首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Na+ transport studies in intestinal epithelial cells indicate that enterocytes from different regions of the small intestine differ in their response to actively transported sugars. 1. Compared with sugar-free medium total Na+ efflux rate constants from isolated rat jejunal cells were significantly increased when medium contained actively transported sugars, glucose and galactose, but not when medium contained fructose. 2 In contrast total Na+ efflux rate constants from isolated rat ileal cells did not respond to actively transported sugars, glucose and galactose. 3. Similar results for the effect of actively transported sugars on Na+ ellux were obtained for isolated rabbit jejunal and ileal epithelial cells. 4. Passive Na+ efflux rate constants for isolated jejunal and ileal enterocytes are not significantly different, indicating similiar permeability characteristics.  相似文献   

2.
The uptake of a number of amino acids by the developing small intestine of the rat was investigated in vitro. L-valine, L-leucine, L-methionine, L-phenylalanine, L-arginine and L-lysine were all taken up by active transport and concentrated within the jejunal mucosa. GABA was not actively transported by the jejunum. The kinetics of carrier transport of amino acids was determined from birth to maturity. The Michaelis constant (Km) of the L-leucine, L-methionine, L-arginine and l-lysine transport systems was found to be low postnatally and increased with age, particularly after the time of weaning. The rate of l-leucine, L-methionine, L-phenylalanine and L-lysine transport (Vmax) was high postnatally but decreased after weaning. Neutral amino acids were transported at higher rates than basic amino acids. l-arginine was poorly transported by the jejunum. The specificity of transport systems for amino acids was investigated in inhibition studies. Amino acid transport systems appeared to be polyfunctional in the postnatal period but were more specific in post-weaned animals. The changes in kinetics and specificity of amino acid transport in the small intestine are discussed with reference to their possible functional significance and to the maturational changes in the jejunum, particularly with the appearance of a functionally distinct absorptive cell lining the intestinal villi during the third postnatal week (the time of weaning).  相似文献   

3.
A chamber design is described which permits isolation of villus or intervillus epithelium from proximal segments of Amphiuma intestine and measurement of the transpithelial potential difference (psi ms) and short-circuit current (Isc) produced by each. In media containing Cl- and 10 mequiv./l HCO3- the villus generated a basal psi ms of 0.8 mV (serosa negative) and Isc of 12 microA/cm2 while the intervillus psi ms and Isc were not different from zero. Acetazolamide altered the villus psi ms by 1.2 mV; the intervillus psi ms by only 0.3 mV. Transepithelial gradients of HCO3- appeared to generate diffusion potentials across the intervillus but not the villus epithelium. The actively transported sugar galactose elevated psi ms by 0.6 +/- 0.1 mV in the intervillus epithelium and by 1.5 +/- 0.2 mV in the villus epithelium for a response ratio (0.6/1.5) = 0.4. The response ratio for valine was 0.3. In contrast, the response ratios for theophylline (0.7) and cyclic AMP (0.7) were significantly higher. These observations indicate that the entire epithelium is responsive to theophylline and cyclic AMP while Na+-dependent solute transport and the basal electrogenic ion transport processes are primarily functions of the cells lining the intestinal villus.  相似文献   

4.
Radiation-induced damage to the intestine can be measured by abnormalities in the absorption of various nutrients. Changes in intestinal absorption occur after irradiation because of loss of the intestinal absorptive surface and a consequent decrease in active transport. In our study, the jejunal absorption of (99m)Tc-pertechnetate, an actively transported gamma-ray emitter, was assessed in C3H/Kam mice given total-body irradiation with doses of 4, 6, 8 and 12.5 Gy and correlated with morphological changes in the intestinal epithelium. The absorption of (99m)Tc-pertechnetate from the intestinal lumen into the circulation was studied with a dynamic gamma-ray-scintigraphy assay combined with a multichannel analyzer to record the radiometry data automatically in a time-dependent regimen. The resulting radioactivity-time curves obtained for irradiated animals were compared to those for control animals. A dose-dependent decrease in absorptive function was observed 3.5 days after irradiation. The mean absorption rate was reduced to 78.8 +/- 9.3% of control levels in response to 4 Gy total-body irradiation (mean +/- SEM tracer absorption lifetime was 237 +/- 23 s compared to 187 +/- 12 s in nonirradiated controls) and to 28.3 +/- 3.7% in response to 12.5 Gy (660 +/- 76 s). The decrease in absorption of (99m)Tc-pertechnetate at 3.5 days after irradiation correlated strongly (P < 0.001) with TBI dose, with the number of cells per villus, and with the percentage of cells in the crypt compartment that were apoptotic or mitotic. A jejunal microcolony assay showed no loss of crypts and hence no measured dose-response effects after 4, 6 or 8 Gy TBI. These results show that dynamic enteroscintigraphy with sodium (99m)Tc-pertechnetate is a sensitive functional assay for rapid evaluation of radiation-induced intestinal damage in the clinically relevant dose range and has a cellular basis.  相似文献   

5.
Vesicles prepared from Halobacterium halobium cell envelopes accumulate amino acids in response to light-induced electrical and chemical gradients. Nineteen of 20 commonly occurring amino acids have been shown to be actively accumulated by these vesicles in response to illumination or in response to an artificially created Na-gradient. Sodium-activated amino acid transport for 18 of these amino acids has been shown to occur in direct response to the protonmotive force generated. Glutamate is transported only in response to a sodium gradient. Michaelis constants for the uptake of these amino acids are close or identical whether the amino acids are accumulated in response to a sodium gradient or a protonmotive force (i.e., electrical gradient). On the basis of shared common carriers the transport systems can be divided into eight classes, each responsible for the transport of one or several amino acids, i.e., arginine, lysine, histidine; asparagine, glutamine; alanine, glycine, threonine, serine; leucine, valine, isoleucine, methionine; phenylalanine, tyrosine, tryptophan; aspartate; glutamate; proline. Available evidence suggests that these carriers are symmetrical in that amino acids can be transported equally well in both directions across the vesicle membranes. A tentative working model to account for these observations is presented.  相似文献   

6.
Alanine Efflux across the Serosal Border of Turtle Intestine   总被引:1,自引:0,他引:1  
The exit of alanine across the serosal border of the epithelial cells of turtle intestine was measured by direct and indirect techniques. A decrease or an increase in cell Na did not affect the amino acid flux from cell to serosal solution. Cells loaded with Na and alanine did not exhibit any extrusion of alanine when their serosal membranes were exposed to an Na-free medium containing alanine. However, substantial amino acid extrusion was observed across the mucosal cell border under similar conditions. Although alanine flux across the serosal membrane appeared to be Na-independent, it showed a tendency toward saturation as cellular alanine concentration was elevated. The results are consistent with the postulate that the serosal and mucosal membranes of intestinal cells are asymmetrical with respect to amino acid transport mechanisms. The serosal membrane appears to have an Na-independent carrier-mediated mechanism responsible for alanine transport while transport across the mucosal border involves an Na-dependent process.  相似文献   

7.
Mouse blastocysts which had been activated from diapause in utero appeared to take up amino acids via a Na+-dependent transport system with novel characteristics. In contrast to other cell types, uptake of 3-aminoendobicyclo [3,2,1]octane-3-carboxylic acid (BCO) by blastocysts was largely Na+ dependent. Moreover, L-alanine and BCO met standard criteria for mutual competitive inhibition of the Na+-dependent transport of each other. The Ki for each of these amino acids as an inhibitor of transport of the other had a value similar to the value of its Km for transport. In addition, both 2-aminoendobicyclo [2,2,1]heptane-2-carboxylic acid (Ki approximately 1.0 mM) and L-valine (Ki approximately 0.10 mM) appeared to inhibit Na+-dependent transport of alanine and BCO competitively. Finally, alanine and L-lysine appeared to compete for the same Na+-dependent transport sites in blastocysts. For these reasons, we conclude that lysine, alanine, and BCO are transported by a common Na+-dependent system in blastocysts. In addition, the apparent interaction of the system with other basic amino acids, such as 1-dimethylpiperidine-4-amino-4-carboxylic acid, which has a nondissociable positive charge on its side chain, and L-arginine and L-homoarginine, whose cationic forms are highly predominant at neutral pH, suggests that the cationic forms of basic amino acids are transported by the wide-scope system.  相似文献   

8.
Isocaloric modification in the ratio of dietary polyunsaturated-to-saturated fatty acids influences intestinal uptake of actively and passively transported nutrients. This study was undertaken to determine which dietary fatty acid was responsible for these alterations in absorption. Adult female rats were fed isocaloric semisynthetic diets high in palmitic and stearic acids (SFA), oleic acid (OA), linoleic acid (LA), or linolenic acid (LNA). An in vitro technique was used to measure the uptake of varying concentrations of glucose as well as a series of fatty acids and cholesterol. Jejunal uptake of 40 mM glucose was highest in rats fed SFA and lowest in those fed LA; ileal glucose uptake was similar in OA, LA, and LNA, but was lowest in SFA. Jejunal uptake of medium-chain fatty acids (8:0-12:0) was higher in OA than in other diet groups; ileal uptake of medium-chain fatty acids was unaffected by diet. Jejunal and ileal uptake of 18:2 was higher in LNA than in SFA or OA; the uptake of the other long-chain saturated or unsaturated fatty acids was unchanged by diet. The ileal but not the jejunal uptake of cholesterol was increased in LA as compared with SFA or OA, and reduced in LNA as compared with LA. These transport changes were not explained by differences in the animals' food consumption, body weight gain, intestinal mass, or mucosal surface area. We postulate that these diet-induced transport alterations may be mediated via changes in brush border membrane phospholipid fatty acyl composition. Thus, intestinal transport of nutrients may be varied by isocaloric changes in the dietary content of individual fatty acids.  相似文献   

9.
Growth hormone (GH) treatment in short bowel syndrome is controversial, and the mechanisms of a possible positive effect remain to be elucidated. Rats were randomly subjected to either an 80% jejunoileal resection or sham operation and were given either placebo (NaCl) or biosynthetic rat GH (brGH). The in vivo capacity of urea nitrogen synthesis (CUNS) and the expression of urea cycle enzymes were measured and related to changes in body weight and adaptive growth in ileal segments on days 7 and 14. Ileal segments were examined by unbiased stereological techniques. brGH treatment decreased CUNS among the resected rats by 19% (P<0.05) and 36% (P<0.05) on days 7 and 14, respectively. The mRNA levels of urea cycle enzyme genes were not influenced by brGH treatment. brGH treatment did not increase the adaptive growth in the ileal segments. In conclusion, we found that GH treatment decreased the accelerated postoperative hepatic amino acid degradation in experimental short bowel syndrome without enhancing the morphological intestinal adaptation.  相似文献   

10.
A 10 cm distal ileal intestinal perfusion technique was employed in Sprague-Dawley rats in situ. The perfused segment was removed, weighed, its surface area measured, homogenized, digested in HNO3 and assayed for L(1-14C)alanine and L-phenyl (1-14C)alanine. Steady state for L-alanine and L-phenylalanine absorption by the intact intestinal segment was observed at 10 and 15 min respectively. Exposure of the intestinal mucosa to 1 mM ouabain showed no effect on amino acid absorption. Preloading the intestinal epithelium with ouabain resulted in approximately 66% and 48% reduction in L-alanine and L-phenylalanine absorption respectively. Removal of Na from the buffer with and without exposure of the mucosa to 1 mM ouabain decreased absorption of L-alanine and L-phenylalanine by approximately 77% and 52% respectively. Removal of Na from the buffer and preloading the intestinal epithelium with ouabain resulted in approximately 85% and 81% reduction in L-alanine and L-phenylalanine absorption respectively. A 5, 10 and 25 fold increase in luminal L-alanine and L-phenylalanine concentration in Na-free choline Krebs Ringer after preloading with ouabain resulted in increase of amino acid absorption of approximately the same order of magnitude. Both an amino acid-carrier mediated transport process and a ouabain resistant Na-dependent-amino acid pump exist at the mucosal side. Both an ouabain sensitive Na-dependent-amino acid pump and an ouabain resistant Na-independent amino acid pump exist at the serosal side. Approximately 15-20% of absorbed amino acids are passively translocated.  相似文献   

11.
The experimental data obtained from in vivo single pass perfusion of duodenal, jejunal, and ileal intestinal segments of 33- and 50-day-old rats have been used to test a series of models for calcium absorption. Each model was checked for the statistical validity and goodness-of-fit with the experimental data. The model adopted for the duodenum and jejunum had two major components, one saturable and the other nonsaturable, and a minor secretory component. This model was not applicable to ileal calcium absorption. Here the secretory component appeared to be much more important, and the absorption parameters varied in such a manner as to suggest that this intestinal segment was capable of short term autoregulation of dietary calcium absorption.  相似文献   

12.
Inorganic phosphate, amino acids and sugars are of obvious importance in lung metabolism. We investigated sodium-coupled transports with these organic and inorganic substrates in type II alveolar epithelial cells from adult rat after one day in culture. Alveolar type II cells actively transported inorganic phosphate and alanine, a neutral amino acid, by sodium-dependent processes. Cellular uptakes of phosphate and alanine were decreased by about 80% by external sodium substitution, inhibited by ouabain (30 and 41%, respectively) and displayed saturable kinetics. Two sodium-phosphate cotransport systems were characterized: a high-affinity one (apparent Km = 18 microM) with a Vmax of 13.5 nmol/mg protein per 10 min and a low-affinity one (apparent Km = 126 microM) with a Vmax of 22.5 nmol/mg protein per 10 min. Alanine transport had an apparent Km of 87.9 microM and a Vmax of 43.5 nmol/mg protein per 10 min. By contrast, cultured alveolar type II cells did not express sodium-dependent hexose transport. Increasing time in culture decreased Vmax values of the two phosphate transport systems on day 4 while sodium-dependent alanine uptake was unchanged. This study demonstrated the existence of sodium-dependent phosphate and amino acid transports in alveolar type II cells similar to those documented in other epithelial cell types. These sodium-coupled transports provide a potent mechanism for phosphate and amino acid absorption and are likely to play a role in substrate availability for cellular metabolism and in regulating the composition of the alveolar subphase. The decrease in phosphate uptake with time in culture is parallel to decrease in surfactant synthesis reported in cultured alveolar type II cells, suggesting that phosphate availability for surfactant synthesis may be accomplished by a sodium-dependent phosphate uptake.  相似文献   

13.
Amino acids are actively transported across the plasma membrane of plant cells by proton-coupled symports. Previously, we identified four amino acid symports in isolated plasma membrane vesicles, including two porters for the neutral amino acids. Here we investigated the effect of amino acid analogues on neutral amino acid transport to identify structural features that are important in molecular recognition by Neutral System I (isoleucine) and Neutral System II (alanine and leucine). D-Isomers of alanine and isoleucine were not effective transport antagonists of the L-isomers. These data are characteristic of stereospecificity and suggest that the positional relationship between the alpha-amino and carboxyl groups is an important parameter in substrate recognition. This conclusion was supported by the observation that beta-alanine and analogues with methylation at the alpha-carbon, at the carboxyl group, or at the alpha-amino group were not effective transport inhibitors. Specific binding reactions were also implicated in these experiments because substitution of the alpha-amino group with a space filling methyl or hydroxyl group eliminated transport inhibition. In contrast, analogues with various substitutions at the distal end of the amino acid were potent antagonists. Moreover, the relative activity of several analogues was influenced by the location of sidechain branches and Neutral Systems I and II were resolved based on differential sensitivity to branching at the beta-carbon. The kinetics of azaserine and p-nitrophenylalanine inhibition of leucine transport were competitive. We conclude that the binding site for the carboxyl end of the amino acid is a well-defined space that is characterized by compact, asymmetric positional relationships and specific ligand interactions. Although the molecular interactions associated with the distal portion of the amino acid were less restrictive, this component of the enzyme-substrate complex is also important in substrate recognition because the neutral amino acid symports are able to discriminate between specific neutral amino acids and exclude the acidic and basic amino acids.  相似文献   

14.
The uptake of L-alanine into BHK21-C13 cells in culture has been studied. This amino acid appears to be transported essentially via a relatively low affinity, high capacity, sodium ion dependent transport system. Inhibition studies using other amino acids or their analogues provided information about the specificity of this system. This alanine transport system was shown to exhibit a broad substrate specificity and appeared to be capable of transporting most naturally occurring neutral alpha-amino acids. Kinetic studies of the inhibition of L-alanine uptake also indicated the presence of a second neutral amino acid transport system capable of transporting this amino acid. However, it is unlikely that this second uptake system contributes greatly to L-alanine uptake. Inhibition of the uptake of L-leucine indicated that this transport system has a similar specificity to the "L"-system initially described for Ehrlich ascites carcinoma cells.  相似文献   

15.
The energetics of amino acid uptake by the developing small intestine was investigated in vitro. L-valine, L-leucine, L-phenylalanine, L-methionine, L-lysine and L-arginine were all actively transported by the newborn rat jejunum. Metabolic inhibitors (e.g. 2,4-dinitrophenol) significantly reduced uptake of all amino acids but uptake against a concentration gradient was not totally abolished. Uptake of all amino acids was reduced at low[Na+]. Inhibition of transport of neutral amino acids by reduced luminal [Na+] was greater than that of basic amino acids, and the tissue was barely able to concentrate the neutral amino acids. [Na+] affected the Michaelis constant (Km) of neutral transport systems for their substrates; for the basic amino acids Km values were unaffected by the presence or absence of Na+. Ouabain significantly inhibited neutral amino acid uptake but had no effect on L-lysine or L-arginine uptake. These results are discussed in terms of the Na+ gradient hypothesis for amino acid transport, and the site of energy input to active transport. The role of glycolysis in providing energy for intestinal transport in the neonatal rat and the efficiency of Na+ dependent and independent transport mechanisms are considered. It is concluded that the energetics of amino acid transport systems in neonatal and adult rats are essentially similar.  相似文献   

16.
In mammalian intestine, a number of secretagogues have been shown to work through either cyclic nucleotide or calcium mediated pathways to elicit ion secretion. Because excessive intestinal electrolyte and fluid secretion is central to the pathogenesis of a variety of diarrheal disorders, understanding of these processes is essential to the development of future clinical treatments. In the current study, the effects of serotonin (5HT), histamine, and carbachol on intestinal ion transport were examined in in vitro preparations of rabbit ileum. All three agonists induced a rapid and transient increase short-circuit current (delta Isc) across ileal mucosa. Inhibition of the delta Isc response of all three agents in chloride-free solution or in the presence of bumetanide confirmed that chloride is the main electrolyte involved in electrogenic ion secretion. Pretreatment of tissue with tetrodotoxin or atropine did not effect secretagogue-mediated electrolyte secretion. While tachyphylaxis of delta Isc response was shown to develop after repeated exposure of a secretagogue to tissue, delta Isc responses after sequential addition of different agonists indicate that cross-tachyphylaxis between agents did not occur. Serotonin, histamine, and carbachol have previously been reported to mediate electrolyte secretion through calcium-dependent pathways. To access the role of extracellular calcium in regulating ion secretion, the effect of verapamil on each agent was tested; verapamil decreased 5HT-induced delta Isc by 65.2% and histamine response by 33.5%, but had no effect on carbachol-elicited chloride secretion. An additive secretory effect was found upon simultaneous exposure of 5HT and carbachol to the system; no other combination of agents produced a significant additive effect. Findings from this study support previous work which has suggested that multiple calcium pathways may be involved in mediating chloride secretion in mammalian intestine.  相似文献   

17.
Neutral amino acid transport was characterized in human synovial cells. The amino acids tested are transported by all three major neutral amino acid transport systems, that is, A, L, and ASC. The model amino acid 2-aminoisobutyric acid (AIB) was found to be a strong specific substrate for system A in synovial cells. When cells were starved of amino acids, the activity of AIB transport increased, reaching a maximum within 1 h. The stimulation of transport activity was not blocked by cycloheximide and would thus appear to be related to a release from transinhibition. Similarly, the decrease in the activity of AIB transport observed after the addition of alpha-methyl-aminoisobutyric acid (meAIB) appeared to be related to transinhibition. However, using a different approach, that is, amino acid starvation followed by incubation with 10 mM meAIB and transfer to an amino acid-free medium with or without cycloheximide supplementation, a clear increase in AIB uptake, due both to derepression and a release from transinhibition, was observed. Unlike human fibroblasts, the depression of system A in these synovial cells was not serum-dependent. The process of derepression was observed only after preloading with meAIB. Neither AIB nor alanine produced this phenomenon. Moreover, alanine preloading led to a large increase in AIB transport activity due to a release from transinhibition. These observations indicate that the process of derepression and release from transinhibition are specific to the substrates present in the culture medium prior to amino acid starvation.  相似文献   

18.
The secretory response implicated in the intestinal response to luminal attack is altered by radiation. The cAMP, cGMP and Ca(2+)(i) pathways leading to secretion as well as the interactions between the cAMP pathway and the cGMP or Ca(2+)(i) pathway were studied in the rat distal colon 4 days after a 9-Gy abdominal X irradiation, when modifications mainly occurred. The secretory response in Ussing chambers and cAMP and cGMP accumulation in single isolated crypts were measured. The muscarinic receptor characteristics were determined in mucosal membrane preparations. The secretory response by the cAMP pathway (stimulated by vasoactive intestinal peptide or forskolin) and the cAMP accumulation in crypts were decreased (P < 0.05) after irradiation. The weak secretory response induced by the cGMP pathway (stimulated by nitric oxide or guanylin) was unaltered by radiation, and the small amount of cGMP determined in isolated crypts from the control group became undetectable in the irradiated group. Inducible NOS was not involved in the hyporesponsiveness to VIP after irradiation (there was no effect of an iNOS inhibitor). The secretory response by the Ca(2+)(i) pathway (stimulated by carbachol) was unaffected despite a decreased number and increased affinity of muscarinic receptors. The non-additivity of VIP and carbachol co-stimulated responses was unmodified. In contrast, VIP and SNP co-stimulation showed that NO enhanced the radiation-induced hyporesponsiveness to VIP through a reduced accumulation of cAMP in crypts. This study provides further understanding of the effect of ionizing radiation on the intracellular signaling pathways.  相似文献   

19.
Small intestinal crypt epithelium obtained from normal fasting humans by peroral biopsy of the mucosa was studied with the electron microscope. Paneth cells were identified at the base of the crypts by their elaborate highly organized endoplasmic reticulum, large secretory granules, and small lysosome-like dense bodies within the cytoplasm. Undifferentiated cells were characterized by smaller cytoplasmic membrane-bounded granules which were presumed to be secretory in nature, a less elaborate endoplasmic reticulum, many unattached ribosomes and, in some cells, the presence of glycogen. Some undifferentiated cells at the base of the crypts contained lobulated nuclei and striking paranuclear accumulations of mitochondria. Membrane-bounded cytoplasmic fragments, probably originating from undifferentiated and Paneth cells, were frequently apparent within crypt lumina. Of the goblet cells, some were seen actively secreting mucus. In these, apical mucus appeared to exude into the crypt lumen between gaps in the microvilli. The membrane formerly surrounding the apical mucus appeared to fuse with and become part of the plasma membrane of the cell, suggesting a merocrine secretory mechanism. Enterochromaffin cells were identified by their location between the basal regions of other crypt cells and by their unique intracytoplasmic granules.  相似文献   

20.
The transport of glycine and L-lysine into murine P388 leukemia cells has been examined. Glycine transport appears to be shared by both systems A and ASC in P388 cells. Glycine transport is Na+-dependent and is effectively blocked by alpha-(methylamino)isobutyric acid, threonine and alanine but only a marginal reduction in transport is seen with 100-fold excess cold 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid. System gly is not expressed in P388 cells. Lysine is largely transported by a Na+-independent, pH-insensitive system with a Km of 0.079 mM. Lysine transport is relatively unaffected by the addition of 100-fold excess cold alpha-(methylamino)isobutyric acid, 2-aminobicyclo[2,2,1]heptane-2-carboxylic acid and the anionic amino acids, L-glutamate and L-aspartate. A partial inhibition of lysine transport was observed with L-threonine and L-leucine while L-arginine and L-histidine radically decreased lysine transport. Lysine appears to be transported by a system similar to the system y+ seen in cultured human fibroblasts, Ehrlich ascites cells, and hepatoma cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号