首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Elevated atmospheric carbon dioxide increases soil carbon   总被引:4,自引:0,他引:4  
The general lack of significant changes in mineral soil C stocks during CO2‐enrichment experiments has cast doubt on predictions that increased soil C can partially offset rising atmospheric CO2 concentrations. Here, we show, through meta‐analysis techniques, that these experiments collectively exhibited a 5.6% increase in soil C over 2–9 years, at a median rate of 19 g C m?2 yr?1. We also measured C accrual in deciduous forest and grassland soils, at rates exceeding 40 g C m?2 yr?1 for 5–8 years, because both systems responded to CO2 enrichment with large increases in root production. Even though native C stocks were relatively large, over half of the accrued C at both sites was incorporated into microaggregates, which protect C and increase its longevity. Our data, in combination with the meta‐analysis, demonstrate the potential for mineral soils in diverse temperate ecosystems to store additional C in response to CO2 enrichment.  相似文献   

2.
The Global Carbon Project (GCP) has published global carbon budgets annually since 2007 (Canadell et al. [2007], Proc Natl Acad Sci USA, 104, 18866–18870; Raupach et al. [2007], Proc Natl Acad Sci USA, 104, 10288–10293). There are many scientists involved, but the terrestrial fluxes that appear in the budgets are not well understood by ecologists and biogeochemists outside of that community. The purpose of this paper is to make the terrestrial fluxes of carbon in those budgets more accessible to a broader community. The GCP budget is composed of annual perturbations from pre‐industrial conditions, driven by addition of carbon to the system from combustion of fossil fuels and by transfers of carbon from land to the atmosphere as a result of land use. The budget includes a term for each of the major fluxes of carbon (fossil fuels, oceans, land) as well as the rate of carbon accumulation in the atmosphere. Land is represented by two terms: one resulting from direct anthropogenic effects (Land Use, Land‐Use Change, and Forestry or land management) and one resulting from indirect anthropogenic (e.g., CO2, climate change) and natural effects. Each of these two net terrestrial fluxes of carbon, in turn, is composed of opposing gross emissions and removals (e.g., deforestation and forest regrowth). Although the GCP budgets have focused on the two net terrestrial fluxes, they have paid little attention to the gross components, which are important for a number of reasons, including understanding the potential for land management to remove CO2 from the atmosphere and understanding the processes responsible for the sink for carbon on land. In contrast to the net fluxes of carbon, which are constrained by the global carbon budget, the gross fluxes are largely unconstrained, suggesting that there is more uncertainty than commonly believed about how terrestrial carbon emissions will respond to future fossil fuel emissions and a changing climate.  相似文献   

3.
碳输入方式对森林土壤碳库和碳循环的影响研究进展   总被引:8,自引:2,他引:6  
Wang QK 《应用生态学报》2011,22(4):1075-1081
凋落物和植物根系是森林土壤有机碳的主要来源.综述了不同碳输入方式对土壤全碳、微生物生物量碳和可溶性有机碳等碳库组分及土壤呼吸影响的研究进展.不同地区、不同森林土壤有机碳对碳输入的响应程度不同,且采用添加和去除凋落物,以及去除根系方法(DIRT)对土壤碳的影响具有树种差异和区域差异.目前主要侧重于土壤呼吸和碳库组分的研究,亟需开展对土壤碳的结构类型和稳定性,以及土壤生物尤其是土壤动物的响应机制的相关研究.  相似文献   

4.
刘晓曼  王超  高吉喜  袁静芳  黄艳  王斌  彭阳 《生态学报》2023,43(14):5662-5673
中国在相对较低的经济发展水平条件下提出了"碳达峰、碳中和"目标,在全球气候治理中起着关键作用。中国是全球人工林面积最多的国家,中国森林生态系统碳储量增加的主要贡献者是人工林,是中国陆地碳汇的主要来源,具有较高的碳汇增长潜力,加强人工林碳增汇方案研究对中国实现"碳达峰、碳中和"目标具有非常重要的作用。研究梳理了中国人工林生态系统碳汇能力提升的主要因子和环节,分别从增加碳汇强度型增汇、保护修复型增汇、减少碳排放型增汇、技术提高型增汇和市场引领型增汇5个方面提出了12条人工林碳增汇途径,以期为中国实现"碳达峰、碳中和"目标作出更大贡献。  相似文献   

5.
Seravalli J  Ragsdale SW 《Biochemistry》2000,39(6):1274-1277
Carbon monoxide is an intermediate in carbon dioxide fixation by diverse microbes that inhabit anaerobic environments including the human colon. These organisms fix CO(2) by the Wood-Ljungdahl pathway of acetyl-CoA biosynthesis. The bifunctional CO dehydrogenase/acetyl-CoA synthase (CODH/ACS) catalyzes several key steps in this pathway. CO(2) is reduced to CO at a nickel iron-sulfur cluster called cluster C located in the CODH subunit. Then, CO is condensed with a methyl group and coenzyme A at cluster A, another nickel iron-sulfur cluster in the ACS subunit. Spectroscopic studies indicate that clusters A and C are at least 10-15 A apart. To gain a better understanding of how CO production and utilization are coordinated, we have studied an isotopic exchange reaction between labeled CO(2) and the carbonyl group of acetyl-CoA with the CODH/ACS from Clostridium thermoaceticum. When solution CO is provided at saturating levels, only CO(2)-derived CO is incorporated into the carbonyl group of acetyl-CoA. Furthermore, when high levels of hemoglobin or myoglobin are added to remove CO from solution, there is only partial inhibition of the incorporation of CO(2)-derived CO into acetyl-CoA. These results provide strong evidence for the existence of a CO channel between cluster C in the CODH subunit and cluster A in the ACS subunit. The existence of such a channel would tightly couple CO production and utilization and help explain why high levels of this toxic gas do not escape into the environment. Instead, microbes sequester this energy-rich carbon source for metabolic reactions.  相似文献   

6.
Carbon balancing of microbial fermentations is a valuable tool for the evaluation of the process performance and to identify the presence of undesired by-products. In this study, we demonstrate the relevance of total carbon (TC) analysis for carbon balancing in fermentations with the wild-type of Corynebacterium glutamicum by (i) quantifying significant amounts of dissolved inorganic carbonic species (TIC) in the culture medium and (ii) determining the effective (mass) carbon content of the biomass fraction (MC,X). In principle, TC based carbon balancing yielded at fully matching carbon balances. Thus, the application of our TC approach for the accurate detection of TIC and MC,X increased the total carbon recovery in standard batch fermentations with C. glutamicum on glucose from about 76% to carbon closures of 94–100% in contrast to conventional approaches. Besides, the origin of the missing 6%-gap could be attributed to incomplete quantification of all carbon sources in the liquid phase. To conclude this study, the concept of TC-based balancing was transferred to an l-lysine production process, successfully quantifying relevant system carbon fractions, which resulted in matched carbon recoveries.  相似文献   

7.
8.
9.
牛铜钢  刘为 《生物多样性》2022,30(8):22168-9580
“碳达峰、碳中和”是中国对世界的庄严承诺, 也是当前指导我国可持续发展的重要战略。碳排放的空间分布表明, 城市及其周边地区是最主要的碳排放区。随着我国的城市化进程不断推进, 如何有效减少城市碳排放、增加碳汇成为关系着双碳战略成效的关键问题。作为城市空间中唯一的自然碳汇, 城市绿地生态系统的固碳增汇作用日益突出。加强城市绿地的碳汇建设, 如果按照传统的人工营建思路, 只种植在当前情景下碳汇能力强的少数植物种则很可能会减少生物多样性。基于植物分配有限资源时存在权衡关系的生态学一般原理, 不仅选取当前情景下碳汇能力强的植物, 还要考虑适应环境变化、在未来环境下碳汇能力强的植物, 以及遭遇极端环境时有一定碳汇能力的植物。在此框架下, 选取恰当的植物多样性组合有望实现更好的城市绿地碳汇功能, 即环境稳定时碳汇能力更强, 环境变化时碳汇能力更稳, 出现极端事件时碳汇损失更小。具体的做法包括: (1)扩展绿地物种库信息, 纳入植物的碳减排能力、适应环境变化能力、应对极端变化能力等信息; (2)考虑植物在碳汇能力与应对气候变化能力之间的权衡关系, 将植物分成不同类型的组, 比如高碳汇低适应、低碳汇高适应; (3)根据不同城市的环境和未来气候变化特点, 因地制宜地选择恰当植物组合营建城市绿地; (4)开展城市绿地建设的全生命周期碳计量, 以近自然方式营建和管养城市绿地, 减少管护过程的碳排放。这些举措有助于实现城市绿地碳汇能力提升与生物多样性保护的双重目标。城市生态系统的‌结构与功能共赢, 对落实双碳战略和生态文明建设意义重大。  相似文献   

10.
11.
Effect of carbon source on compost nitrogen and carbon losses   总被引:32,自引:0,他引:32  
The effect of C source on N losses by volatilization during composting was measured using four bulking agents, each at three humidity levels and composted in duplicate under passive and active aeration. The bulking agents were pine shavings alone and corrected with soybean, chopped grass hay alone and corrected with urea, long (unchopped) wheat straw and chopped oat straw. The readily available C of each bulking agent was determined by analyzing for BOD5. In 105 l laboratory vessels, the bulking agents were mixed with liquid swine manure and tap water for a C/N of 20 and three humidity levels of 60%, 65% and 70%. While being aerated actively or passively, the mixtures were composted for 21 days. Their initial and final C and N contents were measured to conduct a mass balance analysis and calculate C and N losses. C and N losses were compared to bulking agent BOD5. N losses were compared to C losses. The humidity level and aeration regime had no effect on C and N losses but the N losses were correlated to C losses and only the C losses could be correlated to the BOD5 of the bulking agent. Thus, the N losses are related not only to the availability of C but also to the extent of composting. A relationship established between N and C losses indicated that 85% of the initial total N of the compost was available for microbial degradation and that 70% of the available C was lost as CO2 during the immobilization process.  相似文献   

12.
Preparation of carbon molecular sieves by carbon deposition from methane   总被引:1,自引:0,他引:1  
To prepare carbon molecular sieves (CMSs), methane was pyrolyzed in an attempt to deposit fine carbon particles on the micropore mouths of the carbon substrates being heated; the carbon substrates included grain-based activated carbons and commercial activated carbons. To explore the effects of heat treatment alone, blank experiments were conducted by heating the samples in N2. The resultant products were characterized by N2-adsorption at 77K. Methane failed to deposit carbon at 800 degrees C. The porosity of activated carbons, however, was substantially influenced by heat treatment alone. The surface areas and micropore volumes of the activated carbons from grain sorghum decreased by 39.32% and 36.84%, respectively, upon heat treatment alone; this is attributable to the destruction of pore structure by sintering. In contrast, the corresponding values of the commercial activated carbons increased by 59.86% and 62.16%, respectively, upon heat treatment alone; this can be attributable to the development of microporosity.  相似文献   

13.
Gross M 《Current biology : CB》2007,17(24):R831-R1029
Can fossil fuel power stations be made so they capture carbon dioxide emissions? Several countries are becoming aware of what may become a crucial global technology within the next decade. Michael Gross reports.  相似文献   

14.
15.
16.
Soil organic carbon (SOC) dynamics are regulated by the complex interplay of climatic, edaphic and biotic conditions. However, the interrelation of SOC and these drivers and their potential connection networks are rarely assessed quantitatively. Using observations of SOC dynamics with detailed soil properties from 90 field trials at 28 sites under different agroecosystems across the Australian cropping regions, we investigated the direct and indirect effects of climate, soil properties, carbon (C) inputs and soil C pools (a total of 17 variables) on SOC change rate (rC, Mg C ha?1 yr?1). Among these variables, we found that the most influential variables on rC were the average C input amount and annual precipitation, and the total SOC stock at the beginning of the trials. Overall, C inputs (including C input amount and pasture frequency in the crop rotation system) accounted for 27% of the relative influence on rC, followed by climate 25% (including precipitation and temperature), soil C pools 24% (including pool size and composition) and soil properties (such as cation exchange capacity, clay content, bulk density) 24%. Path analysis identified a network of intercorrelations of climate, soil properties, C inputs and soil C pools in determining rC. The direct correlation of rC with climate was significantly weakened if removing the effects of soil properties and C pools, and vice versa. These results reveal the relative importance of climate, soil properties, C inputs and C pools and their complex interconnections in regulating SOC dynamics. Ignorance of the impact of changes in soil properties, C pool composition and C input (quantity and quality) on SOC dynamics is likely one of the main sources of uncertainty in SOC predictions from the process‐based SOC models.  相似文献   

17.
18.
方晰  田大伦   《广西植物》2006,26(5):516-522
对湖南会同10年生、14年生杉木人工林C库和C吸存的动态研究结果表明,杉木人工林生态系统的C库主要由植被层、死地被物层、土壤层组成的,按其C库大小顺序排列为土壤层>植被层>死地被物层。10年生、14年生杉木林生态系统的C库分别为120.52和171.40t.hm-2,具有一定的年龄阶段和地带性特点。随着杉木林年龄的增长,乔木层C贮量的优势逐渐加强,从10年生的30.38t.hm-2增加到14年生的61.24t.hm-2,分别占总C库的25.21%和38.50%,树干C贮量占林分C贮量的比例最大,可达47.17%以上,并随杉木林年龄的增长而明显增强,分布在枝、叶、皮和根中的C贮量占48.11%以上,地上部分的C贮量占总C贮量的84.73%以上。10年生和14年生林地土壤层(0~60cm)的C库分别为88.21和108.20t.hm-2,占生态系统总C库的63.13%以上,土壤表层(0~15cm)的C储量分别占土壤总C库的36.57%和34.26%,土壤0~30cm层中的C储量分别占土壤总C库的63.44%和61.05%。地上部分C贮量与地下部分C贮量之比为10年生时为1∶3.53,14年生时为1∶2.22。10年生和14年生杉木人工林生态系统的年净固定C量分别为5.488和9.285t.hm-2.a-1。湖南省现有杉木林植被C库为0.1916×108t,潜在C库为1.4710×108t,C吸存潜力为1.2794×108t,湖南省现有杉木林植被的C库仅为其潜在C库的13.03%,低于全国水平26.46%。  相似文献   

19.
研究了潭江流域典型区中小尺度森林碳库与人类活动化石能源碳释放.结果表明,自1990年 以来,森林一直起着碳汇的作用,并且随着经济发展与时间延长,汇的作用得到加强,1990 年森林净吸收碳量为1.0579×107 t,到2002年森林净吸收碳量增至1.28061×107 t,年平均净吸收碳量为1.856×105 t.化石能源的碳释放与经济增长呈正相关,1990年的化石能源碳排放为9.508×105 t,2002年为1.8562×106 t,年平均增加量7.0×104 t,2003年达到2.1968×106 t,比2002年增加3.406×105 t.2002年,潭江流域万元GDP能耗为2.21 t标煤,高于珠江三角洲平均水平.如果提高能源利用效率,使能耗降低至平均水平,则可削减3.360×105 t碳排放,大于2002年流域森林净吸收的碳量. 从流域净吸收与净增排放的碳量来看,流域碳平衡与人类活动的关系有待进一步研究.  相似文献   

20.
碳同位素技术在森林生态系统碳循环研究中的应用   总被引:4,自引:3,他引:4  
郑兴波  张岩  顾广虹 《生态学杂志》2005,24(11):1334-1338
碳同位素技术对碳素在生态系统中的迁移动态具有很好的示踪作用,在生态学各领域研究中应用广泛。土壤、大气、植物是森林生态系统的重要碳库,植物是大气和土壤交换碳元素的重要介质。本文简要总结了碳同位素技术在研究碳元素在植物体内以及植物、土壤、大气碳库之间的迁移规律和生态学过程中的应用,展望了该技术在森林界面学中的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号