首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
1,4-Dioxane was analyzed with the CASE program to determine the structural basis of its potential genotoxicity and carcinogenicity. These investigations led to the prediction that while 1,4-dioxane was not genotoxic in vitro, it was an inducer of micronuclei in the bone marrow of rats and a carcinogen for both rats and mice. If it is assumed that the induction of micronuclei is the result of DNA damage, then this potential and the previous report of the in vivo induction of DNA strand breaks in rat liver raise the possibility of a genotoxic action for 1,4-dioxane. However it is also conceivable that we have identified a structural feature which contributes to the induction of micronuclei by a non-genotoxic mechanism.  相似文献   

3.
The aim of this pilot study was to assess whether a compound of the β-carbonyl-1,4-dihydropyridine series (AV-153 or sodium 3,5-bis-ethoxycarbonyl-2,6-dimethyl-1,4-dihydropyridine-4-carboxylate), which has high efficiency in stimulating DNA repair, can simultaneously modulate apoptosis in human cells. Peripheral blood lymphocytes of healthy donors were used in this study. DNA strand-break rejoining was assessed with the alkaline comet assay after a 3-h incubation of lymphocytes in the presence of a wide range of concentrations of AV-153 (10−10–10−5 M). Apoptotic and micronucleated (MN) cells were scored in phytohaemagglutinin-stimulated lymphocytes after a 72-h incubation with AV-153, using the standard cytokinesis-blocked micronucleus test. The study revealed dual effects of AV-153 on cellular defense systems against endogenously generated DNA damage: the compound per se simultaneously reduces DNA strand breaks and stimulates apoptosis, with a maximal efficiency of 76% and 42%, respectively; in contrast, after genotoxic stress (2 Gy of gamma-radiation) AV-153 reduces DNA strand breaks, the number of MN cells and apoptotic cells in a similar dose-dependent manner. A maximal efficiency of 67% was found for reduction of DNA strand breaks, while for MN cells and apoptotic cells the efficiencies were, respectively, 47% and 44%. While limited in number, these preliminary studies show the direct correlation between the efficiency of AV-153 in reduction of radiation-induced DNA breaks and MN cells on one side, and in reduction of apoptosis on the other. It suggests that the major target of the compound's action on genotoxic stress is DNA repair, followed by reduction of the number of damaged cells entering apoptosis.  相似文献   

4.
When aqueous DNA solution was irradiated with 1.2 MHz continuous ultrasound in the presence of cysteamine, the number of ultrasound-induced double-strand breaks of DNA was not influenced, but the number of ultrasound-induced single-strand breaks of DNA was reduced to about one-fifth that of the irradiated control. When the effect of cysteamine on the template activity of the ultrasound-irradiated DNA was investigated, the cysteamine was found to exert a leveling effect on the linear decrease of the template activity against ultrasonic intensity. Since cysteamine was known as an effective radical scavenger, the results of the experiment were regarded to suggest that (1) the double-strand breaks were exclusively induced by the mechanical effect of ultrasound, (2) the majority of single-strand breaks were produced by water radicals arising from cavitation, (3) the initial part in the decrease of the template activity was due to the double-strand breaks arising from mechanical effect, and (4) the further decrease of the template activity depended mainly on the single-strand breaks arising from water radicals.  相似文献   

5.
Compounds of the 1,4-dihydropyridine (1,4-DHP) series have been shown to reduce spontaneous, alkylation- and radiation-induced mutation rates in animal test systems. Here we report studies using AV-153, the 1,4-DHP derivative that showed the highest antimutagenic activity in those tests, to examine if it modulates DNA repair in human peripheral blood lymphocytes and in two human lymphoblastoid cell lines, Raji and HL-60. AV-153 caused a 50% inhibition of growth (IC50) of Raji and HL-60 cells at 14.9+/-1.2 and 10.3+/-0.8mM, respectively, but did not show a cytotoxic effect at concentrations <100 microM. Alkaline single-cell gel electrophoresis (comet) assays showed that AV-153 reduced the number of DNA strand breaks in untreated cells and also in cells exposed to 2 Gy of gamma-radiation, 100 microM ethylmethane sulfonate (EMS), or 100 microM H2O2. DNA damage was reduced by up to 87% at AV-153 concentrations between 1 and 10nM, and a positive dose-effect relationship was seen between 0.01 and 1 nM. Comparison of the kinetics of DNA strand-break rejoining in the presence and absence of AV-153 revealed a considerable influence on the rate of repair. In view of the resemblance of this compound's structure to that of dihydronicotinamide, a substrate for poly(ADP-rybose)polymerase, the modulation of DNA repair by AV-153 could involve an influence on poly(ADP)ribosylation.  相似文献   

6.
Inactivation of transforming activity of plasmid DNA by lipid peroxidation   总被引:2,自引:0,他引:2  
DNA damage due to NADPH-dependent lipid peroxidation of liposomes was examined using liposomes prepared from lipids, NADPH-cytochrome P-450 reductase and cytochrome P-450 isolated from rat liver microsomes. Plasmid pBR322 DNA was incubated in the reaction mixture for liposomal lipid peroxidation and introduced to Escherichia coli CSR603 (uvrArecA). More of the transforming activity of the DNA was lost as the lipid peroxidation progressed, and this inactivation was dependent on the extent of lipid peroxidation. Single strand breaks occurred in the plasmid DNA. Hydroxyl radical scavengers could not prevent most of the strand breaks or the lipid peroxidation reaction. Chloroform extracts from the reaction mixture of peroxidized microsomes also inactivated the transforming activity of pBR322 DNA but did not cause strand breaks. The 105 000 X g supernatant of the reaction mixture, which contained more than 85% of the thiobarbituric acid-reactive substances, did not inactivate the plasmid DNA. The degradative products of [U-14C]arachidonic acid in the liposomes did not bind to DNA. These results led to the conclusion that at least two types of DNA damaging agent are produced during NADPH-dependent microsomal lipid peroxidation. One induces single strand breaks of DNA and another inactivates the plasmid-transforming activity without inducing strand breaks.  相似文献   

7.
Four 9,10-anthraquinones (AQ) mono- or bis-substituted with the -NH(CH2)2 NH(CH2)2OH group were studied. 1-AQ, 1,5-AQ and 1,8-AQ but not 1,4-AQ (100°M) generated pBR322 plasmid DNA single strand breaks in the presence of purified NADPH dependent cytochrome P450 reductase. 1-AQ, 1,5-AQ and 1,8-AQ (at 100 °M) stimulated hydroxyl radical formation in MCF-7 S9 cell fraction (as measured by dimethyl pyrolline N-oxide spin trapping) and MCF-7 DNA strand breaks as measured by alkaline filter elution. In contrast 1,4-AQ did not stimulate hydroxyl radical formation and produced considerably less strand breaks in MCF-7 cells compared to the other AQ's. It would appear that the position of the -NH(CH2)2 NH(CH2)2OH groups on the chromophore is an important determinant in the metabolic activation of cytotoxic anthraquinones. This may contribute to the cytotoxicity (ID50 values) of 1-AQ (0.06 °M), 1-8-AQ (0.5 °M) and 1,5-AQ (12.3 °M) but not the 1,4-AQ (1.2 °M).  相似文献   

8.
Poly(ADP-ribose) polymerase is a chromosomal enzyme that is completely dependent on added DNA for activity. The ability of DNA molecules to activate the polymerase appears to be enhanced by the presence of DNA damage. In the present study, we used SV 40 DNA and SV 40 minichromosomes to determine whether different types of DNA damage and different chromosomal components affect stimulation of polymerase activity. Treatment of SV 40 minichromosomes with agents or conditions that induced single-strand breaks increased their ability to stimulate poly(ADP-ribose) synthesis. This stimulation was enhanced by addition of histone H1 at a ratio of 1 microgram of histone H1 to 1 microgram of DNA. Higher ratios of histone H1 to DNA suppressed the ability of SV 40 minichromosomes containing single-strand breaks to stimulate enzyme activity. Treatment of SV 40 minichromosomes or SV 40 DNA with HaeIII restriction endonuclease to produce double-strand breaks markedly stimulated poly(ADP-ribose) polymerase activity. The stimulation of poly(ADP-ribose) polymerase by double-strand breaks occurred in the absence of histone H1 and was further enhanced by adding histone H1 up to ratios of 2 to 1 relative to DNA. At higher ratios of histone H1 to DNA, the presence of the histone continued to enhance the poly(ADP-ribose) synthesis stimulated by double-strand breaks.  相似文献   

9.
Effects of chloramine on Bacillus subtilis deoxyribonucleic acid.   总被引:8,自引:1,他引:7       下载免费PDF全文
The lesions induced in Bacillus subtilis deoxyribonucleic acid (DNA) after treating bacterial cells (in vivo) and bacterial DNA (in vitro) with chloramine were studied biologically and physically. Single-strand breaks and a few double-strand scissions (at higher chloramine doses) accompanied loss of DNA-transforming activity in both kinds of treatments. Chloramine was about three times more efficient in vitro than in vivo in inducing DNA single-strand breaks. DNA was slowly chlorinated; the subsequent efficiency of producing DNA breaks was high. Chlorination of cells also reduced activity of endonucleases in cells; however, chlorinated DNA of both treatments was sensitized to cleavage by endonucleases. The procedure of extracting DNA from cells treated with chloramine induced further DNA degradation. Both treatments introduced a small fraction of alkali-sensitive lesions in DNA. DNA chlorinated in vitro showed further reduction in transforming activity as well as further degradation after incubation at 50 C for 5 h whereas DNA extracted from chloramine-treated cells did not show such a heat sensitivity.  相似文献   

10.
Menadione (MD; 2-methyl-1,4-naphthoquinone), a redox cycling quinone was shown to induce single (ss)- and double (ds)-strand DNA breaks in human MCF-7 cells. This DNA damage was mediated via the hydroxyl radical as evidenced by electron spin resonance spectroscopy (ESR) studies utilizing the spin trap, 5,5-dimethyl-1-pyrroline-1-oxide. The free radical production and DNA damage were shown to play a role in MD cytotoxicity as revealed by the reversal of MD toxicity and inhibition of hydroxyl radical production by exogenously added catalase. The role of NADPH quinone acceptor oxidoreductase in the metabolism of MD was evaluated. Purified quinone acceptor oxidoreductase in combination with MD resulted in the production of significant levels of the hydroxyl radical as measured by ESR. Dicumarol, an inhibitor of quinone acceptor oxidoreductase, decreased the production of the hydroxyl radical and attenuated DNA strand breaks in MCF-7 cells treated with MD.  相似文献   

11.
The protective activity of interferon on the cadmium chloride-treated human cells (Hep-2), infected chronically with meals virus and uninfected, was studied. It was found that cadmium chloride induced the formation of partially non-repairable DNA lesions. Decrease in cell repair activity was observed in the cells chronically infected with virus. Pretreatment of cells with interferon protected cell DNA from formation of DNA breaks and caused more effective resynthesis of DNA breaks.  相似文献   

12.
Selected biological effects of 1,4-naphthoquinone, menadione (2-methyl-1,4-naphthoquinone) and structurally related quinones from natural sources - the 5-hydroxy-naphthoquinones juglone, plumbagin and the 2-hydroxy-naphthoquinones lawsone and lapachol - were studied in human keratinocytes (HaCaT). 1,4-naphthoquinone and menadione as well as juglone and plumbagin were highly cytotoxic, strongly induced reactive oxygen species (ROS) formation and depleted cellular glutathione. Moreover, they induced oxidative DNA base damage and accumulation of DNA strand breaks, as demonstrated in an alkaline DNA unwinding assay. Neither lawsone nor lapachol (up to 100 μM) were active in any of these assays. Cytotoxic and oxidative action was paralleled by stimulation of stress signaling: all tested quinones except lawsone and lapachol strongly induced phosphorylation of the epidermal growth factor receptor (EGFR) and the related ErbB2 receptor tyrosine kinase. EGFR activation by plumbagin, juglone and menadione was attenuated by a superoxide dismutase mimetic, indicating that ROS-related mechanisms contribute to EGFR activation by these naphthoquinones.  相似文献   

13.
The mechanism of cytotoxic action of 5-fluorodeoxyuridine (FdUrd) in mouse FM3A cells was investigated. We observed the FdUrd-induced imbalance of intracellular deoxyribonucleoside triphosphate (dNTP) pools and subsequent double strand breaks in mature DNA, accompanied by cell death. The imbalance of dNTP pools was maximal at 8 h after 1 microM FdUrd treatment; a depletion of dTTP and dGTP pools and an increase in the dATP pool were observed. The addition of FdUrd in culture medium induced strand breaks in DNA, giving rise to a 90 S peak by alkaline sucrose gradient sedimentation. The loss of cell viability and colony-forming ability occurred at about 10 h. DNA double strand breaks as measured by the neutral elution method were also observed in FdUrd-treated cells about 10 h after the addition. These results lead us to propose that DNA double strand breaks play an important role in the mechanism of FdUrd-mediated cell death. A comparison of the ratio of single and double strand breaks induced by FdUrd to that observed following radiation suggested that FdUrd produced double strand breaks exclusively. Cycloheximide inhibited both the production of DNA double strand breaks and the FdUrd-induced cell death. An activity that can induce DNA double strand breaks was detected in the lysate of FdUrd-treated FM3A cells but not in the untreated cells. This suggests that FdUrd induces the cellular DNA double strand breaking activity. The FdUrd-induced DNA strand breaks and cell death appear to occur in the S phase. Our results indicate that imbalance of the dNTP pools is a trigger for double strand DNA break and cell death.  相似文献   

14.
The repair kinetics for rejoining of DNA single- and double-strand breaks after exposure to UVC or gamma radiation was measured in cells with deficiencies in DNA ligase activities and in their normal counterparts. Human 46BR cells were deficient in DNA ligase I. Hamster EM9 and EM-C11 cells were deficient in DNA ligase III activity as a consequence of mutations in the XRCC1 gene. Hamster XR-1 cells had mutation in the XRCC4 gene, whose product stimulates DNA ligase IV activity. DNA single- and double-strand breaks were assessed by the comet assay in alkaline conditions and by the technique of graded-field gel electrophoresis in neutral conditions, respectively. 46BR cells, which are known to re-ligate at a reduced rate the DNA single-strand breaks incurred during processing of damage induced by UVC but not gamma radiation, were shown to have a normal repair of radiation-induced DNA double-strand breaks. EM9 cells exhibited a reduced rate of rejoining of DNA single-strand breaks after exposure to ionizing radiation, as reported previously, as well as UVC radiation. EM-C11 cells were deficient in the repair of radiation-induced-DNA single-strand breaks but, in contrast to EM9 cells, demonstrated the same kinetics as the parental cell line in the resealing of DNA breaks resulting from exposure to UVC radiation. Both EM9 and EM-C11 cells displayed a significant defect in rejoining of radiation-induced-DNA double-strand breaks. XR-1 cells were confirmed to be highly deficient in the repair of radiation-induced DNA double-strand breaks but appeared to rejoin DNA single-strand breaks after UVC and gamma irradiation at rates close to normal. Taken together these results indicate that: (1) DNA ligase I is involved only in nucleotide excision repair; (2) DNA ligase IV plays an important role only in repair of DNA double-strand breaks; and (3) DNA ligase III is implicated in base excision repair and in repair of DNA double-strand breaks, but probably not in nucleotide excision repair.  相似文献   

15.
The effects of two anthracenedione derivatives on in vitro cell survival and DNA of Chinese hamster ovary (CHO) cells were investigated. The two drugs studied were 1,4-dihydroxy-5,8-bis-(2-[2-hydroxyethyl)amino)ethylamino)-9,10-anthracenedione (DHAQ, NSC No. 279836) and 1,4-bis-(2-[2-hydroxyethyl)-amino)ethylamino)-9,10-anthracenedione (HAQ, NSC No. 287513). DHAQ was 100-fold more potent in reducing cell survival than HAQ. DNA strand breaks were assayed by alkaline elution. DHAQ (10 ng/ml) caused more strand breakage than 1000 ng/ml HAQ. This difference correlates well with their differences in ability to kill cells.  相似文献   

16.
2-Methyl-1,4-naphthoquinone (menadione, MQ) was linked to synthetic oligonucleotides and exposed to near-UV light to generate base radical cations in DNA. This model system of electron transfer induced alkali-labile breaks at GG doublets, similar to anthraquinone and metallointercalators systems. In sharp contrast to other systems, the photolysis of MQ–DNA duplexes gave interstrand cross-links and alkali-labile breaks at bases on the complementary strand opposite the MQ moiety. For sequences with an internal MQ, the formation of cross-links with A and C opposite the MQ moiety was 2- to 3-fold greater than that with G and T. The yield of cross-links was more than 10-fold greater than that of breaks opposite MQ, which in turn was more than 2-fold greater than breaks at GG doublets. The yield of damage at GG doublets greatly increased for a sequence with a terminal MQ. The distribution of base damage was measured by enzymatic digestion and HPLC analysis (dAdo > dThd > dGuo > dCyd). The formation of novel products in MQ–DNA duplexes was attributed to the ability of excited MQ to generate the radical cations of all four DNA bases; thus, this photochemical reaction provides an ideal model system to study the effects of ionizing radiation and one-electron oxidants.  相似文献   

17.
Quinone-induced cell death is often attributed to oxidative stress during which the formation of DNA strand breaks is thought to play an important role. In this study, extensive DNA damage was observed in human chronic myelogenous leukemic cells (K562) exposed for 15 minutes to low concentrations (15–100 μM) of the redox cycling quinones 2,3-dimethoxy-1,4-naphthoquinone (2,3-diOMe-1,4-NQ) and menadione. However, DNA strand breakage and cell death could not be attributed to oxidative stress as the intracellular level and redox status of the reducing equivalents NADP(H) and GSH were unaffected. The intracellular level of NAD+ was found to correlate well with the extent of DNA repair (r = 0.93, P < 0.02) and cell proliferation (r = 0.96, P < 0.01) in cells exposed to the quinones. In contrast, a significant decrease in the level of intracellular ATP was only observed in cells exposed to menadione (50–100 μM). These results suggest that redox cycling quinones are capable of inducing DNA damage in mammalian cells by a mechanism that does not involve oxidative stress. Following DNA damage, cell death is dependent on the availability of NAD+, which may be key to the rapid repair of strand breaks. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
To elucidate the mechanism of the cell killing activity of neocarzinostatin on mammalian cells, the drug-induced damage of DNA and its repair were examined. Very low doses of neocarzinostatin, at which high survival of cells was observed, clearly produced single-strand breaks of DNA and decomposition of the 'DNA complex', but these damages appeared to be repaired almost completely. At higher doses of neocarzinostatin, single-strand breaks were repaired to a considerable extent while double-strand breaks seemed not to be repaired. The number of non-repairable single-strand breaks was about twice that of double-strand breaks. This implies that single-strand breaks are repaired except for those constituting double-strand breaks. Although at low levels of neocarzinostatin repair of double-strand breaks may occur, the correlation existing between the colony-forming ability of cells treated with neocarzinostatin and non-repairable DNA breakage suggests that production of a small number of critical non-repairable double-strand breaks per cell may be responsible for the cell killing activity of the drug.  相似文献   

19.
《Free radical research》2013,47(1-3):117-125
Four 9,10-anthraquinones (AQ) mono- or bis-substituted with the -NH(CH2)2 NH(CH2)2OH group were studied. 1-AQ, 1,5-AQ and 1,8-AQ but not 1,4-AQ (100°M) generated pBR322 plasmid DNA single strand breaks in the presence of purified NADPH dependent cytochrome P450 reductase. 1-AQ, 1,5-AQ and 1,8-AQ (at 100 °M) stimulated hydroxyl radical formation in MCF-7 S9 cell fraction (as measured by dimethyl pyrolline N-oxide spin trapping) and MCF-7 DNA strand breaks as measured by alkaline filter elution. In contrast 1,4-AQ did not stimulate hydroxyl radical formation and produced considerably less strand breaks in MCF-7 cells compared to the other AQ's. It would appear that the position of the -NH(CH2)2 NH(CH2)2OH groups on the chromophore is an important determinant in the metabolic activation of cytotoxic anthraquinones. This may contribute to the cytotoxicity (ID50 values) of 1-AQ (0.06 °M), 1-8-AQ (0.5 °M) and 1,5-AQ (12.3 °M) but not the 1,4-AQ (1.2 °M).  相似文献   

20.
Normal DNA ligase activity in a gamma-ray-sensitive Chinese hamster mutant   总被引:1,自引:0,他引:1  
A Chinese hamster cell mutant (XR-1) was previously described that is extremely deficient in the repair of double-strand DNA breaks produced by gamma-irradiation during the sensitive G1--early-S period and somewhat deficient in repair of gamma-ray-induced single-strand DNA breaks. To determine whether a deficiency in DNA ligase activity might underlie the biochemical defect, protein extracts from mutant and parental cells were examined for their ability to ligate single- and double-strand breaks in DNA. The kinetics of ligation of single 5'-phosphate-3'-hydroxyl breaks in double-stranded DNA were the same in protein extracts from both cells. After separation of protein extracts by gel-filtration chromatography, the percentage of activity in the large and small molecular forms of DNA ligase was also similar in the two cells. Finally, protein extracts prepared from exponentially growing or G1-synchronized mutant and parental cells were equal in their ability to ligate blunt-end DNA substrates. These data suggest that a deficiency in DNA ligase is not the cause of the repair defect in the XR-1 mutant cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号