首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract— The acylation of lysophosphatidylserine, prepared by snake venom digestion of phosphatidylserine, by rat brain microsomes is described. Acylation was monitored by spectrophotometric assay and by measuring the incorporation of radioactively labelled acyl CoA thioesters. Acylation was time dependent, showed an approximately linear response to enzyme concentration and had a pH optimum of 9.0. Maximum acylation was attained at a concentration of about 100 μM for lysophosphatidylserine and about 40μM for acyl CoA thioesters. Positional distribution studies with [14C]oleoyl CoA and [14C]arachidonoyl CoA showed incorporation was predominantly at position -2, but with significant labelling at position–1, particularly with oleoyl CoA, possibly as a result of isomerization of the 1–acyl isomer of lysophosphatidylserine. Both saturated and unsaturated thioesters could serve as acyl group donors. Myristoyl CoA was considerably superior to palmitoyl CoA and stearoyl CoA, which were poor acyl group donors. Some selectivity was shown among the long chain unsaturated thioesters, linoleoyl, linolenoyl and arachidonoyl CoA being the most effective acylating agents. Although docosahexaenoic acid is a major unsaturated fatty acid in brain phosphatidylserine, its CoA ester was a relatively poor acyl group donor. Relative acylation rates remained essentially constant over a wide range of lysophosphatidylserine concentrations. It is concluded that acyl transfer mechanisms are active in brain for the regulation of the fatty acid profile of phosphatidylserine.  相似文献   

2.
THE LOCALIZATION OF ENZYME ACTIVITIES IN THE RAT BRAIN   总被引:5,自引:5,他引:5       下载免费PDF全文
Studies with rat brain illustrate the usefulness of formol-calcium-fixed tissue for studying both enzymatic "chemoarchitectonics" and intracellular organelles. Unembedded frozen sections and polyvinyl alcohol-embedded sections may be used to demonstrate the activities of DPNH-tetrazolium reductase localized in mitochondria and ergastoplasm, TPNH-tetrazolium reductase localized in mitochondria, ATPase (and/or apyrase or ADPase) in cell membranes, and acid phosphatase in lysosomes.1 Among the observations recorded are: (1) the presence of lysosomes in all cells of the brain; (2) the presence of numerous large lysosomes near the nuclei of capillary endothelial cells; (3) a polarized arrangement of large lysosomes in epithelial cells of the ependyma and choroid plexus; (4) the presence of ATPase activity in the cell membranes of some neurons; (5) the presence of either an apyrase or combination of ATPase and ADPase in the cell membranes of neuroglia and capillaries; (6) the presence of both DPNH- and TPNH-tetrazolium reductase activities in neuroglia; (7) the presence of DPNH- and TPNH-tetrazolium reductase activities in mitochondria and of DPNH-tetrazolium reductase activity in Nissl substance. The possible functional significance of these localizations is briefly discussed, as is their relation to "quantitative histochemistry" data available in the literature.  相似文献   

3.
Brain and liver stearyl CoA desaturase activity and its associated microsomal electron transport chain was investigated in both the warm-adapted and hibernating hamster. It was shown that the activity of this enzyme in brain was essentially the same in both the warm-adapted and hibernating hamster. In liver an 8-fold increase in desaturase activity was observed for the hibernator without corresponding increases in the activity of the microsomal electron transport chain. It is concluded that the increase of monoenes in brain that contributes to the lipid adaptation probably results from peripheral production of these fatty acids.  相似文献   

4.
Abstract— The mechanism of the action of chlorpromazine on rat brain thiamine phosphatases were studied to clarify the properties of these enzymes in the CNS. Chlorpromazine at concentrations of 0.25-1.0 m m caused marked decrease of microsomal and soluble thiamine triphosphatase (TTPase) activities and marked increase of microsomal thiamine diphosphatase (TDPase) activity. Imipramine and desipramine also inhibited TTPase but did not cause any marked change in TDPase activities. Addition of chlorpromazine (0.5 m m ) decreased the Vmax of microsomal TTPase by about one-half, increased that of TDPase about 3-fold, and lowered the K m value for TDP but not for TTP.
Acetone treatment of the microsomal fraction lowered the TTPase activity and markedly enhanced the TDPase activity. In acetone-treated microsomes, chlorpromazine also inhibited TTPase activity but did not activate TDPase. Deoxycholate had similar effects to chlorpromazine on these enzyme activities.  相似文献   

5.
Rat liver microsomes catalyze the hydrolysis of the triphosphates of adenosine, guanosine, uridine, cytidine, and inosine into the corresponding diphosphates and inorganic orthophosphate. The activities are stimulated by Na2S2O4, and inhibited by atebrin, chlorpromazine, sodium azide, and deaminothyroxine. Sodium deoxycholate inhibits the ATPase activity in a progressive manner; the release of orthophosphate from GTP and UTP is stimulated by low, and inhibited by high, concentrations of deoxycholate, and that from CTP and ITP is unaffected by low, and inhibited by high, concentrations of deoxycholate. Subfractionation of microsomes with deoxycholate into ribosomal, membrane, and soluble fractions reveals a concentration of the triphosphatase activity in the membrane fraction. Rat liver microsomes also catalyze the hydrolysis of the diphosphates of the above nucleosides into the corresponding monophosphates and inorganic orthophosphate. Deoxycholate strongly enhances the GDPase, UDPase, and IDPase activities while causing no activation or even inhibition of the ADPase and CDPase activities. The diphosphatase is unaffected by Na2S2O4 and is inhibited by azide and deaminothyroxine but not by atebrin or chlorpromazine. Upon fractionation of the microsomes with deoxycholate, a large part of the GDPase, UDPase, and IDPase activities is recovered in the soluble fraction. Mechanical disruption of the microsomes with an Ultra Turrax Blender both activates and releases the GDPase, UDPase, and IDPase activities, and the former effect occurs more readily than the latter. The GDPase, UDPase, and IDPase activities of the rat liver cell reside almost exclusively in the microsomal fraction, as revealed by comparative assays of the mitochondrial, microsomal, and final supernatant fractions of the homogenate. The microsomes exhibit relatively low nucleoside monophosphatase and inorganic pyrophosphatase activities, and these are unaffected by deoxycholate or mechanical treatment. Different approaches toward the function of the liver microsomal nucleoside tri- and diphosphatases are reported, and the possible physiological role of the two enzymes is discussed.  相似文献   

6.
7.
8.
Kynurenine formamidase (aryl-formylamine amidohydrolase, EC 3.5.1.9) was found to be present in rat brain and was partially purified and characterized. The partially purified enzyme catalysed the hydrolysis of 5-hydroxyformyl-dl -kynurenine to 5-hydroxy-dl -kynurenine and that of formyl-l -kynurenine to l -kynurenine at similar rates. The apparent Km values of the enzyme for 5-hydroxyformyl-dl -kynurenine and formyl-l -kynurenine were 4.0 ± 10?4 and 1.8 ± 10?4m , respectively. The enzyme was active over a wide pH range (5.5–8.5). The activity was inhibited by low concentrations of Ag+ and Hg2+. The physiological significance of the enzyme is discussed.  相似文献   

9.
NUCLEAR RIBONUCLEASE ACTIVITIES OF RAT BRAIN DURING POSTNATAL DEVELOPMENT   总被引:2,自引:2,他引:0  
Abstract— The activities of alkaline and acidic RNAses were determined in soluble and insoluble fractions from nuclei of brain hemispheres of rats, aged from 1 day to adult. The activities increased rapidly and reached a maximum, at 30 days, of about 10 times (alkaline RNAsel or 5 times (acidic RNAse) that seen at day 1.  相似文献   

10.
The relative suitability of different molecular species of 1,2-diacyl-sn-glycerols as substrates for the diacylglycerol kinase (ATP: 1,2-diacyl-sn-glycerol phosphotransferase) in rat brain microsomes was investigated. The diacylglycerols tested were a mixture of the 1-[3H]palmitoyl and 1-[14C]stearoyl homologues of either the 2-oleoyl (monoenoic), 2-linoleoyl (dienoic), 2-arachidonoyl (tetraenoic), or 2-docosahexaenoyl (hexaenoic) diacylglycerols with an isotope ratio (3H/14C) approximately equal to 1.00. At substrate concentrations of 0.125 mM and 0.60 mM, only a modest preference of the kinase for total (1-palmitoyl plus 1-stearoyl homologues) monoenoic over total hexaenoic species was indicated. The tetraenoic diacylglycerols gave reaction rates which were not significantly different from the monoenes, dienes, or hexaenes when the data were analyzed statistically. No significant enzyme selectivity for either the 1-palmitoyl or 1-stearoyl homologues of the various 1-saturated 2-unsaturated diacylglycerols was apparent. The present results, together with data on the composition of free 1,2-diacylglycerols in brain, which reveal a preponderance of tetraenoic molecular species, suggest that the tetraenoic phosphatidic acids (mainly as 1-stearoyl 2-arachidonoyl species) are quite possibly the major products of diacylglycerol kinase activity in rat brain under physiological conditions.  相似文献   

11.
NUCLEOTIDE METABOLISM IN RAT BRAIN   总被引:8,自引:7,他引:8  
Abstract— The uptake, the conversion to nucleotides, and their incorporation into RNA for labelled glycine, aspartate, the free bases and nucleosides of purines and pyrimidines were investigated with cortical slices of rat cerebrum. At the end of a 1-hr incubation time the slice-to-medium ratio of the radioactivities for labelled aspartate, glycine, adenine and adenosine were 34, 26, 20 and 5, respectively, while the slice-to-medium ratios for hypoxanthine, inosine, guanine, guanosine, xanthine, orotate, cytidine, cytosine, uridine, and uracil ranged from 1.3:1 to 2:1. Over 99 per cent of the total radioactivity taken up by the cortical slices was present in the TCA supernatant and 86, 82, 65, 50, 34, 23, 20 and 1.6 per cent of this radioactivity was in the form of nucleotides at the end of a 1-hr incubation with labelled adenine, adenosine, hypoxanthine, inosine, uridine, orotate, cytidine, and glycine, respectively. The incorporation of various radioactive precursors into RNA of cortical slices suggests that nucleotides originating from either de novo synthesis or preformed purine derivatives enter the same nucleotide pool utilized for RNA synthesis. The supernatant fraction from homogenized cerebrum was investigated for the presence of various anabolic and catabolic enzymes associated with nucleotide metabolism. These results were correlated with the data from the RNA incorporation studies, and a possible role for AMP: pyrophosphate phosphoribosyltransferase (adenine phosphoribosyltransferase, I.U.B. 2.4.2.7) to achieve intercellular transfer of AMP is discussed.  相似文献   

12.
PROTEIN METHYLATION IN RAT BRAIN IN VITRO   总被引:1,自引:0,他引:1  
Abstract— Protein-methylation activity in various organs of the rat was studied with S-adenosyl-L-[methyl-14C]methionine ([methyl-14C](SAM) as methyl donor. Activity of the enzyme was highest in brain and lowest in liver. Histones comprised approximately 20 per cent of the total radioactivity incorporated, and lysine-rich histone was the most active. Analysis of amino acids of the methylated proteins of rat brain showed arginine to be the amino acid most extensively methylated, but some methylation occurred in lysine residues. An additional [methyl-14C]-labelled amino acid was found near histidine on the amino acid column chromatogram.  相似文献   

13.
The TPNH- and O2-dependent drug hydroxylation system of liver microsomes has been studied using normal rats and rats in which the drug-hydroxylating activity has been enhanced by repeated injections of phenobarbital. The oxidative demethylation of aminopyrine is employed as an assay. Optimal conditions for the assay with regard to the concentrations of TPNH and aminopyrine are established. TPN inhibits the reaction in a competitive manner, similarly to its effect on the microsomal TPNH-cytochrome c reductase. Drug hydroxylation, but not the "TPNH oxidase," TPNH-cytochrome c, -2,6-dichlorophenolindophenol, or -neotetrazolium reductase reaction, or the TPNH-dependent lipid peroxidation, is blocked by carbon monoxide. Microsomes from phenobarbital-treated rats exhibit increased activities of the various TPNH-linked reductase reactions, parallel to the increased drug hydroxylation activity, whereas the "TPNH oxidase" activity does not change appreciably. Measurements with microsomes from drug-treated animals reveal a 1:1:1 stoichiometry of aminopyrine-dependent oxygen uptake, TPNH oxidation, and formaldehyde formation. Attempts to solubilize the drug-hydroxylating enzyme system are also presented. It is concluded that the drug-hydroxylating enzyme system involves the microsomal TPNH-cytochrome c reductase and CO-binding pigment, and a hypothetic reaction scheme accounting for the data presented is proposed.  相似文献   

14.
Abstract— Optimal assay conditions for decarboxylation of 3,4-dihydroxy- l -phenylalanine (DOPA) and 5-hydroxy- l -tryptophan (5-HTP) were determined in homogenates of rat brain by use of a sensitive, precise microradiometric technique. The two activities exhibited widely different optima for pH, temperature and substrate concentrations. The activity of 5-HTP decarboxylase was stimulated 2-fold by added pyridoxal-5-phosphate and was relatively resistant to antagonists of pyridoxal-P. By contrast, the activity of DOPA decarboxylase was stimulated 20-fold by added coenzyme and could be completely inhibited by carboxyl trapping agents. DOPA decarboxylase activity in subcellular fractions of brain was associated predominately with the soluble fractions and its distribution in the various fractions closely paralleled that of lactic acid dehydrogenase. 5-HTP decarboxylase activity in brain was distributed almost equally between soluble and particulate fractions, and its distribution within the particulate fractions differed from that of succinic acid dehydrogenase. The two decarboxylases in brain exhibited a 7-fold divergence in relative specific activity when their respective distributions in subcellular fractions were compared. Similarly, the regional distributions of the two decarboxylases in rat brain did not parallel one another; e.g. there was a 4-fold difference between the ratio of the two activities in cerebellum and that found in the corpus striatum.  相似文献   

15.
ADENOSYLMETHIONINE DECARBOXYLASE IN DEVELOPING RAT BRAIN   总被引:12,自引:7,他引:5  
Adenosylmethionine decarboxylase from rat brain has been found to be similar to the same enzyme isolated from other rat tissues in regard to kinetic parameters, pH optimum, putrescine requirement, and subcellular location. Evidence is presented that pyridoxal phosphate is not the functional cofactor in enzymatic decarboxylation by the rat brain preparation. The capacity for spermidine synthesis in developing rat brain was determined by measurement of the activity of adenosylmethionine decarboxylase. The activity increased dramatically after 10 days of postnatal age. This increase occurred after the period of maximum nucleic acid synthesis, an observation which suggests that spermidine may have a role in the functional development of the brain.  相似文献   

16.
—Respiration was studied polarographically in mitochondria isolated from immature rat cerebral hemispheres. Respiratory rates are compared as a function of age, substrate, and the requirement for a phosphate acceptor. 1. All respiratory rates are low in the first week of life. These rates increase during the first month and then decline to about the newborn rate by 5 weeks of age. 2. With the NAD-linked substrate pair, glutamate and malate, the changes with age are significant only for the rate of ADP-dependent respiration. With succinate as substrate, significant age-dependent changes in respiration occur only in ADP-independent respiration. 3. In mitochondria from animals less than five weeks of age, the ADP-dependent respiratory rate is significantly greater with the NAD-linked substrate pair than with succinate. In mitochondria from older animals, both ADP-dependent and ADP-independent rates are greater with succinate.  相似文献   

17.
LIPID PEROXIDE FORMATION IN RAT BRAIN   总被引:4,自引:3,他引:1  
Abstract— Lipid peroxide formation as measured by the thiobarbituric acid reaction was demonstrated in subcellular fractions of rat brain. The ascorbic acid induced nonenzymic lipid peroxidation was distributed in all the subcellular fractions with a maximum in microsomes. The NADPH dependent enzymic lipid peroxidation occurred mainly in microsomes and to a smaller extent in synaptosomes; NADH could replace NADPH for the enzymic lipid peroxidation under the assay conditions employed. Fe2+ but not Fe3+ stimulated the NADPH or NADH dependent lipid peroxide formation. The optimum conditions with respect to pH, ascorbic acid or NADPH concentration, time of incubation and protein concentration were studied. Heating the microsomes at 100oCdid not influence the ascorbate-induced lipid peroxidation but completely abolished the NADPH linked peroxidation. Several heavy metal ions, surface active agents and EDTA were inhibitory to lipid peroxidation. The effect of thiol agents indicated that -SH groups were involved in the enzymic lipid peroxidation. Studies on subcellular fractions of developing rat brain showed an increasing trend in lipid peroxidation with the advancing age of the animal. No significant difference in lipid peroxidation was observed between brains from normal rats and those from rats affected by experimental allergic encephalomyelitis.  相似文献   

18.
PHOSPHOLIPASE A ACTIVITIES IN NORMAL AND SECTIONED RAT SCIATIC NERVE   总被引:10,自引:9,他引:1  
Abstract— The phospholipase A1 (EC 3.1.1.32) and A2 (EC 3.1.1.4) activities of rat sciatic nerve homogenates have been studied. With phosphatidylcholine as substrate normal nerve had significant activity of both types at pH 5.0. Substantial increases occurred in nerve undergoing Wallerian degeneration after transection, beginning as early as 2 days after operation and rising to eight times normal values by the second week.  相似文献   

19.
NUCLEOSIDE PHOSPHATASE ACTIVITIES IN RAT CARDIAC MUSCLE   总被引:9,自引:9,他引:0       下载免费PDF全文
Localizations of aldehyde-resistant nucleoside phosphatase activities in frozen sections of rat cardiac muscle have been studied by electron microscopy. Activities are higher after fixation with formaldehyde than with glutaraldehyde. After incubation with adenosine triphosphate or inosine diphosphate at pH 7.2, reaction product is found in the "terminal cisternae" or "transverse sacs" of the sarcoplasmic reticulum, which, together with the "intermediary vesicles" (T system), constitute the "dyads" or "triads". Reaction product is also present at the membranes of micropinocytotic vacuoles which apparently form from the plasma membrane of capillary endothelial cells and from the sarcolemma. In certain regions of the intercalated discs, reaction product is found within the narrow spaces between sarcolemmas of adjacent cells and within micropinocytotic vacuoles that seem to form from the sarcolemma. With inosine diphosphate, reaction product is also found in other parts of the sarcoplasmic reticulum. After incubation with cytidine monophosphate at pH 5, reaction product is present in the transverse sacs of sarcoplasmic reticulum, in micropinocytotic vacuoles in capillary endothelium, and in lysosomes of muscle fibers and capillaries. The possible significance of the sarcoplasmic reticulum phosphatases is discussed in relation to the role the reticulum probably plays in moving calcium ions and thereby controlling contraction and relaxation of the muscle fiber.  相似文献   

20.
SODIUM-INDUCED EFFLUX OF CALCIUM FROM BRAIN MICROSOMES   总被引:1,自引:0,他引:1  
  • 1 A microsomal preparation from rat brain accumulated 45Ca in the presence of ATP. The uptake of calcium was associated with a corresponding uptake of 32P from [γ-32P]ATP, with a 32P:45Ca molar ratio of about 0·65.
  • 2 Microsomes that were first loaded with 46Ca lost radioactivity during a subsequent incubation in the absence of ATP; efflux of previously accumulated 32P (from ATP) corresponded with the calcium efflux. By contrast, the uptake of 14C from [8-14C]ATP was far less than of 32P, and the efflux did not follow calcium efflux. Thus the movement of 32P probably represented the phosphate anion in association with calcium. Calcium efflux diminished with increasing pH up to 8·6.
  • 3 Sodium specifically increased the rate of efflux of previously accumulated calcium. This sodium-induced efflux was associated with a corresponding efflux of 32P (from ATP) and had a pH optimum near 7·8. It was not accompanied by a change in the amount of retained adenine nucleotides nor in the pattern of ATP metabolites, and was unaffected by ouabain or oligomycin.
  • 4 Low concentrations of certain sulphydryl inhibitors blocked the sodium-stimulated efflux with little effect either on efflux in the absence of sodium or on 45Ca accumulation.
  • 5 Higher concentrations of these inhibitors, associated with an increase binding of the reagent, caused a generalized efflux of 45Ca and an inhibition of accumulation. The lipid solubility of a series of mercurial reagents corresponded with efficacy in promoting efflux; this suggested that this second class of reactive sites lay within a lipoidal permeability barrier.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号