首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The subunit pattern of immunopurified cytochrome c oxidase from cultured mouse cells and mature tissues of the mouse was investigated by electrophoretic analysis. In mature tissues two forms of cytochrome c oxidase could clearly be identified on the basis of differences in morbidity or staining intensity of subunits VIa and VIII. One form was present in muscle and heart, and the other in liver, kidney and spleen. In lung both forms were found. In the thymus, subunit VIII showed the characteristics of subunit VIII found in muscle and heart, whereas subunit VIa resembled subunit VIa found in liver. This suggest the existence of a third cytochrome c oxidase isoform. The subunits of cytochrome c oxidase from cultured cell lines showed no differences between the various cell lines and resembled those of mature mouse liver tissue. The cytochrome c oxidase isoform from cultured proliferating cells might therefore be the same as the one found in liver. Alternatively, it might represent either a normally occurring fetal isoform, or a form specific for poorly differentiated cultured cells.  相似文献   

2.
Cytochrome c oxidase was isolated from rat liver either by affinity chromatography on cytochrome-c--Sepharose 4B or by chromatography on DEAE-Sepharose. Dodecyl sulfate gel electrophoresis of both preparations showed the same subunit pattern consisting of 13 different polypeptides. Kinetic analysis of the two preparations gave a higher Vmax for the enzyme isolated by chromatography on DEAE-Sephacel. Specific antisera were raised in rabbits against nine of the ten nuclear endoded subunits. A monospecific reaction of each antiserum with its corresponding subunit was obtained by Western blot analysis, thus excluding artificial bands in the gel electrophoretic pattern of the isolated enzyme due to proteolysis, aggregation or conformational modification of subunits. With an antiserum against rat liver holocytochrome c oxidase a different reactivity was found by Western blot analysis for subunits VIa and VIII between isolated cytochrome c oxidases from pig liver or kidney and heart or skeletal muscle. For a quantitative analysis of immunological differences a nitrocellulose enzyme-linked immunosorbent assay was developed. Monospecific antisera against 12 of the 13 subunits of rat liver cytochrome c oxidase were titrated with increasing amounts of total mitochondrial proteins from different rat tissues dissolved in dodecyl sulfate and dotted on nitrocellulose. The absorbance of a soluble dye developed by the second peroxidase-conjugated antibody was measured. From the data the following conclusions were obtained: (a) The mitochondrial encoded catalytic subunits I-III of cytochrome c oxidase are probably identical in all rat tissues. (b) All nine investigated nuclear encoded subunits of cytochrome c oxidase showed immunological differences between two or more tissues. Large immunological differences were found between liver, kidney or brain and heart or skeletal muscle. Minor but significant differences were observed for some subunits between heart and skeletal muscle and between liver, kidney and brain. (c) Between corresponding nuclear encoded subunits of cytochrome c oxidase from fetal and adult tissues of liver, heart and skeletal muscle apparent immunological differences were observed. The data could explain cases of fatal infantile myopathy due to cytochrome c oxidase deficiency.  相似文献   

3.
Cytochrome c oxidase (COX) was isolated from bovine smooth muscle (rumen), and compared with the enzyme from bovine liver, heart and skeletal muscle. A new isozyme of COX was found to be expressed in smooth muscle, which differs from the isozyme in liver and heart or skeletal muscle. SDS-PAGE as well as N-terminal amino acid sequencing of separated subunits from gel bands revealed the expression of the liver isoforms for subunits VIa and VIII and of the heart isoform for subunits VIIa in COX from smooth muscle.  相似文献   

4.
Cytochrome c oxidase was isolated from turkey liver, heart and breast skeletal muscle and separated by SDS/PAGE. The N-terminal amino-acid sequence of subunit VIa from all tissues and internal sequences from the skeletal muscle enzyme show homology to the mammalian liver-type subunit VIaL, which was verified by isolation and sequencing of the cDNA of turkey subunit VIa. No cDNA corresponding to subunit VIaH (mammalian heart-type) could be found by RACE-PCR with mRNA from all turkey tissues. Measurement of proton translocation with the reconstituted enzymes from turkey liver and heart revealed H+/e- ratios below 0.5 that were independent of the intraliposomal ATP/ADP ratio, as previously found with the bovine liver enzyme. Under identical conditions, the bovine heart enzyme revealed H+/e- ratios of 0.85 at low and 0.48 at high intraliposomal ATP/ADP ratios. The results suggest that in birds the lower H+/e-ratio of cytochrome c oxidase participates in elevated resting metabolic rate and thermogenesis.  相似文献   

5.
Y Z Zhang  G Ewart  R A Capaldi 《Biochemistry》1991,30(15):3674-3681
The arrangement of three subunits of beef heart cytochrome c oxidase, subunits Va, VIa, and VIII, has been explored by chemical labeling and protease digestion studies. Subunit Va is an extrinsic protein located on the C side of the mitochondrial inner membrane. This subunit was found to label with N-(4-azido-2-nitrophenyl)-2-aminoethane[35S]sulfonate and sodium methyl 4-[3H]formylphenyl phosphate in reconstituted vesicles in which 90% of cytochrome c oxidase complexes were oriented with the C domain outermost. Subunit VIa was cleaved by trypsin both in these reconstituted vesicles and in submitochondrial particles, indicating a transmembrane orientation. The epitope for a monoclonal antibody (mAb) to subunit VIa was lost or destroyed when cleavage occurred in reconstituted vesicles. This epitope was localized to the C-terminal part of the subunit by antibody binding to a fusion protein consisting of glutathione S-transferase (G-ST) and the C-terminal amino acids 55-85 of subunit VIa. No antibody binding was obtained with a fusion protein containing G-ST and the N-terminal amino acids 1-55. The mAb reaction orients subunit VIa with its C-terminus in the C domain. Subunit VIII was cleaved by trypsin in submitochondrial particles but not in reconstituted vesicles. N-Terminal sequencing of the subunit VIII cleavage product from submitochondrial particles gave the same sequence as the untreated subunit, i.e., ITA, indicating that it is the C-terminus which is cleaved from the M side. Subunits Va and VIII each contain N-terminal extensions or leader sequences in the precursor polypeptides; subunit VIa is made without an N-terminal extension.  相似文献   

6.
By antibody screening of a rat liver and a rat heart cDNA library in lambda gt11 two clones coding for the liver- and heart-specific subunit VIa of rat cytochrome c oxidase were isolated. In the heart cDNA sequence a TAA stop codon was found in frame 18 bp 5' upstream of the first methionine codon, thus excluding a leader sequence for this protein. The two cDNAs contain the full-length coding region of two subunits. The amino acid sequences of the two subunits show only 50% homology, whereas 74% homology was found between rat heart and bovine heart subunit VIa. By Northern blot analysis it is shown that the gene for subunit VIa from heart is only expressed in heart and skeletal muscle, whereas that from liver is also expressed in kidney, brain, heart and weakly in muscle.  相似文献   

7.
With a high-resolving dodecyl sulfate electrophoretic system rat liver cytochrome c oxidase was separated into 13 different polypeptides. An antiserum against rat liver holocytochrome c oxidase immunoreacted with all 13 polypeptides, as demonstrated by immunofluorescence after transfer of the separated Coomassie blue-stained bands on nitrocellulose and coupling with FITC-protein A ("western blot"). Polypeptide-specific antisera reacted only with their corresponding polypeptides indicating that the various protein bands are represented by individual polypeptides. From total proteins of rat liver, kidney, heart, spleen and skeletal muscle mitochondria, only the cytochrome c oxidase polypeptides showed immunofluorescence with an antiserum against the rat liver holoenzyme. In contrast to the polypeptide from liver, polypeptide VIa from heart and skeletal muscle showed little or no reactivity, indicating a tissue-specificity of this polypeptide. Mitochondrial proteins from pig, bovine and blackbird heart were incubated with an antiserum against the rat liver holoenzyme. Immunoreaction was found with most cytochrome c oxidase polypeptides but not with polypeptide VIa. This result demonstrates less immunological relationship between tissue-specific polypeptides (VIa, VIIa and VIII) of the same species than between tissue-unspecific polypeptides of different species.  相似文献   

8.
The presence of additional subunits in cytochrome oxidase distinguish the multicellular eukaryotic enzyme from that of a simple unicellular bacterial enzyme. The number of these additional subunits increases with increasing evolutionary stage of the organism. Subunits I–III of the eukaryotic enzyme are related to the three bacterial subunits, and they are encoded on mito-chondrial DNA. The additional subunits are nuclear encoded. Experimental evidences are presented here to indicate that the lower enzymatic activity of the mammalian enzyme is due to the presence of nuclear-coded subunits. Dissociation of some of the nuclear-coded subunits (e.g., VIa) by laurylmaltoside and anions increased the activity of the rat liver enzyme to a value similar to that of the bacterial enzyme. Further, it is shown that the intraliposomal nucleotides influence the kinetics of ferrocytochromec oxidation by the reconstituted enzyme from bovine heart but not fromP. denitrificans. The regulatory function attributed to the nuclear-coded subunits of mammalian cytochromec oxidase is also demonstrated by the tissue-specific response of the reconstituted enzyme from bovine heart but not from bovine liver to intraliposomal ADP. These enzymes from bovine heart and liver differ in the amino acid sequences of subunits VIa, VIIa, and VIII. The results presented here are taken to indicate a regulation of cytochromec oxidase activity by nuclear-coded subunits which act like receptors for allosteric effectors and influence the catalytic activity of the core enzyme via conformational changes.  相似文献   

9.
The cytochrome c oxidase enzyme complex of eukaryotes is made up of three mitochondrial-coded subunits and a variable number of nuclear-coded subunits. Some nuclear-coded subunits are present in multiple forms and probably perform a tissue- or development-specific function. A detailed evolutionary analysis of the cytochrome c oxidase subunits that have been sequenced to date is reported here. We have found that gene duplication events from which the liver and heart isoforms of rat subunits VIa and subunit VIII originated can both be dated at about 240 +/- 90 million years ago, long before the radiation of mammalian lineages. Sequence divergence between the processed-type pseudogenes for the subunits IV, VIc and VIII have been estimated. Our results indicate that they arose fairly recently, thus suggesting that retroposition is a continuing process. We show that the rate of silent substitution in mitochondrial-coded subunits is 5-10 times higher than in nuclear-coded subunits; on the other hand replacement rates, although differing from gene to gene, are roughly of the same order of magnitude in both nuclear and mitochondrial genes. In the case of most of the nuclear-coded proteins we observed a slightly greater similarity between rats and cow, which agrees with the data obtained for mitochondrial-coded subunits.  相似文献   

10.
11.
1. The cytochrome content of beef liver mitochondria differs from that of beef heart mitochondria by an eightfold lower cytochrome aa3 and a twofold lower cytochrome b and c + c1 content. 2. The kinetic properties of cytochrome c oxidases from beef liver and heart were measured with intact cytochrome c-depleted membranes, deoxycholate-dissolved membranes, and with the isolated enzymes at various cytochrome c concentrations with an oxygen electrode. Under all conditions a higher V was found for the liver enzyme, both for the low-affinity and for the high-affinity binding site for cytochrome c. Differences were also found for the Km of the two enzymes. 3. Isolated beef heart mitochondria contained about twice as much cardiolipin than beef liver mitochondria. The isolated enzymes contained one mole cardiolipin per mole of the heart enzyme, but 2 moles cardiolipin per mole of the liver enzyme. 4. By application of a high performance sodium dodecylsulfate gel electrophoretic system the two isolated enzymes could be separated into 13 different protein components, three of which (polypeptides VIa, VIIa and VIII) were found to differ in their apparent molecular weights. The functional meaning of cytochrome c oxidase isoenzymes in liver and heart is discussed.  相似文献   

12.
Tissue-specific differences between heart and liver cytochrome c oxidase   总被引:5,自引:0,他引:5  
Bovine liver cytochrome c oxidase has been isolated and the subunit structure of this preparation compared with that of the bovine heart enzyme. Of the 10 nuclear-coded subunits, 3 were different in the 2 tissue forms, having different migrations in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, different antigenicities to antibodies made against the heart subunits, and different N-terminal amino acid sequences. Subunit ASA of heart begins with the N-terminal sequence of SSG in liver and is different in 17 of the first 33 residues including a deletion of 2 residues in the liver isoform of this subunit. Subunit CVII of liver differs from its heart counterpart in 6 of the first 37 residues while subunit CIX from liver differs from the heart isoform in 15 of the first 25 residues. No differences between tissue types were observed in partial sequencing of the remaining nuclear-coded subunits. Recently, the major portion of the sequence of subunit CIX from rat liver has been obtained by cloning and sequencing of the cDNA for this polypeptide [Suske, G., Mengel, T., Cordingley, M., & Kadenbach, B. (1987) Eur. J. Biochem. 168, 233-237]. There is a greater sequence homology of the rat and bovine liver forms of CIX than there is between the bovine heart and liver isoforms.  相似文献   

13.
Cytochrome c oxidase was isolated from pig, bovine, rat and human tissues including liver, heart, diaphragm and kidney. The native and the sodium-dodecyl-sulfate (SDS)-dissociated enzymes were labelled under optimal conditions with N-ethyl-[2,3-14C]maleimide before and after reduction with dithiothreitol, separated into 13 subunits by SDS gel electrophoresis and the radioactive bands were visualized by fluorography. In some cases the radioactive bands were cut out and counted. All isozymes were labelled in subunits I, III, Va and VIIb, and in subunit II after reduction. Labelling of subunit Vb was equivocal, and in no case were subunits IV and VIc labelled. All other subunits were labelled tissue-specifically and/or species-specifically. No differences were found between labelling of the native and SDS-dissociated enzyme. By relating the molar amount of bound N-ethylmaleimide to the known amount of cysteines in subunits of bovine heart cytochrome c oxidase, the percentage of -SH group reactivity was calculated. Only the cysteine of subunit Va was found to be 100% reactive. The distinct and different reactivity of subunit VIIb as compared to subunits VIIa and VIIc clearly establishes this polypeptide as an independent subunit of mammalian cytochrome c oxidase.  相似文献   

14.
R S Seelan  G Padmanaban 《Gene》1988,67(1):125-130
The biogenesis of eukaryotic cytochrome c oxidase involves the coordinate expression of nuclear and mitochondrial genes. Very little information is available on the gene structure of nuclear-coded cytochrome c oxidase subunits in mammalian systems. We report here the isolation and complete nucleotide sequence determination of a processed pseudogene for cytochrome c oxidase subunit VIc from rat liver. The pseudogene lacks introns and the coding region is intact with no deleterious lesions; however, there are 7 amino acid (aa) differences when compared to the sequence derived from cDNA clones. The pseudogene has the potential to code for a protein of 76 aa, containing a putative 3 aa N-terminal presequence when compared to the mature bovine heart VIc subunit. Potential regulatory regions, including a TATA box, are present in the 5'-flanking region.  相似文献   

15.
16.
The nucleotide sequences of two cloned DNA fragments containing the structural genes of heterotetrameric sarcosine oxidase (soxBDAG) and dimethylglycine dehydrogenase (dmg) from Arthrobater spp. 1-IN and Arthrobacter globiformis, respectively, have been determined. Open reading frames were identified in the soxBDAG operon corresponding to the four subunits of heterotetrameric sarcosine oxidase by comparison with the N-terminal amino-acid sequences and the subunit relative molecular masses of the purified enzyme. Alignment of the deduced sarcosine oxidase amino-acid sequence with amino-acid sequences of functionally related proteins indicated that the arthrobacterial enzyme is highly homologous to sarcosine oxidase from Corynebacterium P-1. Deletion and expression analysis, and alignment of the deduced amino-acid sequence of the dmg gene, showed that dmg encodes a novel dimethylglycine oxidase, which is related to eukaryotic dimethylglycine dehydrogenase, and contains nucleotide-binding, flavinylation and folate-binding motifs. The recombinant dimethylglycine oxidase was purified to homogeneity and characterized. The DNA located upstream and downstream of both the soxBDAG and dmg genes is predicted to encode enzymes involved in the tetrahydrofolate-dependent assimilation of methyl groups. Based on the sequence analysis reported herein, pathways are proposed for glycine betaine catabolism in Arthrobacter species, which involve the identified folate-dependent enzymes.  相似文献   

17.
The subunit pattern and the steady-state kinetics of cytochrome-c oxidase from human heart, muscle, kidney and liver were investigated. Polyacrylamide gel electrophoresis of immunopurified cytochrome-c oxidase preparations suggest that isoforms of subunit VIa exist, which show differences in staining intensity and electrophoretic mobility. No differences in subunit pattern were observed between the other nucleus-encoded subunits of the various cytochrome-c oxidase preparations. Tissue homogenates, in which cytochrome-c oxidase was solubilised with laurylmaltoside, were directly used in the assays to study the cytochrome-c oxidase steady-state kinetics. Cytochrome-c oxidase concentrations were determined by immunopurification followed by separation and densitometric analysis of subunit IV. When studied in a medium of low ionic strength, the biphasic kinetics of the steady-state reaction between human ferrocytochrome c and the four human cytochrome-c oxidase preparations revealed large differences for the low-affinity TNmax (maximal turnover number) value, ranging from 77 s-1 for kidney to 273 s-1 for liver cytochrome-c oxidase at pH 7.4, I = 18 mM. It is proposed that the low-affinity kinetic phase reflects an internal electron-transfer step. For the steady-state reaction of human heart cytochrome-c oxidase with human cytochrome c, Km and TNmax values of 9 microM and 114 s-1 were found, respectively, at high ionic strength (I = 200 mM, pH 7.4). Only minor differences were observed in the steady-state activity of the various human cytochrome-c oxidases. The interaction between human cytochrome-c oxidase and human cytochrome-c proved to be highly specific. At high ionic strength, a large decrease in steady-state activity was observed when reduced horse, rat or bovine cytochrome c was used as substrate. Both the steady-state TNmax and Km parameters were strongly affected by the type of cytochrome c used. Our findings emphasize the importance of using human cytochrome c in kinetic assays performed with tissues from patients with a suspected cytochrome-c oxidase deficiency.  相似文献   

18.
Monoclonal antibodies to subunits of bovine heart cytochrome c oxidase were prepared by immunizing mice with the isolated enzyme. The majority of antibody-producing cell lines were found to react with two different subunits of similar molecular mass, as shown by Western blotting and ELISA titrations with the HPLC-purified subunits. The affinities of the monoclonal antibodies to the subunits were determined by ELISA titrations with increasing concentrations of NH4SCN. Two monoclonal antibodies with a low affinity to subunit VIa had a high affinity to subunit VIc, whereas two other antibodies showed the same affinity to subunits VIIa and VIIb. The same affinity of monoclonal antibodies suggested an evolutionary relationship of subunits VIIa and VIIb, which was further supported by reactivity of these antibodies to subunits VIIa and VIIb of cytochrome c oxidase from different species and tissues. Also the evolutionary relationship between subunit VIa and VIc was shown by hybridization at low stringency of cDNAs for rat cytochrome c oxidase subunits VIc and VIa-h (heart-type), after amplification by the polymerase chain reaction, with a probe of VIa-l (liver-type).  相似文献   

19.
We report the results of biochemical and molecular investigations on a group of patients from the Saguenay-Lac-Saint-Jean region of Quebec who have an unusual form of cytochrome oxidase deficiency and Leigh disease. This group can be distinguished from the classical presentation of cytochrome oxidase deficiency with Leigh disease, by the severity of the biochemical defect in different tissues. The activity in skin fibroblasts, amniocytes, and skeletal muscle of cytochrome oxidase is 50% of normal, while in kidney and heart it is close to normal values. Brain and liver, on the other hand, have very low activities. The defect in activity appears to result from a failure of assembly of the cytochrome oxidase complex in liver, but levels of mRNA for both mitochondrially encoded and nuclear-encoded subunits in liver and skin fibroblasts were found to be the same as those in controls. The cDNA sequence of the liver-specific cytochrome oxidase subunits VIa and VIIa were determined in samples from patient liver and skin fibroblasts and showed normal coding sequence.  相似文献   

20.
As part of our study of isoenzyme forms of human cytochrome c oxidase, we purified subunit IV from human heart and skeletal muscle with reversed-phase HPLC and determined the N-terminal amino acid sequences and the electrophoretic mobility. The N-terminus of human heart subunit IV proved to be ragged with 30% of the protein lacking the first three residues. Also a Tyr/Phe polymorphism was observed at residue 16. No differences in N-terminal sequence and electrophoretic mobility were observed between subunit IV of cytochrome c oxidase from human heart and skeletal muscle. Therefore, our results suggest that identical subunits IV are present in cytochrome c oxidase from human heart and skeletal muscle. A putative isoform of subunit IV with a blocked N-terminus was purified from human heart cytochrome c oxidase, which proved to have a different retention time on a reversed-phase column and also a slightly higher electrophoretic mobility on an SDS-polyacrylamide gel compared to the native subunit IV. We could not demonstrate the existence of isoforms of subunit IV in human skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号