首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The morphometric characteristics of the following immature erythroid cells in circulating blood of the round goby (Neogobius melanostomus P.) were studied: late basophilic normoblasts (BN), polychromatic normoblasts (PN): normocytes (mature erythrocytes). The linear dimensions of the blood cells were evaluated on photographs in a computer program ImageJ 1.44p. The longitudinal and transverse axes of the cell and its nucleus were measured. Using appropriate algorithms, the following parameters were calculated: shape index (SI), volume (Vc), area (Sc), thickness (h), and specific surface area (SSc) of cells and nuclei as well as the nuclear–cytoplasmic ratio (NCR). Major changes were found to occur at the stage of PN → normocytes, being aimed at improving the respiratory characteristics of cells. In addition to accumulating hemoglobin in the cytoplasm and suppressing functional activity of the nucleus, a significant increment in the diffusion surface of erythroid cells was noted. As compared to BNs, Sc and SSc of normocytes increased by 40 and 17%, respectively, while the cells assumed an ellipsoid shape. The processes underlying the formation of the mature erythrocyte cytoskeleton are discussed.  相似文献   

2.
Electrophoretic mobility (EM) and molecular weight (MW) of some allelic variants of α- and β-gliadins contrlled by Gli-2 loci were compared by means of two-dimensional (APAGE × SDS) electrophoresis. Comparison of α-gliadins of the alleles Gli-A2b and Gli-A2p, of β-gliadins of the Gli-B2b and Gli-B2c, and of β-gliadins of the Gli-D2b, Gli-D2c, Gli-D2j, and Gli-D2r indicated that a gliadin with lower EM had, as a rule, bigger MW which is known to depend on the length of the polyglutamine domain of gliadin of α-type. However, allelic variants of the α-gliadin encoded by Gli-D2b and Gli-D2e differ in EM but not in apparent MW. It might be caused by a substitution of some charged/uncharged aminoacids in the polypeptide of gliadin. Allele Gli-B2o which is very frequent in up-to-date common wheat germplasm originated probably by means of unequal crossingover. Some alleles at Gli-A2 is found to control completely different blocks of gliadins and therefore might come to common wheat from different genotypes of the polymorphic diploid donor of the A genome. The results indicate that the reason of the known more vast polymorphism of gliadins controlled by Gli-2 loci as compared with Gli-1 loci is the considerable difference of the structure, first, of Gli-1 and Gli-2 loci (Gli-2 loci have more expressed genes per locus) and, second, of genes encoding gliadins of α- and γ-types (α-gliadins are shown to contain a long polyglutamine sequences highly variable in their length).  相似文献   

3.
Results of research on the study of the effects of the interaction between the keeping-life gene alc with the elevated fruit pigmentation genes hp, dg, B og, and B c are presented. It is shown that use of the gene recombinations alc/alc//hp/hp//B og/B og(B c/B c) and alc/alc//dg/dg is the most effective means of creating highly commercial, long keeping life varieties of tomato with saturated-red coloring of the fruit.  相似文献   

4.
Single cells of five different Microcystis species (M. ichthyoblabe, M. viridis, M. flos-aquae, M. wesenbergii, and M. aeruginosa) were batch-cultured at different temperatures and light intensities: (a) 25 °C and 50 μmol photons m?2 s?1 (control culture); (b) 25 °C and 10 μmol photons m?2 s?1; and (c) 15 °C and 50 μmol photons m?2 s?1. The extracellular polysaccharide content was significantly higher in treatments b and c than in the control treatment. All Microcystis species existed as single cells under the control treatment but formed colonies in treatments b and c. All of the colonies were irregular with indistinct margins. M. ichthyoblabe, M. viridis, M. flos-aquae, and M. wesenbergii formed colonies with similar morphologies and their cells were loosely aggregated. In contrast, M. aeruginosa formed denser colonies with no distinct holes. The colony morphologies differed from the classic morphology of M. ichthyoblabe field-grown colonies but resembled that of small colonies found in Lake Taihu (Yangtze Delta Plain, China) during early spring. This indicates that field- and laboratory-grown colonies are governed by similar formation processes. We suggest that in laboratory and field environments, M. ichthyoblabe (or M. flos-aquae) colonies are representative of small colonies formed from single Microcystis cells, whereas the morphology of older colonies evolves to resemble M. wesenbergii and M. aeruginosa colonies.  相似文献   

5.
A survey was conducted in Brazil to collect fungi on ferns. Based on morphology and inferred phylogeny from DNA sequences of two loci, namely the internal transcribed spacer (ITS) regions and the large subunit nuclear ribosomal RNA gene (LSU), several species belonging to chalara-like genera and lachnoid fungi were recognized. Eighteen fungal isolates, collected from five host species, representing 10 different localities were studied. Three novel genera (Lachnopsis, Scolecolachnum and Zymochalara), and six novel species (Bloxamia cyatheicola, Lachnopsis catarinensis, Lachnopsis dicksoniae, Scolecolachnum pteridii, Zymochalara lygodii and Zymochalara cyatheae) are introduced. Furthermore, two new combinations (Erioscyphella euterpes and Erioscyphella lushanensis) are proposed. Two novel taxa (Lachnopsis catarinensis and Lachnopsis dicksoniae) may be included in the list of potentially endangered fungal species in Brazil, if proven to be restricted to their tree-fern host, Dicksonia sellowiana, which is included in the official list of endangered plant species in Brazil.  相似文献   

6.
With the use of allele-specific primers developed for the VRN1 loci, the allelic diversity of the VRN-A1, VRN-B1, and VRN-D1 genes was studied in 148 spring common wheat cultivars cultivated under the conditions of western Siberia. It was demonstrated that modern Western Siberian cultivars have the VRN-A1a allele, which is widely distributed in the world (alone or in combination with the VRN-B1a and VRN-B1c alleles). It was established that the main contribution in acceleration of the seedling–heading time is determined by a dominant VRN-A1a allele, while the VRNA1b allele, on the contrary, determines later plant heading. Cultivars that have the VRN-A1b allele in the genotype are found with a frequency of 8%. It was shown that cultivars with different allele combinations of two dominant genes (VRN-A1a + VRN-B1c and VRN-A1a + VRN-B1a) are characterized by earlier heading and maturing.  相似文献   

7.
A series of novel C18–C22 trans ω3 polyunsaturated fatty acids (PUFA) with a single trans double bond in the ω3 position was found in Northern and Southern Hemisphere strains of the marine haptophyte Imantonia rotunda. The novel ω3 PUFA were identified as 18:3(9c,12c,15t) (0.2–1.8 % of total fatty acids), 18:4(6c,9c,12c,15t) (1.9–4.1 %), 18:5 (3c,6c,9c,12c,15t) (0.7–8.8 %), 20:5(5c,8c,11c,14c,17t) (1.2–4.1 %) and 22:6(4c,7c,10c,13c,16c,19t) (0.3–4.3 %), and were accompanied by larger proportions of the all cis isomers: 18:3ω3(9,12,15) (2.7–3.5 %), 18:4ω3(6,9,12,15) (9.3–14.3 %), 18:5ω3(3,6,9,12,15) (7.8–18.5 %), 20:5ω3(5,8,11,14,17) (3.2–3.9 %), 22:5ω3(7,10,13,16,19) (0.1–0.3 %) and 22:6ω3(4,7,10,13,16,19) (2.3–5.2 %). GC analysis of FAME using a non-polar column did not reveal the trans isomers as they coeluted with the all cis PUFA. However, GC using a polar column resolved the trans PUFA from the all cis PUFA, with the trans isomers eluting before the all cis isomers. GC-MS of FAME fractionated by argentation solid-phase chromatography confirmed the molecular ions of all components. FAME were derivatized to form 4,4-dimethyloxazoline (DMOX) derivatives, and GC-MS revealed the same double bond positions for each trans and cis FAME. The results suggest that the ω3 trans double bond originated from the Δ15/ω3 desaturation of 18:2(9c,12c), suggesting that this desaturase has dual cis/trans activity in these species. These results indicate that 18:3(9c,12c,15?t) was the precursor trans isomer produced for the trans series and further desaturation by the common Δ6 desaturase to produce the trans tetraene and successive elongations and desaturations led to the subsequent series of trans ω3 PUFA isomers. To our knowledge, this is the first report of these trans ω3 isomers occurring in strains of I. rotunda. These trans ω3 PUFA may be used as biomarkers in marine food webs for this species and with their unique structure may be biologically active.  相似文献   

8.
THE Lyon hypothesis of X chromosome inactivation predicts that in mammalian females, somatic cells are mosaic with respect to whether the active X chromosome is of maternal or paternal origin and that this chromosomal mosaicism is heritable somatically1. Studies of cell clones derived from females who were heterozygous for genes at one of several X-linked loci2–6 have provided good evidence for such mosaicism. Proof that only one of the two X chromosomes, however, is active in any given cell rests on the demonstration that the cell or its clone expresses all of the X-linked genes from one parent and none from the other parent. For this purpose it is useful to examine cloned cells from female subjects for genetic markers representing allelic genes at two or more of the parental loci. This study was undertaken to determine whether genes at the X-linked loci for glucose-6-phosphate dehydrogenase (G6PD) and phosphoglycerate kinase (PGK) are consistently expressed in the eis position in cloned cells as would be expected from a single parental contribution.  相似文献   

9.
Populus euphratica Oliv. is a poplar species that is distributed mainly in deserts, making it an interesting model in which to investigate molecular mechanisms underlying different stress responses. Here, we used molecular population genetic methods to detect potential selection in candidate genes belonging to the P. euphratica glutathione (GSH) peroxidase (Gpx) family, which are associated with an enzymatic mechanism that combats oxidative damage caused by reactive oxygen species (ROS) in plant cells; earlier studies have shown that Gpx proteins play important roles in coping with increased ROS levels during biotic and abiotic stresses in plants. We analyzed the nucleotide diversity and divergence patterns of five loci encoding Gpx genes, and 16 reference loci used as controls, in order to detect departures from the neutral expectation. Gpx1 has an excess of mid-frequency alleles; high intraspecific nucleotide diversity, distributed in the upper tail of the simulated neutral model; and extensive LD, showing strong evidence of balancing selection/local adaptation. The Gpx3.2 gene exhibits very low nucleotide diversity and divergence, suggesting that it has evolved under strong purifying selection. We failed to detect any evidence for natural selection at the other loci (Gpx2, Gpx4, and Gpx5) compared with the reference loci. The results show that nucleotide diversity and/or divergence differ greatly between members of the Gpx gene family, resulting from differential selective pressure acting on genes, and that adaptive evolution influenced the distribution of P. euphratica in desert regions.  相似文献   

10.
The soybean aphid (Aphis glycines Matsumura), an invasive species, has posed a significant threat to soybean [Glycine max (L.) Merr.] production in North America since 2001. Use of resistant cultivars is an effective tactic to protect soybean yield. However, the variability and dynamics of aphid populations could limit the effectiveness of host-resistance gene(s). Gene pyramiding is a promising way to sustain host-plant resistance. The objectives of this study were to determine the prevalent aphid biotypes in Michigan and to assess the effectiveness of different combinations of aphid-resistance genes. A total of 11 soybean genotypes with known resistance gene(s) were used as indicator lines. Based on their responses, Biotype 3 was a major component of Michigan aphid populations during 2015–2016. The different performance of Rag-“Jackson” and Rag1-“Dowling” along with the breakdown of resistance in plant introductions (PIs) 567301B and 567324 may be explained by Biotype 3 or an unknown virulent biotype establishing in Michigan. With the assistance of flanking markers, 12 advanced breeding lines carrying different aphid-resistance gene(s) were developed and evaluated for effectiveness in five trials across 2015 to 2017. Lines with rag1c, Rag3d, Rag6, Rag3c?+?Rag6, rag1b?+?rag3, rag1c?+?rag4, rag1c?+?rag3?+?rag4, rag1c?+?Rag2?+?rag3?+?rag4, and rag1b?+?rag1c?+?rag3?+?rag4 demonstrated strong and consistent resistance. Due to the variability of virulent aphid populations, different combinations of Rag genes may perform differently across geographies. However, advanced breeding lines pyramided with three or four Rag genes likely will provide broader and more durable resistance to diverse and dynamic aphid populations.  相似文献   

11.
The interaction of the mutant genes wellhaarig (we) and waved alopecia (wal) in mice was earlier demonstrated in our laboratory. The we gene significantly accelerates the appearance of alopecia in double we/wewal/wal homozygotes as compared to that in single +/+wal/wal homozygotes. It has been found in this work that the mutant gene angora-Y (Fgf5 go-Y ) weakens the effect of interaction of the we and wal genes. The first signs of alopecia appear in mice of the we/wewal/wal genotype at the age of 14 days, in triple Fgf5 go-Y /Fgf5 go-Y we/wewal/wal homozygotes alopecia is observed seven days later, i. e., in 21-day-old animals. The progression of alopecia in triple homozygotes is expressed to a lesser degree than in double +/+we/wewal/wal homozygotes. A single dose of the Fgf5 go-Y gene also decreases the effect of interaction of the we and wal genes, but less than a double dose of this gene. The first signs of alopecia in mice of the +/Fgf5 go-Y we/wewal/wal genotype appear only three days later than in double +/+we/wewal/wal homozygotes. The data obtained demonstrate that the Fgf5 go-Y gene is a powerful modifier of mutant genes determining the process of alopecia.  相似文献   

12.
The phylogeny and evolution of the microRNA families, miR820 and miR396, was analysed across the AA genomes of the Oryza species, the close relatives of domesticated rice. A highly dynamic evolution of the miR820 family was revealed. The number of copies of MIR820 genes, their chromosomal location and the mature microRNA sequence varied greatly with a total of 16 novel miR820 variants being identified. The phylogeny of pre-MIR820 sequences revealed that MIR820 genes of recently evolved Oryza AA genomes may have derived from sequence divergence of one or a few ancestral genes found in wild Australian perennial rice populations, Taxon B (jpn2)-MIR820 genes. Genomic scale duplication played an important role in the evolution of some of the miR396 family genes in AA genome Oryza species. miR396 family contained a MIR396 gene cluster (MIR396a and MIR396c) which was conserved across the cereal genomes. Nucleotide diversity analysis at these two MIR396 loci revealed that domesticated rice has retained less than 10% of the total diversity present in wild species. In contrast, the nucleotide sequence of four MIR396 loci remained almost conserved across domesticated and wild rices, indicating that they were under extreme functional constraint and may be involved in regulating some fundamental processes which are important both for wild and domesticated rices. Expression analysis demonstrated that miR820 variants were expressed in O. glaberrima O. barthi and O. longistaminata genome. These findings pose new challenges to explain the possible role of miR820 variants identified.  相似文献   

13.
Vacuolar-type H+-ATPase (V-ATPase), a multi-subunit endomembrane proton pump, plays an important role in plant growth and response to environmental stresses. In the present study, transgenic tobacco that overexpressed the V-ATPase c subunit gene from Iris lactea (IrlVHA-c) was used to determine the function of IrlVHA-c. Quantitative PCR analysis showed that IrlVHA-c expression was induced by salt stress in I. lactea roots and leaves. Subcellular localization of green fluorescent protein (GFP) as marker combined with FM4-64 staining showed that the IrlVHA-c-GFP was localized to the endosomal compartment in tobacco cells. Compared with the wild-type, the IrlVHA-c transgenic tobacco plants exhibited greater seed germination rates, root length, fresh weight, and higher relative water content (RWC) of leaves under salt stress. Furthermore, the IrlVHA-c transgenic tobacco leaves have lower stomatal densities and larger stomatal apertures than wild-type. Under salt stress, superoxide dismutase (SOD) activity in the transgenic tobacco was significantly enhanced. Moreover, the level of malondialdehyde (MDA) in the transgenic tobacco was significantly lower than that in wild-type plants under salt stress. Taken together, these results suggested that the IrlVHA-c plays an important role in salt tolerance in transgenic tobacco by influencing stomatal movement and physiological changes.  相似文献   

14.
Simple sequence repeat (SSR) markers developed from Malus, as well as Prunus, Pyrus and Sorbus, and some other sequence-tagged site (STS) loci were analysed in an interspecific F1 apple progeny from the cross ‘Fiesta’ × ‘Totem’ that segregated for several agronomic characters. A linkage map was constructed using 259 STS loci (247 SSRs, four SCARs and eight known-function genes) and five genes for agronomic traits—scab resistance (Vf), mildew resistance (Pl-2), columnar growth habit (Co), red tissues (Rt) and green flesh background colour (Gfc). Ninety SSR loci and three genes (ETR1, Rt and Gfc) were mapped for the first time in apple. The transferability of markers from other Maloideae to Malus was found to be around 44%. The loci are spread across 17 linkage groups, corresponding to the basic chromosome number of Malus and cover 1,208 cM, approximately 85% of the estimated length of the apple genome. Interestingly, we have extended the top of LG15 with eight markers covering 25 cM. The average map density is 4.7 cM per marker; however, marker density varies greatly between linkage groups, from 2.5 in LG14 to 8.9 in LG7, with some areas of the genome still in need of further STS markers for saturation.  相似文献   

15.
The T7 antirestriction protein Ocr, encoded by 0.3 (ocr), specifically inhibits ATP-dependent type I restriction-modification systems. T7 0.3 (ocr) was cloned in pUC18. Ocr inhibited both restriction and modification activities of the type I restriction-modification system (EcoKI) in Escherichia coli K12. The Ocr F53D A57E mutant was obtained and proved to inhibit only restriction activity of EcoKI. The 0.3 (ocr) and Photorhabdus luminescens luxCDABE genes were cloned in pZ-series vectors with the P ltetO-1 promoter, strongly controlled by the TetR repressor. The bioluminescence intensity and luciferase content varied up to 5000-fold in E. coli K12 MG1655Z1 tetR+ (pZE21-luxCDABE) cells, depending on the environmental concentration of the inductor anhydrotetracycline. The antirestriction activity of Ocr and Ocr F53D A57E was studied as a function of their concentration in the cell. The dissociation constant K d, characterizing the binding with EcoKI, differed 1000-fold between Ocr and Ocr F53D A57E (10?10 M versus 10?7 M).  相似文献   

16.
A strain 5-1-2T was isolated from a root nodule of Hedysarum multijugum collected from Zhangye city, Gansu province, north-west China. Phylogenetic analysis based on the 16S rRNA gene sequence and other housekeeping genes (recA and atpD) indicated that the strain represents a novel species in the genus Rhizobium close to the strain Rhizobium subbaraonis JC85T with similarities of 98.27, 88.92 and 89.62%, respectively. Strain 5-1-2T contained Q-10 as the predominant ubiquinone. Our results showed that the major fatty acids were feature 8 (C18:1 ω7c and/or C18:1 ω6c; 38.90%). In addition, the DNA–DNA hybridizations with the type strains R. subbaraonis JC85T and Rhizobium halophytocola YC6881T were 39.2 ± 2.1 and 44.3 ± 1.9, respectively. Therefore, a novel species Rhizobium hedysari sp. nov. is proposed, and 5-1-2T (=CGMCC1.15677T = NBRC112532T) is designated as the type strain.  相似文献   

17.
18.
Exogenous expression of the gene encoding the pancreatic master regulator PDX1 in cell lines with different degrees of differentiation of pancreatic cancer cells is accompanied by changes in the expression of known master genes involved in cancer progression. In BxPC3PDX+ cells, as compared to BxPC3PDX–, we detected an increased expression of the following genes: NKX6.1 (2 times), NR5A2 (2.5 times), KLF5 (1.8 times), ZEB1 (3 times), and ONECUT1 (1.3 times), as well as a decreased expression of MUC1 and SLUG genes (3 and 2 times, respectively). In PANC1PDX+ cells, as compared to the control PANC1PDX– cells, we detected a decreased expression of ISL1 (2 times) and an increased expressed of KRT8 (2 times) and MUC1 (by 30%). In the high-grade cell lines (including the BxPC3 line studied), the total content of sites containing the marks of active enhancers was higher than that in the low-grade cell lines (PANC1).  相似文献   

19.
Conjugative transfer of 20-kb chromosomal fragment carrying genes encoding tetracycline (tet r ) and lincomycin (lin r ) resistance in the soil strain Bacillus subtilis 19 is described. Transfer was preceded by this fragment insertion into the large conjugative p19cat plasmid producing a hybrid plasmid. Insertion frequency was 10?4?10?5. Then genes tet r and lin r were transferred to the recipient strains. The transfer of chromosomal genes inserted into the plasmid and plasmid gene cat occurred sequentially and resembled sexduction, which represents chromosomal gene transfer by F′ and R′ plasmids during conjugation in Escherichia coli and other gram negative bacteria.  相似文献   

20.

Key message

Rag6 and Rag3c were delimited to a 49-kb interval on chromosome 8 and a 150-kb interval on chromosome 16, respectively. Structural variants in the exons of candidate genes were identified.

Abstract

The soybean aphid, an invasive species, has significantly threatened soybean production in North America since 2000. Host-plant resistance is known as an ideal management strategy for aphids. Two novel aphid-resistance loci, Rag6 and Rag3c, from Glycine soja 85-32, were previously detected in a 10.5-cM interval on chromosome 8 and a 7.5-cM interval on chromosome 16, respectively. Defining the exact genomic position of these two genes is critical for improving the effectiveness of marker-assisted selection for aphid resistance and for identification of the functional genes. To pinpoint the locations of Rag6 and Rag3c, four populations segregating for Rag6 and Rag3c were used to fine map these two genes. The availability of the Illumina Infinium SoySNP50K/8K iSelect BeadChip, combined with single-nucleotide polymorphism (SNP) markers discovered through the whole-genome re-sequencing of E12901, facilitated the fine mapping process. Rag6 was refined to a 49-kb interval on chromosome 8 with four candidate genes, including three clustered nucleotide-binding site leucine-rich repeat (NBS–LRR) genes and an amine oxidase encoding gene. Rag3c was refined to a 150-kb interval on chromosome 16 with 11 candidate genes, two of which are a LRR gene and a lipase gene. Moreover, by sequencing the whole-genome exome-capture of the resistant source (E12901), structural variants were identified in the exons of the candidate genes of Rag6 and Rag3c. The closely linked SNP markers and the candidate gene information presented in this study will be significant resources for integrating Rag6 and Rag3c into elite cultivars and for future functional genetics studies.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号