molecules. It can be shown that the hydrophilic chain of the surfactant is positioned at least partially within the hydrophobic core of the lipid bilayer. With the above NMR approach, we are able to establish molecular contacts between water and the lipid headgroup as well as with certain groups of the hydrocarbon chains and the glycerol backbone. This is possible because high resolution proton and 13C-NMR spectra of multilamellar bilayer membranes are obtained using MAS. A phase-sensitive NOESY must also be applied to distinguish positive and negative cross-peaks in the two-dimensional plot. These studies have high potential to investigate membrane proteins hydration and structural organization in a natural lipid bilayer surrounding.  相似文献   

2.
C L Jackson  R G Bryant 《Biochemistry》1989,28(12):5024-5028
The carbon-13 NMR spectra of glycogen are reported by using the methods of magic-angle sample spinning and high-power proton decoupling to provide a dynamic report on the glucose monomer behavior as a function of hydration. Although the glycogen behaves as a typical polymer in the dry state, addition of water makes a significant difference in the spectral appearance. Water addition decreases the carbon spin-lattice relaxation times by 2 orders of magnitude over the range from 7% to 70% water by weight. The proton-carbon dipole-dipole coupling, which broadens the carbon spectrum and permits cross-polarization spectroscopy, is lost with increasing hydration over this range. By 60% water by weight, scalar decoupling methods are sufficient to achieve a reasonably high-resolution spectrum. Further, at this concentration, the carbon spin-lattice relaxation times are near their minimum values at a resonance frequency of 50.3 MHz, making acquisition of carbon spectra relatively insensitive to intensity distortions associated with saturation effects. Though motional averaging places the spectrum in the solution phase limit, the static spectrum shows a residual broader component that would not necessarily be detected readily by using high-resolution liquid-state experiments.  相似文献   

3.
P O Quist 《Biophysical journal》1998,75(5):2478-2488
The natural-abundance 13C NMR spectrum of gramicidin A in a lipid membrane was acquired under magic-angle spinning conditions. With fast sample spinning (15 kHz) at approximately 65 degrees C the peaks from several of the aliphatic, beta-, alpha-, aromatic, and carbonyl carbons in the peptide could be resolved. The resolution in the 13C spectrum was superior that observed with 1H NMR under similar conditions. The 13C linewidths were in the range 30-100 Hz, except for the alpha- and beta-carbons, the widths of which were approximately 350 Hz. The beta-sheet-like local structure of gramicidin A was observed as an upfield shift of the gramicidin alpha and carbonyl resonances. Under slow sample spinning (500 Hz), the intensity of the spinning sidebands from 13C in the backbone carbonyls was used to determine the residual chemical shift tensor. As expected, the elements of the residual chemical shift tensor were consistent with the single-stranded, right-handed beta6.3 helix structure proposed for gramicidin A in lipid membranes.  相似文献   

4.
High-resolution magic-angle spinning (hr-MAS) NMR spectroscopy was used to record NMR spectra of a cell paste from the marine diatom Chaetoceros mülleri. This gave information on a cellular storage polysaccharide identified as a beta-D-(1-->3)-linked glucan, using hr-MAS one-dimensional 1H and 13C, two-dimensional 1H,1H-COSY and 13C,1H-correlation spectroscopy. The same structural information was deduced from the liquid state NMR data on the glucan extracted from C. mülleri. The extracted glucan proved to be a beta-D-(1-->3)-linked glucan with a degree of polymerization of 19 and a degree of beta-D-(1-->6) branching of 0.005. The hr-MAS spectrum of the diatom showed several nonglucan resonances in the carbohydrate region of the NMR spectrum (60-103 ppm) that were shown to be noncarbohydrate resonances by means of two-dimensional 13C,1H- and 1H,1H-correlated NMR data.  相似文献   

5.
Solid-state NMR has emerged as an important tool for structural biology and chemistry, capable of solving atomic-resolution structures for proteins in membrane-bound and aggregated states. Proton detection methods have been recently realized under fast magic-angle spinning conditions, providing large sensitivity enhancements for efficient examination of uniformly labeled proteins. The first and often most challenging step of protein structure determination by NMR is the site-specific resonance assignment. Here we demonstrate resonance assignments based on high-sensitivity proton-detected three-dimensional experiments for samples of different physical states, including a fully-protonated small protein (GB1, 6?kDa), a deuterated microcrystalline protein (DsbA, 21?kDa), a membrane protein (DsbB, 20?kDa) prepared in a lipid environment, and the extended core of a fibrillar protein (??-synuclein, 14?kDa). In our implementation of these experiments, including CONH, CO(CA)NH, CANH, CA(CO)NH, CBCANH, and CBCA(CO)NH, dipolar-based polarization transfer methods have been chosen for optimal efficiency for relatively high protonation levels (full protonation or 100?% amide proton), fast magic-angle spinning conditions (40?kHz) and moderate proton decoupling power levels. Each H?CN pair correlates exclusively to either intra- or inter-residue carbons, but not both, to maximize spectral resolution. Experiment time can be reduced by at least a factor of 10 by using proton detection in comparison to carbon detection. These high-sensitivity experiments are especially important for membrane proteins, which often have rather low expression yield. Proton-detection based experiments are expected to play an important role in accelerating protein structure elucidation by solid-state NMR with the improved sensitivity and resolution.  相似文献   

6.
For multilamellar suspensions of phospholipids, the 1H and 31P Nuclear Magnetic Resonance (NMR) spectra obtained with magic-angle spinning (MAS) exhibit resolution comparable to that of sonicated vesicles. However, specific lipid head groups cannot be recognized in a lipid mixture using one-dimensional NMR spectroscopy. We show here that the combination of MAS and two-dimensional Heteronuclear Overhauser Effect SpectroscopY (HOESY) reveals magnetic interactions between the phosphate and its neighbouring protons and thus allows the distinction in situ of several lipids in a mixture. The 31P-1H HOESY spectra of suspensions of phosphatidylcholine and phosphatidylglycerol or phosphatidylcholine, phosphatidylethanolamine and sphingomyelin are shown as examples. In the course of these experiments, intramolecular spin-diffusion as well as intermolecular interactions between lipids and water were observed. The technique should enable the investigation of lipid-lipid and lipid-protein interactions, lipid hydration as well as lipid asymmetry in membranes without the use of isotopically labeled lipids. Received: 18 April 1996 / Accepted: 26 July 1996  相似文献   

7.
Solid-state NMR spectroscopy is being developed at a fast pace for the structural investigation of immobilized and non-crystalline biomolecules. These include proteins and peptides associated with phospholipid bilayers. In contrast to solution NMR spectroscopy, where complete or almost complete averaging leads to isotropic values, the anisotropic character of nuclear interactions is apparent in solid-state NMR spectra. In static samples the orientation dependence of chemical shift, dipolar or quadrupolar interactions, therefore, provides angular constraints when the polypeptides have been reconstituted into oriented membranes. Furthermore, solid-state NMR spectroscopy of aligned samples offers distinct advantages in allowing access to dynamic processes such as topological equilibria or rotational diffusion in membrane environments. Alternatively, magic angle sample spinning (MAS) results in highly resolved NMR spectra, provided that the sample is sufficiently homogenous. MAS spinning solid-state NMR spectra allow to measure distances and dihedral angles with high accuracy. The technique has recently been developed to selectively establish through-space and through-bond correlations between nuclei, similar to the approaches well-established in solution-NMR spectroscopy.  相似文献   

8.
Nuclear magnetic resonance (NMR) studies on biomembranes have benefited greatly from introduction of magic angle spinning (MAS) NMR techniques. Improvements in MAS probe technology, combined with the higher magnetic field strength of modern instruments, enables almost liquid-like resolution of lipid resonances. The cross-relaxation rates measured by nuclear Overhauser enhancement spectroscopy (NOESY) provide new insights into conformation and dynamics of lipids with atomic-scale resolution. The data reflect the tremendous motional disorder in the lipid matrix. Transfer of magnetization by spin diffusion along the proton network of lipids is of secondary relevance, even at a long NOESY mixing time of 300 ms. MAS experiments with re-coupling of anisotropic interactions, like the 13C-(1)H dipolar couplings, benefit from the excellent resolution of 13C shifts that enables assignment of the couplings to specific carbon atoms. The traditional 2H NMR experiments on deuterated lipids have higher sensitivity when conducted on oriented samples at higher magnetic field strength. A very large number of NMR parameters from lipid bilayers is now accessible, providing information about conformation and dynamics for every lipid segment. The NMR methods have the sensitivity and resolution to study lipid-protein interaction, lateral lipid organization, and the location of solvents and drugs in the lipid matrix.  相似文献   

9.
Interactions between anesthetics (lidocaine and short chain alcohols) and lipid membranes formed by dimyristoylphosphatidylcholine (DMPC) were studied using NMR spectroscopy. The orientational order of lidocaine was investigated using deuterium NMR on a selectively labelled compound whereas segmental ordering in the lipids was probed by two-dimensional 1H-13C separated local field experiments under magic-angle spinning conditions. In addition, trajectories generated in molecular dynamics (MD) computer simulations were used for interpretation of the experimental results. Separate simulations were carried out with charged and uncharged lidocaine molecules. Reasonable agreement between experimental dipolar interactions and the calculated counterparts was observed. Our results clearly show that charged lidocaine affects significantly the lipid headgroup. In particular the ordering of the lipids is increased accompanied by drastic changes in the orientation of the P-N vector in the choline group.  相似文献   

10.
Lipid membranes composed of monogalactosyldiacylglycerol (MGDG) and dimyristoylphosphatidylcholine (DMPC) were studied by means of NMR spectroscopy. The macroscopic phase behaviour was investigated by (31)P NMR under stationary conditions, whereas microscopic properties such as segmental ordering were probed by two-dimensional (1)H-(13)C separated local field experiments under magic-angle spinning conditions. Our results clearly show that ordering/disordering effects occur for the headgroups as well as for the acyl chains when the sample composition is varied. In particular, the (1)H-(13)C dipolar couplings within the galactose headgroup of MGDG exhibited significant concentration dependence.  相似文献   

11.
The impact of Nuclear Magnetic Resonance (NMR) on studies of large macromolecular complexes hinges on improvements in sensitivity and resolution. Dynamic nuclear polarization (DNP) in the solid state can offer improved sensitivity, provided sample preparation is optimized to preserve spectral resolution. For a few nanomoles of intact ribosomes and an 800 kDa ribosomal complex we demonstrate that the combination of DNP and magic-angle spinning NMR (MAS-NMR) allows one to overcome current sensitivity limitations so that homo- and heteronuclear 13C and 15N NMR correlation spectra can be recorded. Ribosome particles, directly pelleted and frozen into an NMR rotor, yield DNP signal enhancements on the order of ~25-fold and spectra that exhibit narrow linewidths, suitable for obtaining site-specific information. We anticipate that the same approach is applicable to other high molecular weight complexes.  相似文献   

12.
Calcium (Ca(2+)) is an essential cofactor for photosynthetic oxygen evolution. Although the involvement of Ca(2+) at the oxidizing side of photosystem II of plants has been known for a long time, its ligand interactions and mode of action have remained unclear. In the study presented here, (113)Cd magic-angle spinning solid-state NMR spectroscopy is used to probe the Ca(2+)-binding site in the water-oxidizing complex of (113)Cd(2+)-substituted PS2. A single NMR signal 142 ppm downfield from Cd(ClO(4))(2).2H(2)O was recorded from Cd(2+) present at the Ca(2+)-binding site. The anisotropy of the signal is small, as indicated by the absence of spinning side bands. The signal intensity is at its maximum at a temperature of -60 degrees C. The line width of the proton signal in a WISE (wide-line separation) two-dimensional (1)H-(113)Cd NMR experiment demonstrates that the signal arises from Cd(2+) in a solid and magnetically undisturbed environment. The chemical shift, the small anisotropy, and the narrow line of the (113)Cd NMR signal provide convincing evidence for a 6-fold coordination, which is achieved partially by oxygen and partially by nitrogen or chlorine atoms in otherwise a symmetric octahedral environment. The absence of a (113)Cd signal below -70 degrees C suggests that the Ca(2+)-binding site is close enough to the tetramanganese cluster to be affected by its electron spin state. To our knowledge, this is the first report for the application of solid-state NMR in the study of the membrane-bound PS2 protein complex.  相似文献   

13.
Lipid membranes composed of monogalactosyldiacylglycerol (MGDG) and dimyristoylphosphatidylcholine (DMPC) were studied by means of NMR spectroscopy. The macroscopic phase behaviour was investigated by 31P NMR under stationary conditions, whereas microscopic properties such as segmental ordering were probed by two-dimensional 1H-13C separated local field experiments under magic-angle spinning conditions. Our results clearly show that ordering/disordering effects occur for the headgroups as well as for the acyl chains when the sample composition is varied. In particular, the 1H-13C dipolar couplings within the galactose headgroup of MGDG exhibited significant concentration dependence.  相似文献   

14.
Principal component analysis (PCA) has been applied to three nuclear magnetic resonance (NMR) spectral editing methods, namely, the Carr-Purcell-Meiboom-Gill spin-echo, diffusion editing, and skyline projection of a two-dimensional J-resolved spectrum, obtained from high-resolution magic-angle spinning NMR spectroscopy of liver tissues, to distinguish between control and hydrazine-treated rats. The effects of the toxin on rat liver biochemistry were directly observed and characterized by depleted levels of liver glycogen, choline, taurine, trimethylamine N-oxide, and glucose and by elevated levels of lipids and alanine. The highly unsaturated omega-3-type fatty acid was observed for the first time in hydrazine-treated rat liver. The contributions of the metabolites to the separation of control from dosed liver tissues varied depending on the type of spectral editing method used. We have shown that subtle changes in the metabolic profiles can be selectively amplified using a metabonomics approach based on the different NMR spectral editing techniques in conjunction with PCA.  相似文献   

15.
We observed and characterized two distinct signals originating from different pools of water protons in solid-state NMR protein samples, namely from crystal water which exchanges polarization with the protein (on the NMR timescale) and is located in the protein-rich fraction at the periphery of the magic-angle spinning (MAS) sample container, and supernatant water located close to the axis of the sample container. The polarization transfer between the water and the protein can be probed by two-dimensional exchange spectroscopy, and we show that the supernatant water does not interact with protein on the timescale of the experiments. The two water pools have different spectroscopic properties, including resonance frequency, longitudinal, transverse and rotating frame relaxation times. The supernatant water can be removed almost completely physically or can be frozen selectively. Both measures lead to an enhancement of the quality factor of the probe circuit, accompanied by an improvement of the experimental signal/noise, and greatly simplify solvent-suppression by substantially reducing the water signal. We also present a tool, which allows filling solid-state NMR sample containers in a more efficient manner, greatly reducing the amount of supernatant water and maximizing signal/noise.  相似文献   

16.
Solid spider dragline silk is well-known for its mechanical properties. Nonetheless a detailed picture of the spinning process is lacking. Here we report NMR studies on the liquid silk within the wide sac of the major ampullate (m.a.) gland from the spider Nephila edulis. The resolution in the NMR spectra is shown to be significantly improved by the application of magic-angle spinning (MAS). From the narrow width of the resonance lines and the chemical shifts observed, it is concluded that the silk protein within the wide sac of the m.a. gland is dynamically disordered throughout the molecule in the sense that each amino acid of a given type senses an identical environment, on average. The NMR data obtained are consistent with an isotropic liquid phase.  相似文献   

17.
High-resolution proton and carbon-13 NMR of membranes: why sonicate?   总被引:2,自引:0,他引:2  
E Oldfield  J L Bowers  J Forbes 《Biochemistry》1987,26(22):6919-6923
We have obtained high-field (11.7-T) proton and carbon-13 Fourier transform (FT) nuclear magnetic resonance (NMR) spectra of egg lecithin and egg lecithin-cholesterol (1:1) multibilayers, using "magic-angle" sample spinning (MASS) techniques, and sonicated egg lecithin and egg lecithin-cholesterol (1:1) vesicles, using conventional FT NMR methods. Resolution of the proton and carbon-13 MASS NMR spectra of the pure egg lecithin samples is essentially identical with that of sonicated samples, but spectra of the unsonicated lipid, using MASS, can be obtained very much faster than with the more dilute, sonicated systems. With the 1:1 lecithin-cholesterol systems, proton MASS NMR spectra are virtually identical with conventional FT spectra of sonicated samples, while with 13C NMR, we demonstrate that most 13C nuclei in the cholesterol moiety can be monitored, even though these same nuclei are essentially invisible, i.e., are severely broadened, in the corresponding sonicated systems. In addition, 13C MASS NMR, spectra can again be recorded much faster than with sonicated samples, due to concentration effects. Taken together, these results strongly suggest there will seldom be need in the future to resort to ultrasonic disruption of lipid bilayer membranes in order to obtain high-resolution proton or carbon-13 NMR spectra.  相似文献   

18.
For many biological molecules, determining their geometry as they exist in a membrane environment is a crucial step in understanding their function. Variable angle sample spinning (VASS) NMR provides a new route to obtaining geometry information on membrane-associating molecules; it has been used here to scale and separate anisotropic contributions to phosphorus chemical shifts in NMR spectra of phosphatidylinositol phosphates. The procedure allows spectral assignment via correlation with isotropic chemical shifts and determination of a family of probable headgroup orientations via interpretation of anisotropic shift contributions. The molecules studied include phosphtidylinositol-4-phosphate (PI(4)P) and phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). A membrane-like environment is provided by a dispersion of alkyl-poly(ethylene) glycols and n-alcohols that forms a field-orienting liquid crystal with a director that can be manipulated by varying the sample spinning axis. The experiments presented indicate that the variable angle sample spinning method will provide a direct approach for assignment and extraction of structural information from membrane-associating biomolecules labeled with a wider variety of NMR active isotopes.  相似文献   

19.
A very useful high-resolution magic-angle spinning (MAS) 1H NMR method for studying lipid dispersions is presented. The sample can be loaded into the spherical glass ampoule very easily, and a spinning speed of more than 10 kHz can be achieved without the problems of sample leakage or water loss. The line width at half height for the HDO peak is less than 1.5 Hz, and the method can be implemented by anyone who has access to a solid-state MAS NMR spectrometer. By using the spherical glass ampoule method we found two water peaks, which could be ascribed to bulk water outside of the multilamellar liposome (peak at high frequency) and interlamellar water (peak at low frequency), in both POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine) liposomes. These are the first two examples of lipids without exchangeable protons that exhibit two distinct water resonances. The respective 1H spin-lattice relaxation times (T1) were measured, yielding values twice as long for bulk water as compared with interlamellar water. Both the chemical shift and spin relaxation results demonstrate the ability of MAS 1H NMR to rapidly monitor changes in physical properties that accompany water interactions with zwitterionic phosphatidylcholines.  相似文献   

20.
Two-dimensional 1H/31P dipolar heteronuclear correlation (HETCOR) magic-angle spinning nuclear magnetic resonance (NMR) is used to investigate the correlation of the lipid headgroup with various intra- and intermolecular proton environments. Cross-polarization NMR techniques involving 31P have not been previously pursued to a great extent in lipid bilayers due to the long 1H-31P distances and high degree of headgroup mobility that averages the dipolar coupling in the liquid crystalline phase. The results presented herein show that this approach is very promising and yields information not readily available with other experimental methods. Of particular interest is the detection of a unique lipid backbone-water intermolecular interaction in egg sphingomyelin (SM) that is not observed in lipids with glycerol backbones like phosphatidylcholines. This backbone-water interaction in SM is probed when a mixing period allowing magnetization exchange between different 1H environments via the nuclear Overhauser effect (NOE) is included in the NMR pulse sequence. The molecular information provided by these 1H/31P dipolar HETCOR experiments with NOE mixing differ from those previously obtained by conventional NOE spectroscopy and heteronuclear NOE spectroscopy NMR experiments. In addition, two-dimensional 1H/13C INEPT HETCOR experiments with NOE mixing support the 1H/31P dipolar HETCOR results and confirm the presence of a H2O environment that has nonvanishing dipolar interactions with the SM backbone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号