首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
Mercury is a redox-active heavy metal that reacts with active thiols and depletes cellular antioxidants. Active resistance to the mercuric ion is a widely distributed trait among bacteria and results from the action of mercuric reductase (MerA). Protein phylogenetic analysis of MerA in bacteria indicated the occurrence of a second distinctive form of MerA among the archaea, which lacked an N-terminal metal recruitment domain and a C-terminal active tyrosine. To assess the distribution of the forms of MerA in an interacting community comprising members of both prokaryotic domains, studies were conducted at a naturally occurring mercury-rich geothermal environment. Geochemical analyses of Coso Hot Springs indicated that mercury ore (cinnabar) was present at concentrations of parts per thousand. Under high-temperature and acid conditions, cinnabar may be oxidized to the toxic form Hg2+, necessitating mercury resistance in resident prokaryotes. Culture-independent analysis combined with culture-based methods indicated the presence of thermophilic crenarchaeal and gram-positive bacterial taxa. Fluorescence in situ hybridization analysis provided quantitative data for community composition. DNA sequence analysis of archaeal and bacterial merA sequences derived from cultured pool isolates and from community DNA supported the hypothesis that both forms of MerA were present. Competition experiments were performed to assess the role of archaeal merA in biological fitness. An essential role for this protein was evident during growth in a mercury-contaminated environment. Despite environmental selection for mercury resistance and the proximity of community members, MerA retains the two distinct prokaryotic forms and avoids genetic homogenization.  相似文献   

2.
3.
Mercury rich geothermal springs are likely environments where mercury resistance is critical to microbial life and where microbe-mercury interactions may have evolved. Eleven facultative thermophilic and chemolithoautotrophic, thiosulfate oxidizing bacteria were isolated from thiosulfate enrichments of biofilms from mercury rich hot sulfidic springs in Mount Amiata, Italy. Some strains were highly resistant to mercury (≥200 μM HgCl2) regardless of its presence or absence during primary enrichments, and three reduced ionic mercury to its elemental form. The gene encoding for the mercuric reductase enzyme (MerA), was amplified by PCR from seven strains. However, one highly resistant strain did not reduce mercury nor carried merA, suggesting an alternative resistance mechanism. All strains were members of the order Bacillales and were most closely related to previously described thermophiles belonging to the Firmicutes. Phylogenetic analyses clustered the MerA of the isolates in two supported novel nodes within the Firmicutes lineage and a comparison with the 16S rRNA gene tree suggested at least one case of horizontal gene transfer. Overall, the results show that the thermophilic thiosulfate oxidizing isolates were adapted to life in presence of mercury mostly, but not exclusively, by possessing MerA. These findings suggest that reduction of mercury by chemolithotrophic thermophilic bacteria may mobilize mercury from sulfur and iron deposits in geothermal environments.  相似文献   

4.

Background

Bacterial mercury resistance is based on enzymatic reduction of ionic mercury to elemental mercury and has recently been demonstrated to be applicable for industrial wastewater clean-up. The long-term monitoring of such biocatalyser systems requires a cultivation independent functional community profiling method targeting the key enzyme of the process, themerAgene coding for the mercuric reductase. We report on the development of a profiling method formerAand its application to monitor changes in the functional diversity of the biofilm community of a technical scale biocatalyzer over 8 months of on-site operation.

Results

Based on an alignment of 30merAsequences from Gram negative bacteria, conserved primers were designed for amplification ofmerAfragments with an optimized PCR protocol. The resulting amplicons of approximately 280 bp were separated by thermogradient gelelectrophoresis (TGGE), resulting in strain specific fingerprints for mercury resistant Gram negative isolates with differentmerAsequences. ThemerAprofiling of the biofilm community from a technical biocatalyzer showed persistence of some and loss of other inoculum strains as well as the appearance of new bands, resulting in an overall increase of the functional diversity of the biofilm community. One predominant new band of themerAcommunity profile was also detected in a biocatalyzer effluent isolate, which was identified asPseudomonas aeruginosa. The isolated strain showed lower mercury reduction rates in liquid culture than the inoculum strains but was apparently highly competitive in the biofilm environment of the biocatalyzer where moderate mercury levels were prevailing.

Conclusions

ThemerAprofiling technique allowed to monitor the ongoing selection for better adapted strains during the operation of a biocatalyzer and to direct their subsequent isolation. In such a way, a predominant mercury reducingPs. aeruginosastrain was identified by its unique mercuric reductase gene.  相似文献   

5.
The distribution and phylogeny of extant protein-encoding genes recovered from geochemically diverse environments can provide insight into the physical and chemical parameters that led to the origin and which constrained the evolution of a functional process. Mercuric reductase (MerA) plays an integral role in mercury (Hg) biogeochemistry by catalyzing the transformation of Hg(II) to Hg(0). Putative merA sequences were amplified from DNA extracts of microbial communities associated with mats and sulfur precipitates from physicochemically diverse Hg-containing springs in Yellowstone National Park, Wyoming, using four PCR primer sets that were designed to capture the known diversity of merA. The recovery of novel and deeply rooted MerA lineages from these habitats supports previous evidence that indicates merA originated in a thermophilic environment. Generalized linear models indicate that the distribution of putative archaeal merA lineages was constrained by a combination of pH, dissolved organic carbon, dissolved total mercury and sulfide. The models failed to identify statistically well supported trends for the distribution of putative bacterial merA lineages as a function of these or other measured environmental variables, suggesting that these lineages were either influenced by environmental parameters not considered in the present study, or the bacterial primer sets were designed to target too broad of a class of genes which may have responded differently to environmental stimuli. The widespread occurrence of merA in the geothermal environments implies a prominent role for Hg detoxification in these environments. Moreover, the differences in the distribution of the merA genes amplified with the four merA primer sets suggests that the organisms putatively engaged in this activity have evolved to occupy different ecological niches within the geothermal gradient.  相似文献   

6.
Kholodii G  Bogdanova E 《Genetica》2002,115(2):233-241
Escherichia coli K12 containing the transposon Tn5044 mer operon (merR, T, P, C, and A genes) is resistant to mercuric chloride at 30°C but sensitive to this compound at 37–41.5°C. We have studied the mechanism underlying the temperature-sensitive nature of this mercury resistance phenotype, and found that the expression of the Tn5044 merA gene coding for mercuric reductase (MerA) is severely inhibited at non-permissive temperatures. Additionally, MerA showed a considerably reduced functional activity in vivo at non-permissive temperatures. However, the temperature-sensitive character of the functioning of this enzyme in cell extracts, where it interacted with one of the low-molecular weight SH compounds rather than with the transport protein MerT (as is the case in vivo), was not apparent. These data suggest that the temperature-sensitive mercury resistance phenotype should stay under control at two stages: when the merA gene is expressed and when its product interacts with MerT to accept the mercuric ion.  相似文献   

7.
Mercuric reductase (MerA) is central to the mercury (Hg) resistance (mer) system, catalyzing the reduction of ionic Hg to volatile Hg(0). A total of 213 merA homologues were identified in sequence databases, the majority of which belonged to microbial lineages that occupy oxic environments. merA was absent among phototrophs and in lineages that inhabit anoxic environments. Phylogenetic reconstructions of MerA indicate that (i) merA originated in a thermophilic bacterium following the divergence of the Archaea and Bacteria with a subsequent acquisition in Archaea via horizontal gene transfer (HGT), (ii) HGT of merA was rare across phylum boundaries and (iii) MerA from marine bacteria formed distinct and strongly supported lineages. Collectively, these observations suggest that a combination of redox, light and salinity conditions constrain MerA to microbial lineages that occupy environments where the most oxidized and toxic form of Hg, Hg(II), predominates. Further, the taxon‐specific distribution of MerA with and without a 70 amino acid N‐terminal extension may reflect intracellular levels of thiols. In conclusion, MerA likely evolved following the widespread oxygenation of the biosphere in a thermal environment and its subsequent evolution has been modulated by the interactions of Hg with the intra‐ and extracellular environment of the organism.  相似文献   

8.
A 13.5-kilobase HindIII fragment, bearing an intact mercury resistance (mer) operon, was isolated from chromosomal DNA of broad-spectrum mercury-resistant Bacillus sp. strain RC607 by using as a probe a clone containing the mercury reductase (merA) gene. The new clone, pYW33, expressed broad-spectrum mercury resistance both in Escherichia coli and in Bacillus subtilis, but only in B. subtilis was the mercuric reductase activity inducible. Sequencing of a 1.8-kilobase mercury hypersensitivity-producing fragment revealed four open reading frames (ORFs). ORF1 may code for a regulatory protein (MerR). ORF2 and ORF4 were associated with cellular transport function and the hypersensitivity phenotype. DNA fragments encompassing the merA and the merB genes were sequenced. The predicted Bacillus sp. strain RC607 MerA (mercuric reductase) and MerB (organomercurial lyase) were similar to those predicted from Staphylococcus aureus plasmid pI258 (67 and 73% amino acid identities, respectively); however, only 40% of the amino acid residues of RC607 MerA were identical to those of the mercuric reductase from gram-negative bacteria. A 69-kilodalton polypeptide was isolated and identified as the merA gene product by examination of its amino-terminal sequence.  相似文献   

9.
According to existing data, mercury resistance operons (mer operons) are in general thought to be rare in bacteria, other than those from mercury-contaminated sites. We have found that a high proportion of strains in environmental isolates of Gram-positive bacteria express mercuric reductase (MerA protein): the majority of these strains are apparently sensitive to mercury. The expression of MerA was also inducible in all cases. These results imply the presence of phenotypically cryptic mer resistance operons, with both the merA (mercuric reductase) and merR (regulatory) genes still present, but the possible absence of the transport function required to complete the resistance mechanism. This indicates that mer operons or parts thereof are more widely spread in nature than is suggested by the frequency of mercury-resistant bacteria.  相似文献   

10.
Pulicat Lake sediments are often severely polluted with the toxic heavy metal mercury. Several mercury-resistant strains of Bacillus species were isolated from the sediments and all the isolates exhibited broad spectrum resistance (resistance to both organic and inorganic mercuric compounds). Plasmid curing assay showed that all the isolated Bacillus strains carry chromosomally borne mercury resistance. Polymerase chain reaction and southern hybridization analyses using merA and merB3 gene primers/probes showed that five of the isolated Bacillus strains carry sequences similar to known merA and merB3 genes. Results of multiple sequence alignment revealed 99% similarity with merA and merB3 of TnMERI1 (class II transposons). Other mercury resistant Bacillus species lacking homology to these genes were not able to volatilize mercuric chloride, indicating the presence of other modes of resistance to mercuric compounds.  相似文献   

11.
In a continuing effort to analyze the selectivity/redundancy of the three glutaredoxin (Grx) enzymes of the model cyanobacterium Synechocystis PCC6803, we have characterized an enzyme system that plays a crucial role in protection against two toxic metal pollutants, mercury and uranium. The present data show that Grx1 (Slr1562 in CyanoBase) selectively interacts with the presumptive mercuric reductase protein (Slr1849). This MerA enzyme plays a crucial role in cell defense against both mercuric and uranyl ions, in catalyzing their NADPH-driven reduction. Like MerA, Grx1 operates in cell protection against both mercury and uranium. The Grx1-MerA interaction requires cysteine 86 (C86) of Grx1 and C78 of MerA, which is critical for its reductase activity. MerA can be inhibited by glutathionylation and subsequently reactivated by Grx1, likely through deglutathionylation. The two Grx1 residues C31, which belongs to the redox active site (CX2C), and C86, which operates in MerA interactions, are both required for reactivation of MerA. These novel findings emphasize the role of glutaredoxins in tolerance to metal stress as well as the evolutionary conservation of the glutathionylation process, so far described mostly for eukaryotes.  相似文献   

12.
In order to obtain insight into the prokaryotic diversity and community in leachate sediment, a culture-independent DNA-based molecular phylogenetic approach was performed with archaeal and bacterial 16S rRNA gene clone libraries derived from leachate sediment of an aged landfill. A total of 59 archaeal and 283 bacterial rDNA phylotypes were identified in 425 archaeal and 375 bacterial analyzed clones. All archaeal clones distributed within two archaeal phyla of the Euryarchaeota and Crenarchaeota, and well-defined methanogen lineages, especially Methanosaeta spp., are the most numerically dominant species of the archaeal community. Phylogenetic analysis of the bacterial library revealed a variety of pollutant-degrading and biotransforming microorganisms, including 18 distinct phyla. A substantial fraction of bacterial clones showed low levels of similarity with any previously documented sequences and thus might be taxonomically new. Chemical characteristics and phylogenetic inferences indicated that (1) ammonium-utilizing bacteria might form consortia to alleviate or avoid the negative influence of high ammonium concentration on other microorganisms, and (2) members of the Crenarchaeota found in the sediment might be involved in ammonium oxidation. This study is the first to report the composition of the microbial assemblages and phylogenetic characteristics of prokaryotic populations extant in leachate sediment. Additional work on microbial activity and contaminant biodegradation remains to be explored.  相似文献   

13.
The distribution of DNA sequences homologous with three mer genes was determined in unselected and mercury-resistant water and sediment isolates. The maximum proportions of unselected bacterial isolates containing DNA hybridizing with the 358merA, 358merB, and 501merR probes, derived from gram-negative organisms, were 93.8, 21, and 100%, respectively. Up to 53.3% of mercury chloride-resistant isolates and 54% of methylmercury hydroxide-resistant isolates did not contain DNA homologous with 358merA or 358merB, respectively. Hybridizations performed at high and low stringencies demonstrated that divergence of the merA gene accounted for many of the mercury-resistant but probe-negative isolates. Sixteen mercury-resistant Bacillus spp. isolated from the least contaminated site all contained DNA homologous with 258merA, originally from a gram-positive organism, but only four hybridized weakly with 358merA. The results demonstrate the wide distribution of mercury resistance genes but, because of the diversity of genetic determinants, highlight the importance of using multiple detection techniques and gene probes derived from a variety of origins for such studies.  相似文献   

14.
15.
Mercury Adaptation among Bacteria from a Deep-Sea Hydrothermal Vent   总被引:4,自引:1,他引:3       下载免费PDF全文
Since deep-sea hydrothermal vent fluids are enriched with toxic metals, it was hypothesized that (i) the biota in the vicinity of a vent is adapted to life in the presence of toxic metals and (ii) metal toxicity is modulated by the steep physical-chemical gradients that occur when anoxic, hot fluids are mixed with cold oxygenated seawater. We collected bacterial biomass at different distances from a diffuse flow vent at 9°N on the East Pacific Rise and tested these hypotheses by examining the effect of mercuric mercury [Hg(II)] on vent bacteria. Four of six moderate thermophiles, most of which were vent isolates belonging to the genus Alcanivorax, and six of eight mesophiles from the vent plume were resistant to >10 μM Hg(II) and reduced it to elemental mercury [Hg(0)]. However, four psychrophiles that were isolated from a nearby inactive sulfide structure were Hg(II) sensitive. A neighbor-joining tree constructed from the deduced amino acids of a PCR-amplified fragment of merA, the gene encoding the mercuric reductase (MR), showed that sequences obtained from the vent moderate thermophiles formed a unique cluster (bootstrap value, 100) in the MR phylogenetic tree, which expanded the known diversity of this locus. The temperature optimum for Hg(II) reduction by resting cells and MR activity in crude cell extracts of a vent moderate thermophile corresponded to its optimal growth temperature, 45°C. However, the optimal temperature for activity of the MR encoded by transposon Tn501 was found to be 55 to 65°C, suggesting that, in spite of its original isolation from a mesophile, this MR is a thermophilic enzyme that may represent a relic of early evolution in high-temperature environments. Results showing that there is enrichment of Hg(II) resistance among vent bacteria suggest that these bacteria have an ecological role in mercury detoxification in the vent environment and, together with the thermophilicity of MR, point to geothermal environments as a likely niche for the evolution of bacterial mercury resistance.  相似文献   

16.
Summary The DNA sequences of the mercuric resistance determinants of plasmid R100 and transposon Tn501 distal to the gene (merA) coding for mercuric reductase have been determined. These 1.4 kilobase (kb) regions show 79% identity in their nucleotide sequence and in both sequences two common potential coding sequences have been identified. In R100, the end of the homologous sequence is disrupted by an 11.2 kb segment of DNA which encodes the sulfonamide and streptomycin resistance determinants of Tn21. This insert contains terminal inverted repeat sequences and is flanked by a 5 base pair (bp) direct repeat. The first of the common potential coding sequences is likely to be that of the merD gene. Induction experiments and mercury volatilization studies demonstrate an enhancing but non-essential role for these merA-distal coding sequences in mercury resistance and volatilization. The potential coding sequences have predicted codon usages similar to those found in other Tn501 and R100 mer genes.  相似文献   

17.
Mining negatively affects the environment by producing large quantities of metallic tailings, such as those contaminated with arsenic, with harmful consequences for human and aquatic life. A culture-independent molecular analysis was performed to assess the prokaryotic diversity and community structural changes of the tropical historically metal-contaminated Mina stream (MS) and the relatively pristine Mutuca stream (MTS) sediments. A total of 234 bacterial operational taxonomic units (OTUs) were affiliated with 14 (MS) and 17 (MTS) phyla and 53 OTUs were associated with two archaeal phyla. Although the bacterial community compositions of these sediments were markedly distinct, no significant difference in the diversity indices between the bacterial communities was observed. Additionally, the rarefaction and diversity indices indicated a higher bacterial diversity than archaeal diversity. Most of the OTUs were affiliated with the Proteobacteria and Bacteroidetes phyla. Alphaproteobacteria, Gemmatimonadetes and Actinobacteria were only found in the MS clone library. Crenarchaeal 16S rDNA sequences constituted 75 % of the MS archaeal clones, whereas Euryarchaeota were dominant in the MTS clones. Despite the markedly different characteristics of these streams, their bacterial communities harbor high diversity, suggesting that historically mining-impacted sediments promote diversity. The findings also provide basis for further investigation of members of Alphaproteobacteria as potential biological indicators of arsenic-rich sediments.  相似文献   

18.
微生物中存在一类抗汞细菌,操纵子Mer中的MerRTPA参与细菌抗汞的调控、转运及还原。汞通过MerTP所表达的蛋白由细胞外转运至细胞内,经还原酶MerA将其还原为毒性小的可挥发的金属汞。细菌抗汞基因的形成有着古老的起源,基因间的整合、转移进化形成了Mer操纵子结构与功能的多样性。抗汞细菌对汞的吸附具有高选择性及专一性,可利用此特性对汞污染环境进行修复,也可作为分子遗传操作中稳定的抗性筛选标记。  相似文献   

19.
20.
A eukaryotic microalga, Chlorella sp. DT, was transformed with the Bacillus megaterium strain MB1 merA gene, encoding mercuric reductase (MerA), which mediates the reduction of Hg2+ to volatile elemental Hg0. The transformed Chlorella cells were selected first by hygromycin B and then by HgCl2. The existence of merA gene in the genomic DNA of transgenic strains was shown by polymerase chain reaction amplification, while the stable integration of merA into genomic DNA of transgenic strains was confirmed by Southern blot analysis. The ability to remove Hg2+ in merA transgenic strains was higher than that in the wild type. The merA transgenic strains showed higher growth rate and photosynthetic activity than the wild type did in the presence of a toxic concentration of Hg2+. Cultured with Hg2+, the expression level of superoxide dismutase in transgenic strains was lower than that in the wild type, suggesting that the transgenic strains faced a lower level of oxidative stress. All the results indicated that merA gene was successfully integrated into the genome of transgenic strains and functionally expressed to promote the removal of Hg2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号