首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
黑龙江省红松人工林枝条分布数量模拟   总被引:1,自引:0,他引:1  
郑杨  董利虎  李凤日 《生态学杂志》2016,27(7):2172-2180
基于黑龙江省佳木斯市孟家岗林场的12块样地65株人工红松解析木的955个枝解析数据,以Poisson回归模型和负二项回归模型作为备选模型,构建了人工红松二级枝条数量分布模型,并采用AIC、Pseudo-R2、均方根误差(RMSE)和Vuong检验对模型的拟合优度进行比较.结果表明: 每轮一级枝条分布数量集中在3~5个,均值为4个,一级枝条分布数量与人工红松自身的枝条属性相关.一级标准枝上二级枝条分布的离散程度较大,利用全部子回归技术构建二级枝条分布数量模型,最终选择以负二项回归模型为基础的E(Y)=exp(β0+β1lnRDINC+β2RDINC2+β3HT/DBH+β4CL+β5DBH)作为二级枝条分布数量最优预测模型(β为参数;RDINC为相对着枝深度;HT为树高;DBH为胸径;CL为冠长).最优模型的Pseudo-R2为0.79,平均偏差接近于0,平均绝对偏差<7.对于所建立的模型,lnRDINCCLDBH的参数为正值,RDINC2HT/DBH的为负值,随着RDINC增大,在树冠内二级枝条分布数量存在最大值.总的来说,所建立的人工红松二级枝条分布数量模型的预测精度为96.4%,可以很好地预估该研究区域人工红松二级枝条分布数量,为以后枝条的光合作用和生物量的研究提供了理论基础.  相似文献   

2.
The TM algorithm for maximising a conditional likelihood function   总被引:1,自引:0,他引:1  
  相似文献   

3.
The generalized binomial distribution is defined as the distribution of a sum of symmetrically distributed Bernoulli random variates. Several two-parameter families of generalized binomial distributions have received attention in the literature, including the Polya urn model, the correlated binomial model and the latent variable model. Some properties and limitations of the three distributions are described. An algorithm for maximum likelihood estimation for two-parameter generalized binomial distributions is proposed. The Polya urn model and the latent variable model were found to provide good fits to sub-binomial data given by Parkes. An extension of the latent variable model to incorporate heterogeneous response probabilities is discussed.  相似文献   

4.
5.
广西英罗港红树植物种群的分布   总被引:9,自引:0,他引:9  
温远光  刘世荣  元昌安 《生态学报》2002,22(7):1160-1165
用生态样带和连续取样方法研究了广西英罗港红树植物种群的分布,结果表明,在360m长的生态样带中,从内滩海堤到外滩(无红树林的光滩),土壤的机械组成,养分和盐分含量均存在明显的梯度变化,0-20cm土壤的有机质,全氮,水解氮,全磷,速效磷,全盐分别是1.11%-6.67%,0.021%-0.136%,41.6-203.7mg/kg,0.0087%-0.0309%,2.78-14.32mg/kg和10.20‰-31.12‰,土壤砂粒,粉粒和粘粒分别是57.3%-89.6%,8.1-29.0%和2.3%-13.7%,除土壤砂粒含量与距离呈正相关外,其它测定因子均表现为负相关关系,随着与海堤距离的加大,红树植物种群的分布出现明显的差异,在距岸240-340m的滩面,以桐花树种群的重要值最高,其重要值指数变化在91.66-175.02之间,向陆地演进,其种群的重要值逐渐减少;在40-220m,红海榄种群占居明显优势,其重要值指数为110.66-264.86,在距岸0-30m的海滩,以木榄种群占优势,其重要值指数为213.16-250.53,白骨壤种群和秋茄种群的重要值都较低,这主要是它们的种群密度低所致,红树植物种群的分布表现为典型的过渡替代的交错分布,从海堤到外滩,木榄种群取代红海缆,红海榄种群取代桐花树,桐花树种群取代白骨壤,这种交错分布是通过连续演替方式实现的,集合环境梯度分析表明,由海堤到外滩,白骨壤种群和桐花树种群沿集合环境梯度分布的峰值为1,秋茄的峰值为2.5,红海榄的为7,木榄为10,说明白骨壤种群和桐花树种群为向陆递减分布,属先锋种群,木榄为向海递减分布,属演替后期种群;秋茄和红海榄则为钟形分布,属演替中期种群,建立的红树植物种类-环境关系的回归模型,符合大面积海滩红树植物种群分布为过渡替代的交错分布的规律,生态样带和连续取样方法适用于红树林演替调查,是研究物种种群分布规律的好手段。  相似文献   

6.
In this paper, we propose a simple parametric modal linear regression model where the response variable is gamma distributed using a new parameterization of this distribution that is indexed by mode and precision parameters, that is, in this new regression model, the modal and precision responses are related to a linear predictor through a link function and the linear predictor involves covariates and unknown regression parameters. The main advantage of our new parameterization is the straightforward interpretation of the regression coefficients in terms of the mode of the positive response variable, as is usual in the context of generalized linear models, and direct inference in parametric mode regression based on the likelihood paradigm. Furthermore, we discuss residuals and influence diagnostic tools. A Monte Carlo experiment is conducted to evaluate the performances of these estimators in finite samples with a discussion of the results. Finally, we illustrate the usefulness of the new model by two applications, to biology and demography.  相似文献   

7.
8.
基于非线性混合模型的红松人工林枝条生长   总被引:3,自引:0,他引:3  
基于黑龙江省孟家岗林场36株红松人工林的枝解析数据,以单分子式和理查德方程作为枝条基径(BD)和枝长(BL)生长模型,分别考虑样地效应和样木效应,利用SAS软件的PROC NLMIXED模块构建了枝条基径和枝长生长的非线性混合模型.采用Akaike信息准则(AIC)、贝叶斯信息准则(BIC)、对数似然值(-2Log likelihood)和似然比检验(LRT)等评价指标对所构建模型的精度进行比较.结果表明:当考虑样地效应时,α1、α3和β1、β3分别作为随机参数时基径和枝长生长模型拟合效果最好;当考虑样木效应影响时,α2、α3和β1、β3分别作为随机参数时基径和枝长生长模型拟合效果最好.非线性混合模型不但可反映枝生长总体平均变化趋势,还能反映个体之间的差异.无论考虑样地效应还是样木效应,非线性混合模型的拟合精度都比传统回归模型的拟合精度高,并且考虑样木效应的拟合精度高于考虑样地效应的拟合精度.  相似文献   

9.
删失数据下非线性半参数回归模型中参数的经验似然推断   总被引:1,自引:0,他引:1  
考察了响应变量在随机删失情形下的非线性半参数回归模型,构造了未知参数的经验对数似然比统计量和调整经验对数似然比统计量,证明在一定条件下,所构造的经验似然比统计量渐近于X~2分布,并由此构造出未知参数的置信域.此外,又构造了未知参数的最小二乘估计量,证明了它的渐近性质.通过模拟研究表明,经验似然方法在置信域的覆盖概率以及精度方面要优于最小二乘法.  相似文献   

10.
Research has shown that high blood glucose levels are important predictors of incident diabetes. However, they are also strongly associated with other cardiometabolic risk factors such as high blood pressure, adiposity, and cholesterol, which are also highly correlated with one another. The aim of this analysis was to ascertain how these highly correlated cardiometabolic risk factors might be associated with high levels of blood glucose in older adults aged 50 or older from wave 2 of the English Longitudinal Study of Ageing (ELSA). Due to the high collinearity of predictor variables and our interest in extreme values of blood glucose we proposed a new method, called quantile profile regression, to answer this question. Profile regression, a Bayesian nonparametric model for clustering responses and covariates simultaneously, is a powerful tool to model the relationship between a response variable and covariates, but the standard approach of using a mixture of Gaussian distributions for the response model will not identify the underlying clusters correctly, particularly with outliers in the data or heavy tail distribution of the response. Therefore, we propose quantile profile regression to model the response variable with an asymmetric Laplace distribution, allowing us to model more accurately clusters that are asymmetric and predict more accurately for extreme values of the response variable and/or outliers. Our new method performs more accurately in simulations when compared to Normal profile regression approach as well as robustly when outliers are present in the data. We conclude with an analysis of the ELSA.  相似文献   

11.
Species distribution models (SDMs) are a common approach to describing species’ space-use and spatially-explicit abundance. With a myriad of model types, methods and parameterization options available, it is challenging to make informed decisions about how to build robust SDMs appropriate for a given purpose. One key component of SDM development is the appropriate parameterization of covariates, such as the inclusion of covariates that reflect underlying processes (e.g. abiotic and biotic covariates) and covariates that act as proxies for unobserved processes (e.g. space and time covariates). It is unclear how different SDMs apportion variance among a suite of covariates, and how parameterization decisions influence model accuracy and performance. To examine trade-offs in covariation parameterization in SDMs, we explore the attribution of spatiotemporal and environmental variation across a suite of SDMs. We first used simulated species distributions with known environmental preferences to compare three types of SDM: a machine learning model (boosted regression tree), a semi-parametric model (generalized additive model) and a spatiotemporal mixed-effects model (vector autoregressive spatiotemporal model, VAST). We then applied the same comparative framework to a case study with three fish species (arrowtooth flounder, pacific cod and walleye pollock) in the eastern Bering Sea, USA. Model type and covariate parameterization both had significant effects on model accuracy and performance. We found that including either spatiotemporal or environmental covariates typically reproduced patterns of species distribution and abundance across the three models tested, but model accuracy and performance was maximized when including both spatiotemporal and environmental covariates in the same model framework. Our results reveal trade-offs in the current generation of SDM tools between accurately estimating species abundance, accurately estimating spatial patterns, and accurately quantifying underlying species–environment relationships. These comparisons between model types and parameterization options can help SDM users better understand sources of model bias and estimate error.  相似文献   

12.
Species distribution models (SDMs) are important management tools for highly mobile marine species because they provide spatially and temporally explicit information on animal distribution. Two prevalent modeling frameworks used to develop SDMs for marine species are generalized additive models (GAMs) and boosted regression trees (BRTs), but comparative studies have rarely been conducted; most rely on presence‐only data; and few have explored how features such as species distribution characteristics affect model performance. Since the majority of marine species BRTs have been used to predict habitat suitability, we first compared BRTs to GAMs that used presence/absence as the response variable. We then compared results from these habitat suitability models to GAMs that predict species density (animals per km2) because density models built with a subset of the data used here have previously received extensive validation. We compared both the explanatory power (i.e., model goodness of fit) and predictive power (i.e., performance on a novel dataset) of the GAMs and BRTs for a taxonomically diverse suite of cetacean species using a robust set of systematic survey data (1991–2014) within the California Current Ecosystem. Both BRTs and GAMs were successful at describing overall distribution patterns throughout the study area for the majority of species considered, but when predicting on novel data, the density GAMs exhibited substantially greater predictive power than both the presence/absence GAMs and BRTs, likely due to both the different response variables and fitting algorithms. Our results provide an improved understanding of some of the strengths and limitations of models developed using these two methods. These results can be used by modelers developing SDMs and resource managers tasked with the spatial management of marine species to determine the best modeling technique for their question of interest.  相似文献   

13.
We consider that observations come from a general normal linearmodel and that it is desirable to test a simplifying null hypothesisabout the parameters. We approach this problem from an objectiveBayesian, model-selection perspective. Crucial ingredients forthis approach are ‘proper objective priors’ to beused for deriving the Bayes factors. Jeffreys-Zellner-Siow priorshave good properties for testing null hypotheses defined byspecific values of the parameters in full-rank linear models.We extend these priors to deal with general hypotheses in generallinear models, not necessarily of full rank. The resulting priors,which we call ‘conventional priors’, are expressedas a generalization of recently introduced ‘partiallyinformative distributions’. The corresponding Bayes factorsare fully automatic, easily computed and very reasonable. Themethodology is illustrated for the change-point problem andthe equality of treatments effects problem. We compare the conventionalpriors derived for these problems with other objective Bayesianproposals like the intrinsic priors. It is concluded that bothpriors behave similarly although interesting subtle differencesarise. We adapt the conventional priors to deal with nonnestedmodel selection as well as multiple-model comparison. Finally,we briefly address a generalization of conventional priors tononnormal scenarios.  相似文献   

14.
Characterization of the negative binomial and gamma distributions by a conditional distribution and a linear regression, and the gamma distribution by the negative binomial distribution are given. An application to a random shock model is discussed.  相似文献   

15.
Rivest LP  Daigle G 《Biometrics》2004,60(1):100-107
The robust design is a method for implementing a mark-recapture experiment featuring a nested sampling structure. The first level consists of primary sampling sessions; the population experiences mortality and immigration between primary sessions so that open population models apply at this level. The second level of sampling has a short mark-recapture study within each primary session. Closed population models are used at this stage to estimate the animal abundance at each primary session. This article suggests a loglinear technique to fit the robust design. Loglinear models for the analysis of mark-recapture data from closed and open populations are first reviewed. These two types of models are then combined to analyze the data from a robust design. The proposed loglinear approach to the robust design allows incorporating parameters for a heterogeneity in the capture probabilities of the units within each primary session. Temporary emigration out of the study area can also be accounted for in the loglinear framework. The analysis is relatively simple; it relies on a large Poisson regression with the vector of frequencies of the capture histories as dependent variable. An example concerned with the estimation of abundance and survival of the red-back vole in an area of southeastern Québec is presented.  相似文献   

16.
We consider a regression model where the error term is assumed to follow a type of asymmetric Laplace distribution. We explore its use in the estimation of conditional quantiles of a continuous outcome variable given a set of covariates in the presence of random censoring. Censoring may depend on covariates. Estimation of the regression coefficients is carried out by maximizing a non‐differentiable likelihood function. In the scenarios considered in a simulation study, the Laplace estimator showed correct coverage and shorter computation time than the alternative methods considered, some of which occasionally failed to converge. We illustrate the use of Laplace regression with an application to survival time in patients with small cell lung cancer.  相似文献   

17.
Aim Assessing potential response of alpine plant species distribution to different future climatic and land‐use scenarios. Location Four mountain ranges totalling 150 km2 in the north‐eastern Calcareous Alps of Austria. Methods Ordinal regression models of eighty‐five alpine plant species based on environmental constraints and land use determining their abundance. Site conditions are simulated spatially using a GIS, a Digital Terrain Model, meteorological station data and existing maps. Additionally, historical records were investigated to derive data on time spans since pastures were abandoned. This was then used to assess land‐use impacts on vegetation patterns in combination with climatic changes. Results A regionalized GCM scenario for 2050 (+ 0.65 °C, ?30 mm August precipitation) will only lead to local loss of potential habitat for alpine plant species. More profound changes (+ 2 °C, ?30 mm August precipitation; + 2 °C, ?60 mm August precipitation) however, will bring about a severe contraction of the alpine, non‐forest zone, because of range expansion of the treeline conifer Pinus mugo Turra and many alpine species will loose major parts of their habitat. Precipitation change significantly influences predicted future habitat patterns, mostly by enhancing the general trend. Maintenance of summer pastures facilitates the persistence of alpine plant species by providing refuges, but existing pastures are too small in the area to effectively prevent the regional extinction risk of alpine plant species. Main conclusions The results support earlier hypotheses that alpine plant species on mountain ranges with restricted habitat availability above the treeline will experience severe fragmentation and habitat loss, but only if the mean annual temperature increases by 2 °C or more. Even in temperate alpine regions it is important to consider precipitation in addition to temperature when climate impacts are to be assessed. The maintenance of large summer farms may contribute to preventing the expected loss of non‐forest habitats for alpine plant species. Conceptual and technical shortcomings of static equilibrium modelling limit the mechanistic understanding of the processes involved.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号