首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Svensson  Jan-Erik 《Hydrobiologia》1997,344(1-3):155-161
An enclosure experiment was performed to test for direct predationeffects on fecundity and adult body size of the copepod Eudiaptomus gracilis in the field. By introducing a high densityof fish (15 underyearling roach, Rutilus rutilus, per 350litre enclosure) and documenting the short-term effects on traitsin a rapidly decreasing prey population, responses to changes inthe phytoplankton community were minimized. After 68 hours ofpredation, clutch size and frequency of females carrying eggs weresignificantly lower in fish enclosures. Female density was moreaffected than male density. Predation selected against large bodysize in both sexes but less so in females, leading to an increasedsexual size dimorphism. The results agree with predictions based onprey selectivity in fish. Predation risk should increase withclutch size and body size since these traits increase theconspicuousness of prey. The size of the highly visible egg-clutchmay be more important than body size. Female body size wasuncorrelated to clutch size, which may explain the weaker sizeeffect among females and the changed sexual sizedimorphism.  相似文献   

2.
Group living can provide individuals with several benefits, including cooperative vigilance and lower predation rates. Individuals in larger groups may be less vulnerable to predation due to dilution effects, efficient detection or greater ability to repel predators. Individuals in smaller groups may consequently employ alternative behavioural tactics to compensate for their greater vulnerability to predators. Here, we describe how pied babbler (Turdoides bicolor) fledging age varies with group size and the associated risk of nestling predation. Nestling predation is highest in smaller groups, but there is no effect of group size on fledgling predation. Consequently, small groups fledge young earlier, thereby reducing the risk of predation. However, there is a cost to this behaviour as younger fledglings are less mobile than older fledglings: they move shorter distances and are less likely to successfully reach the communal roost tree. The optimal age to fledge young appears to depend on the trade-off between reduced nestling predation and increased fledgling mobility. We suggest that such trade-offs may be common in species where group size critically affects individual survival and reproductive success.  相似文献   

3.
Iteroparous organisms maximize their overall fitness by optimizing their reproductive effort over multiple reproductive events. Hence, changes in reproductive effort are expected to have both short- and long-term consequences on parents and their offspring. In laboratory rodents, manipulation of reproductive efforts during lactation has however revealed few short-term reproductive adjustments, suggesting that female laboratory rodents express maximal rather than optimal levels of reproductive investment as observed in semelparous organisms. Using a litter size manipulation (LSM) experiment in a small wild-derived rodent (the common vole; Microtus arvalis), we show that females altered their reproductive efforts in response to LSM, with females having higher metabolic rates and showing alternative body mass dynamics when rearing an enlarged rather than reduced litter. Those differences in female reproductive effort were nonetheless insufficient to fully match their pups’ energy demand, pups being lighter at weaning in enlarged litters. Interestingly, female reproductive effort changes had long-term consequences, with females that had previously reared an enlarged litter being lighter at the birth of their subsequent litter and producing lower quality pups. We discuss the significance of using wild-derived animals in studies of reproductive effort optimization.  相似文献   

4.
ABSTRACT. 1. The effects of colony size and time of reproduction on the survival and size of offspring colonies and on drone production were examined for honey bees, Apis mellifera L. Drone and worker production and survival of parental and offspring colonies were monitored following swarming. Also, the temporal patterns of drone emergence and availability of unmated queens were examined.
2. Colony size at swarming was positively correlated with the number of workers invested in offspring colonies and the number of queens produced. However, colony size at swarming was not correlated with the number of offspring colonies produced.
3. Swarm size was positively correlated with drone and worker production after swarms were hived. Worker production of hived swarms was positively correlated with colony survival. Offspring queens which inherited a parental nest survived longer than queens in either primary swarms or afterswarms, presumably due to the advantage of inheriting a nest.
4. Drone emergence peaked just prior to swarming, the time when unmated queens were available. High drone production by colonies initiated by swarms probably reflected an attempt to reproduce prior to winter. The probabilities of a second swarming cycle within the same year and of surviving the winter were low for colonies initiated from swarms.  相似文献   

5.
Optimal colony size in eusocial insects likely reflects a balance between ecological factors and factors intrinsic to the social group. In a seminal paper Michener (1964) showed for some species of social Hymenoptera that colony production of immature stages (productivity), when transformed to a per-female basis, was inversely related to colony size. He concluded that social patterns exist in the social insects that cause smaller groups to be more efficient than larger groups. This result has come to be known as “Michener’s paradox” because it suggests that selection on efficiency would oppose the evolution of the large and complex societies that are common in the social insects. Michener suggested that large colony size has other advantages, such as improved defense and homeostasis, that are favored by selection. For his analysis of swarm-founding wasps, Michener combined data from colonies of different species and different developmental stages in order to obtain adequate sample sizes; therefore, his study did not make a strong case that efficiency decreases with increasing colony size (across colonies) in these wasps. We tested Michener’s hypothesis on the Neotropical swarm-founding wasp Parachartergus fraternus, while controlling for stage of colony development. We found that small colonies were more variable in percapita productivity relative to larger colonies, but found no evidence for a negative relationship between efficiency and size across colonies. Received 1 February 2006; revised 5 May 2006; accepted 11 May 2006.  相似文献   

6.
7.
The hypothesis that flower maintenance requires resources that would be used to support other plant functions (i.e. a cost of floral maintenance) was tested by experimentally manipulating floral longevity. Plants of Clarkia tembloriensis, a species with pollination-induced flower senescence, received either early or late pollinations (long and short longevities, respectively). We examined the effect of this manipulation on (1) per-flower allocation to nectar production and (2) flower, fruit and seed production per plant under two levels of resource availability. The direct costs of floral longevity measured in terms of nectar sugar were high: flowers that were maintained 35% longer invested proportionately more in nectar sugar (30%). At the whole-plant level, a cost of floral longevity was manifested as reduced seed production, but the magnitude of this cost varied with resource level. While plants with longer-lived flowers showed a 12% reduction in seed production, those that experienced reduced resource levels via partial defoliation, showed a decrement in seed production that was almost three times larger (34%). These differences were not brought about by changes in the number of flowers and fruits, but by significant alterations in their sizes. A model that expresses the cost of flower maintenance as a trade-off between floral longevity and seed production shows that an optimal flower longevity is determined by both the rate of fitness accrual and the cost of floral maintenance.  相似文献   

8.
9.
The evolution of egg size in the brood parasitic cuckoos   总被引:2,自引:0,他引:2  
We compared genera of nonparasitic cuckoos and two groups ofparasitic cuckoos: those raised together with host young ("nonejectors")and those in which the newly hatched cuckoo either ejects thehost eggs or chicks, or kills the host young ("ejectors"). Nonejectorsare similar to their hosts in body size and parasitize largerhosts than do ejectors, which parasitize hosts much smallerthan themselves. In both types of parasite, the cuckoo's eggtends to match the host eggs in size. To achieve this, nonejectorshave evolved a smaller egg for their body size than have nonparasiticcuckoos, and ejectors have evolved an even smaller egg. Amongejector cuckoo genera, larger cuckoos have larger eggs relativeto the eggs of their hosts, and the relationship between cuckooegg volume (mass of the newly-hatched cuckoo) and host egg volume(mass to be ejected) did not differ from that predicted by weight-liftingallometry. However, comparing among Cuculus cuckoo species,the allometric slope differed from the predicted, so it is notclear that egg size is related to the need to give the cuckoochick sufficient strength for ejection. Comparing the two mostspeciose ejector genera, Chrysococcyx cuckoos (smaller and parasitizedome-nesting hosts) lay eggs more similar in size to their host'seggs than do Cuculus cuckoos (larger and parasitize open cup–nestinghosts). Closer size-matching of host eggs in Chrysococcyx mayreflect the following: (1) selection to reduce adult body massto facilitate entry through small domed nest holes to lay, and(2) less need for a large egg, because longer incubation periodsin dome-nesting hosts allow the young cuckoo more time to growbefore it need eject host eggs.  相似文献   

10.
Abstract.
  • 1 Despite apparent directional sexual selection in favour of large body size, males of the anthophorine bee Centris pallida remain highly variable in body size.
  • 2 One possible cause of persistent size variation among males is geographic variation in the extent of the large male mating advantage. However, a study of a population in an area not previously investigated revealed that the large male mating advantage was as strong here as it has been elsewhere in other years.
  • 3 Although the reproductive benefits of being large were consistent in populations separated spatially and temporally, the intensity of bird predation on mate-searching males varied greatly between locations.
  • 4 The bee-killing birds focused exclusively on bees which were digging down to meet emerging females or fighting on the ground, never on flying males. Males which were collected on the ground by hand (to simulate avian predation) were significantly larger on average than flying males collected by sweep netting.
  • 5 Therefore, in some location in some years, sexual selection in favour of large body size may be opposed by natural selection exerted by predators, perhaps contributing to the maintenance of size variation in this bee.
  相似文献   

11.
Size-related variation in the cost and probability of flowering among shoots within a crown of Vaccinium hirtum was investigated to clarify patterns and regulation of flowering at the shoot-module level, below the level of the individual. The apices of previous-year shoots differentiated into current-year shoots vegetatively (vegetative branches) or became reproductive by developing inflorescences (reproductive branches). Length growth and fate of current-year shoots were determined, and the future potential for reproduction was estimated using a matrix model of shoot dynamics. Reproductive branches had fewer current-year shoots and shorter total shoot lengths and thus had a reduced potential for reproduction compared with vegetative branches, indicating the cost of flowering at the shoot level. This cost of flowering was higher in longer shoots. The probability of the initiation of flowering in a shoot increased with increasing shoot length in shorter shoots, reached a maximum in medium-sized shoots, and decreased in longer shoots. The size-related changes in the probability of flowering at the shoot level can be largely explained by the size-dependent changes in shoot-level resource availability and cost of flowering.  相似文献   

12.
Correct decision making is crucial for animals to maximize foraging success and minimize predation risk. Group-living animals can make such decisions by using their own personal information or by pooling information with other group members (i.e. social information). Here, we investigate how individuals might best balance their use of personal and social information. We use a simple modelling approach in which individual decisions based upon social information are more likely to be correct when more individuals are involved and their personal information is more accurate. Our model predicts that when the personal information of group members is poor (accurate less than half the time), individuals should avoid pooling information. In contrast, when personal information is reliable (accurate at least half the time), individuals should use personal information less often and social information more often, and this effect should grow stronger in larger groups. One implication of this pattern is that social information allows less well-informed members of large groups to reach a correct decision with the same probability as more well-informed members of small groups. Thus, animals in larger groups may be able to minimize the costs of collecting personal information without impairing their ability to make correct decisions.  相似文献   

13.
Hard, highly calcified eggshells evolved several independent times during the history of amniotes. Because of phylogenetic conservatism of this trait, lineages in which closely related taxa differ in eggshell structure are rare. Four gekkotan families (Carphodactylidae, Diplodactylidae, Eublepharidae and Pygopodidae) have eggs with soft shells, while their close relatives (Gekkonidae) lay eggs with hard shells. Geckos thus offer a rare opportunity to compare the impact of the emergence of a hard eggshell on the economy of egg architecture. Because a sphere has the smallest surface area of all three‐dimensional solids of a given volume, spherical eggs in geckos with hard eggshells reduce calcium investment and should therefore be advantageous. Here, we document that hard‐shelled gekkonid eggs are indeed more spherical than those of the other gecko lineages. However, within gekkonids, small species lay more elongated eggs than larger species. We speculate that miniature gekkonid females, which lay larger eggs relative to body size compared with large gekkonids, produce elongate eggs in order to pass the egg through a limited pelvic opening.  相似文献   

14.
Summary Colonies of eusocial insect species are most vulnerable during the founding stage. Many species have evolved means to minimize the length of the founding, or pre-emergence, stage by accelerating the rate of development of the first worker offspring. Other things being equal, the sooner a colony can begin producing workers, the less the risk of colony failure, the steeper the growth curve of the colony during the ergonomic stage, and the larger the colony will be at reproductive maturity. Swarm-founding species, whose founding units consist of hundreds or thousands of workers, may face less selection pressure to minimize the duration of the founding stage than independent-founding species. However, swarm size varies within species, and small swarms face greater risk of extinction during the founding stage than large swarms. This consideration predicts that within a species, small swarms should have shorter founding stages than large swarms, likely by rearing a small group of precocious brood. On the other hand, evidence that large social groups organize colony labor more efficiently, gather resources more predictably, and homeostatically maintain physical conditions inside the nest within narrower ranges, predicts that larger groups should rear all brood more rapidly and therefore have shorter founding stages. To test whether small or large swarms have shorter founding stages in colonies of Polybia occidentalis, a Neotropical swarm-founding wasp, we measured brood development rates in colonies collected after 28 days of development, just short of the minimum egg-to-adult development time. We found that as size increased across colonies, pre-emergence times decreased, mean age of pupae in the nest increased, and median age of the brood (larvae + pupae) increased. That is, brood developed significantly faster in large colonies than in small ones. Using these same measures, we also found that infection by a gregarine parasite increased brood development time, independently of colony size.Received 10 April 2003; revised 29 October 2003; accepted 21 November 2003.  相似文献   

15.
Variability in litter size and the concept of optimality are central to our current understanding of parental investment patterns and life histories. A fundamental component of most models of optimum litter size is an apparently inescapable trade-off between litter size and size of offspring. Most previous models of litter size have focused on the evolution of an optimum litter size rather than variability in litter size. Because variability provides the raw material from which numerous optimal litter sizes are fashioned to meet prevailing conditions, approaches that specifically address adaptive patterns of variability might provide new insights into the evolution of litter size. A model based on a non-linear relationship between total parental effort and litter size reduces trade-offs between offspring size and offspring number to simple reproductive economics, and illustrates how litter size variability might be predictable under certain environmental conditions. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Clémencet J  Doums C 《Oecologia》2007,152(2):211-218
In social insects, colony size is a crucial life-history trait thought to have major implications for the evolution of social complexity, especially in relation to worker size polymorphism. Yet, little is known about how ecological factors can affect and constrain colony. Here, we explored the pattern of colony-size and worker-size variation in the Mediterranean ant Cataglyphis cursor, in relation to the type of habitats colonized (seaside vs. vineyard). The high level of the water table in the seaside habitat could constrain the depth of C. cursor underground nests and directly constrain its colony size. If worker size increases with colony size, as observed in other ant species, larger colony size and larger workers should be found in the vineyard populations. By comparing worker size among 16 populations, we verified that workers were significantly larger in the vineyard populations. We further determined that the morphological similarities detected among populations from the same habitat type were not due to geographic or genetic proximity. In two populations from each habitat type, the depth of nests was positively correlated with colony size and colony size with worker size. Using a type II regression approach, we further showed that the difference between the two populations in the depth of nest was sufficient to explain the difference in colony size, and similarly, variation in colony size was sufficient to explain variation in worker size. Our results suggest that a single proximate ecological factor could lead to significant variation in major life-history parameters.  相似文献   

17.
Productivity in a social wasp: per capita output increases with swarm size   总被引:7,自引:1,他引:7  
We measured the productivity of newly-founded colonies of Polybiaocddentalis, a Neotropical swarm-founding social wasp, overtheir first 25 days. By both of the measures we used, numberof nest cells built by the swarm and dry weight of brood produced,colony-level productivity was a significant positive quadraticfunction of the number of adults in the swarm, indicating thatper capita output increased with swarm size. Subdividing adultsinto queens and workers did not improve significantly on thesemodels, but the proportion of queens was a significant factorexplaining brood production in one of two sampling years. Earlierwork on P. ocddentalis suggests that the mechanism behind thepattern is that workers transferring materials to one anotherexperience increasing queuing delays as group size decreases.The largest colony in each of the two years produced unusuallylow outputs of brood. One interpretation is that the curve ofgroup-size related brood productivity peaks at intermediategroup size and that these colonies are on the downward partof the curve. That these same two colonies also had the lowestproportions of queens suggests a second interpretation: thesecolonies were constrained to low brood production by a low colony-leveloviposition rate. A third possibility is diat these were maturecolonies, and mature colonies may allocate a smaller fractionof resources to brood rearing than do younger colonies. Ourresult contradicts earlier findings for a variety of socialand subsocial Hymenoptera that per capita productivity declinesas group size increases. We suspect that Michener's result forswarm-founding wasps is an artifact of his having to lump coloniesof different species and different stages of development toobtain adequate sample sizes to plot. If our result for P. ocddentaliscan be generalized to other swarm-founders, then these waspshave evolved a mode of colony organization fundamentally differentfrom that of other wasps. Thus, our result places new significanceon the role of group dynamics as a factor affecting group sizein different taxa.  相似文献   

18.
Although habitat fragmentation and agricultural intensification are known as threads to pollinator diversity, little is known about consequences for population size and genetic diversity. Here, we combined detailed field observations, molecular approaches and GIS-based quantification of landscape structure (measured by proportions of seminatural habitats and proportions of mass flowering crops) to get new insights into driving forces of population dynamics of the bumblebee species Bombus pascuorum. Comparing 13 agriculturally dominated landscape sectors, we found the proportion of mass flowering crops to positively influence bumblebee abundance whereas the proportion of seminatural habitats was of minor importance. We used microsatellites to quantify landscape-related colony densities, inbreeding and population substructure. Detected colony densities did not correlate with landscape parameters or with local worker abundance, measured by field observations. These results indicate that increased worker abundances within landscapes are rather due to greater colony sizes than due to an increased number of nests. We found significant population substructure, measured by F(ST) and seven landscape sectors to bear significantly increased inbreeding values (F(IS)). F(IS) was strongly varying between sectors but did not correlate with landscape structure. Moreover, F(IS) had a significantly negative effect on colony size, demonstrating the importance of genetic diversity on population fitness at a landscape scale. We suggest that inbreeding levels might be related to the temporal variation of food resources and population sizes in agricultural landscapes.  相似文献   

19.
1. In the absence of fish predation, Daphnia exploiting a deep‐water algal maximum are faced with a trade‐off. They can either dwell in the epilimnion where development in the warm water is fast, but food shortage causes low egg production, or in the hypolimnion, where food availability is high but development is slow because of low temperatures. 2. We tested the hypotheses that (i) depth distributions of various ontogenetic stages (size classes and egg‐bearing females) differ because daphnids react to light with size‐specific diel vertical migration (DVM) even in the absence of fish (residual predator avoidance hypothesis) and (ii) differently sized daphnids select different depths because the relative importance of temperature and food varies for ontogenetic stages (physiological hypothesis). We used large indoor mesocosms (Plankton Towers) to test these hypotheses experimentally. 3. Temperature was the strongest factor governing the distribution, with larger proportions of the population dwelling in the food‐rich hypolimnion if the temperature gradient was shallow. There were small but significant differences between ontogenetic stages during the day, but not at night. This suggested the existence of a ‘residual’ effect of light on depth distribution in the absence of a fish cue. 4. Although large individuals exhibited greater amplitude of DVM, the physiological hypothesis had to be rejected. A stage‐specific physiological effect is unlikely to be directly triggered by light, hence vertical movement of the individuals should not be synchronised. Rather, being forced into deeper layers by the residual light response during the day, large and egg‐bearing females experience a lower average temperature during day than juveniles. They probably compensate for this by spending longer time periods in warm waters at night.  相似文献   

20.
Characterizing the cost of oviposition in insects: a dynamic model   总被引:3,自引:0,他引:3  
The development of a consensus model of insect oviposition has been impeded by an unresolved controversy regarding the importance of time costs versus egg costs in mediating the trade-off between current and future reproduction. Here I develop a dynamic optimization model that places time and egg costs in a common currency (opportunity costs expressed as decreased lifetime reproductive success) so that their relative magnitudes can be compared directly. The model incorporates stochasticity in host encounter and mortality risk as well as behavioral plasticity in response to changes in the age and egg load of the ovipositing female. The dynamic model's predictions are congruent with those of a simpler, static model: both time- and egg-mediated costs make important contributions to the overall cost of oviposition. Modest quantitative differences between the costs predicted by the static versus dynamic models show that plasticity of oviposition behavior modulates the opportunity costs incurred by reproducing females. The relative importance of egg-mediated costs increases substantially for oviposition events occurring later in life. I propose that the long debate over how to represent the cost of oviposition should be resolved not by advocating the pre-eminence of one sort of cost above all others, but rather by building models that represent the complementary roles of different costs. In particular, both time and egg costs must be recognized to produce a general model of insect oviposition that incorporates a realistic representation of the cost of reproduction. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号