首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Individuals of the genus Jaera do not mate at random. In the species from the Mediterranean group, J. italica and. J. nordmanni, large males and medium sized females are at an advantage and their sizes are positively assorted. These effects are attributable to sexual competition between males. In the Ponlo-caspian species J. istri, no advantage of large males exists, but sexual selection could be the cause for a long passive phase prior to copulation and for normalizing selection upon female size at pairing. In the Atlantic species, J. albifrons, no selection can be ascertained.
Differential mating success in males appears as one of the causes of the evolution of sexual dimorphism in body size, which makes males larger, of equal size, or smaller than females according to the species. The reason for this reversal in dimorphism seems to differ in the two sexes. Sexual selection provides an explanation for the evolution of male size, while the interspecific changes in female length are more likely due to ecological factors.  相似文献   

2.
Sexually selected traits are limited by selection against those traits in other fitness components, such as survival. Thus, sexual selection favouring large size in males should be balanced by higher mortality of larger males. However, evidence from red-winged blackbirds (Agelaius phoeniceus) indicates that large males survive better than small males. A survival advantage to large size could result from males migrating north in early spring, when harsh weather favours large size for energetic reasons. From this hypothesis we predicted that, among species, sex differences in body size should be correlated with sex differences in timing of spring migration. The earlier males migrate relative to females, the larger they should be relative to females. We tested this prediction using a comparative analysis of data collected from 30 species of passerine birds captured on migration. After controlling for social mating system, we found that sexual size dimorphism and difference in arrival dates of males and females were significantly positively correlated. This result is consistent with the hypothesis that selection for survival ability promotes sexual size dimorphism (SSD), rather than opposes SSD as is the conventional view. If both natural selection and sexual selection favour large adult males, then limits to male size must be imposed before males become adults.  相似文献   

3.
The role of temperature is central to both organic evolution and ecological processes. However, how temperature affects selection on body size is unknown. We tested whether small seed beetles (Stator limbatus) have an advantage over large beetles during scramble competition for mates, and whether this advantage varies with temperature. Within lines of beetles artificially selected to be large versus small, small males have a significant advantage over large males in scramble competition for females because the former takeoff more quickly and thus reach females before larger males. Selection favouring small male body size is significantly (and substantially) more intense at cooler temperatures. The adaptive significance of small male body size thus depends on ambient temperature.  相似文献   

4.
Assortative mating is of interest because of its role in speciation and the maintenance of species boundaries. However, we know little about how within‐species assortment is related to interspecific sexual isolation. Most previous studies of assortative mating have focused on a single trait in males and females, rather than utilizing multivariate trait information. Here, we investigate how intraspecific assortative mating relates to sexual isolation in two sympatric and congeneric damselfly species (genus Calopteryx). We connect intraspecific assortment to interspecific sexual isolation by combining field observations, mate preference experiments, and enforced copulation experiments. Using canonical correlation analysis, we demonstrate multivariate intraspecific assortment for body size and body shape. Males of the smaller species mate more frequently with heterospecific females than males of the larger species, which showed less attraction to small heterospecific females. Field experiments suggest that sexual isolation asymmetry is caused by male preferences for large heterospecific females, rather than by mechanical isolation due to interspecific size differences or female preferences for large males. Male preferences for large females and male–male competition for high quality females can therefore counteract sexual isolation. This sexual isolation asymmetry indicates that sexual selection currently opposes a species boundary.  相似文献   

5.
We combined experimental and comparative techniques to study the evolution of mating behaviors within in a clade of 15 water striders (Gerris spp.). Superfluous multiple mating is costly to females in this group, and consequently there is overt conflict between the sexes over mating. Two alternative hypotheses that could generate interspecific variation in mating behaviors are tested: interspecific variation in optimal female mating rate versus sexually antagonistic coevolution of persistence and resistance traits. These potentially coevolving traits include male grasping and female antigrasping structures that further the interests of one sex over the other during premating struggles. Both processes are known to play a role in observed behavioral variation within species. We used two large sets of experiments to quantify behavioral differences among species, as well as their response to an environmentally (sex-ratio) induced change in optimal female mating rate. Our analysis revealed a large degree of continuous interspecific variation in all 20 quantified behavioral variables. Nevertheless, species shared the same set of behaviors, and each responded in a qualitatively similar fashion to sex-ratio alterations. A remarkably large proportion (> 50%) of all interspecific variation in the magnitude of behaviors, including their response to sex ratio, could be captured by a single multivariate axis. These data suggest tight coevolution of behaviors within a shared mating system. The pattern of correlated evolution was best accounted for by antagonistic coevolution in the relative abilities of each sex to control the outcome of premating struggles. In species where males have a relative advantage, mating activity is high, and the opposite is found in species where females have gained a relative advantage. Our analyses also suggested that evolution has been unconstrained by history, with no consistent evolutionary tendency toward or away from male or female relative advantage.  相似文献   

6.
In this paper, we examine allometric and sexual-selection explanations for interspecific differences in the amount of sexual dimorphism among 60 primate species. Based on evidence provided by statistical analyses, we reject Leutenegger and Cheverud’s [(1982). Int. J. Primatol.3:387-402] claim that body size alone is the major factor in the evolution of sexual dimorphism. The alternative proposed here is that sexual selection due to differences in the reproductive potential of males and females is the primary cause of sexual dimorphism. In addition, we propose that the overall size of a species determines whether the dimorphism will be expressed as size dimorphism,rather than in some other form.  相似文献   

7.
Abstract.  1. Sexual differences in body size are expected to evolve when selection on female and male sizes favours different optima.
2. Insects have typically female-biased size dimorphism that is usually explained by the strong fecundity advantage of larger size in females. However, numerous exceptions to this general pattern have led to the search for selective pressures favouring larger size in males.
3. In this study, the benefits of large size were investigated in males of four species of ichneumonine wasps, a species-rich group of parasitoids, many representatives of which exhibit male-biased size dimorphism.
4. Mating behaviour of all ichneumonine wasps are characterised by pre-copulatory struggles, in the course of which males attempt to override female reluctance to mate. A series of laboratory trials was conducted to study the determinants of male mating success.
5. A tendency was found for larger males as well as those in better condition to be more successful in achieving copulations. Size dimorphism of the species studied, mostly male-biased in hind tibia length but female-biased in body weight, indicates that sexual selection in males favours longer bodies and appendages rather than larger weight.
6. The qualitative similarity of the mating patterns suggests that sexual selection cannot completely explain the considerable among-species differences in sexual size dimorphism.
7. The present study cautions against using various size indices as equivalents for calculating sexual size dimorphism.
8. It is suggested that female reluctance in ichneumonine wasps functions as a mechanism of female mate assessment.  相似文献   

8.
The genetic analysis of sexual isolation between the closely-related species Drosophila melanogaster and Drosophila simulans involved two experiments with no-choice tests. The efficiency of sexual isolation was measured by the frequency of courtship initiation and interspecific mating. We first surveyed the variation in sexual isolation between D. melanogaster strains and D. simulans strains of different geographic origin. Then, to investigate variation in sexual isolation within strains, we made F1 diallel sets of reciprocal crosses within strains of D. melanogaster and D. simulans. The F1 diallel progeny of one sex were paired with the opposite sex of the other species. The first experiment showed significant differences in the frequency of interspecific mating between geographic strains. There were more matings between D. simulans females and D. melanogaster males than between D. melanogaster females and D. simulans males. The second experiment uncovered that the male genotypes in the D. melanogaster diallel significantly differed in interspecific mating frequency, but not in courtship initiation frequency. The female genotypes in the D. simulans diallel were not significantly different in courtship initiation and interspecific mating frequency. Genetic analysis reveals that in D. melanogaster males sexual isolation was not affected by either maternal cytoplasmic effects, sex-linked effects, or epistatic interaction. The main genetic components were directional dominance and overdominance. The F1 males achieved more matings with D. simulans females than the inbred males. The genetic architecture of sexual isolation in D. melanogaster males argues for a history of weak or no selection for lower interspecific mating propensity. The behavioral causes of variation in sexual isolation between the two species are discussed.  相似文献   

9.
Sexually size dimorphic brains and song complexity in passerine birds   总被引:1,自引:0,他引:1  
Neural correlates of bird song involve the volume of particularsong nuclei in the brain that govern song development, production,and perception. Intra- and interspecific variation in the volumeof these song nuclei are associated with overall brain size,suggesting that the integration of complex songs into the brainrequires general neural augmentation. In a comparative studyof passerine birds based on generalized least square models,we tested this hypothesis by exploring the interspecific relationshipbetween overall brain size and repertoire size. We found nosignificant association between song complexity of males andbrain size adjusted for body size. However, species in whichmales produced complex songs tended to have sex differencesin overall brain size. This pattern became stronger when wecontrolled statistically for female song complexity by usingsex differences in song complexity. In species with large differencesin song complexity, females evolved smaller brains than didmales. Our results suggest no role for the evolution of extendedneural space, as reflected by total brain size, owing to songcomplexity. However, factors associated with sexual selectionmirrored by sex differences in song complexity were relatedto sexual dimorphism in overall brain size.  相似文献   

10.
Female-biased sexual size dimorphism is uncommon among vertebrates and traditionally has been attributed to asymmetric selective pressures favoring large fecund females (the fecundity-advantage hypothesis) and/or small mobile males (the small-male advantage hypothesis). I use a phylogenetically based comparative method to address these hypotheses for the evolution and maintenance of sexual size dimorphism among populations of three closely related lizard species (Phrynosoma douglasi, P. ditmarsi, and P. hernandezi). With independent contrasts I estimate evolutionary correlations among female body size, male body size, and sexual size dimorphism (SSD) to determine whether males have become small, females have become large, or both sexes have diverged concurrently in body size during the evolutionary Xhistory of this group. Population differences in degree of SSD are inversely correlated with average male body size, but are not correlated with average female body size. Thus, variation in SSD among populations has occurred predominantly through changes in male size, suggesting that selective pressures on small males may affect degree of SSD in this group. I explore three possible evolutionary mechanisms by which the mean male body size in a population could evolve: changes in size at maturity, changes in the variance of male body sizes, and changes in skewness of male body size distributions. Comparative analyses indicate that population differentiation in male body size is achieved by changes in male size at maturity, without changes in the variance or skewness of male and female size distributions. This study demonstrates the potential of comparative methods at lower taxonomic levels (among populations and closely related species) for studying microevolutionary processes that underlie population differentiation.  相似文献   

11.
Patterns of overwinter mortality in the sexually dimorphic red-winged blackbird (Agelaius phoeniceus) were examined to test the predictions of the sexual-selection hypothesis that male size is limited by directional selection favoring small males and that female size is maintained by stabilizing selection wherein extreme phenotypes experience higher mortality. Museum specimens collected from Ontario over a 95-yr period were used to compare the sizes of males and females collected in fall and spring. In a separate field study, body sizes of returning and nonreturning male and female red-winged blackbirds were compared over a 6-yr period. Overall, there was no evidence of higher overwinter mortality among larger males. Among adult (ASY) males, large individuals appeared to have higher survival than small individuals, although among subadult (SY) males, large size may have been disadvantageous. Weak evidence of stabilizing selection on female body size was found. Among adults, sexual size dimorphism seemed more pronounced after winter than before winter. Our results do not support the hypothesis that body size in male red-winged blackbirds is limited by selective mortality outside the breeding season. It is possible that size selection occurs earlier in life, when males are still in the nest. Our results suggest that caution should be exercised when interpreting interspecific evidence showing higher adult male than female mortality in sexually dimorphic species. Such patterns could arise as a cost to males of sexual selection and yet provide no insight into how natural selection opposes sexual selection for increased male size.  相似文献   

12.
The present study explored how male size relates to mating competition across a natural range of male and female densities in the two-spotted goby Gobiusculus flavescens. Across this range of social environments, large males were more than twice as likely as small ones to chase other males, to become nest-holders, and to court females, but large males were not significantly more likely to engage in agonistic fin displays. Overall, the study showed that large males court and fight more than small ones across a wide, yet natural, span of social environments. Having a large body size appears to confer competitive advantage for males in any social environment of the study species. Further studies are needed to disentangle whether the benefit of large size is mainly in competition over resources, over matings as such, or both.  相似文献   

13.
1. Female burying beetles behave differently towards males of different sizes, avoiding mating with large males that are not defending resources but mating with small males regardless of the presence of resources. Females of the burying beetle Nicrophorus orbicollis were therefore examined to determine whether they discriminate among males using only pheromonal signals. The influence of female size on its own mate choice was also examined. 2. Females do use male pheromonal signals to discriminate among males and these signals do appear to convey information about male body size to females. Overall, females were more likely to be attracted to larger males than to smaller males. 3. Female choice of a male was influenced by both the female's own body size and the size of the female relative to the size of the two males available to it. 4. While there is an overall mating advantage for larger males, resulting from female preferences based on odour cues, smaller males are also attractive to some females under some circumstances. 5. It is argued that there are different costs and benefits of mating with different sized males, leading to the evolution of context‐dependent mate choice for females and the need to be able to discriminate males of different sizes from a distance.  相似文献   

14.
Male-biased dimorphism in body size is usually attributed tosexual selection acting on males, through either male competitionor female choice. Brown antechinuses (Antechinus stuartii) aresexually dimorphic in size, and heavier males are known to siremore offspring in the wild. We investigated four possible mechanismsthat might explain this large-male reproductive advantage. Wetested if there is a female preference for large males, a femalepreference for dominant males, if larger males compete moreeffectively for mates, and if there is a survival advantagefor large males during the mating season. We established nestinggroups of males in captivity and conducted mate choice trialsin which males from nesting groups either could or could notinteract. We assessed male dominance rank and recorded survivaltimes after mating. Females did not prefer larger males directly.The results suggest that the other three mechanisms of sexualselection tested account for the large-male advantage: largemales competed more successfully for mates, so were sociallydominant; females rejected subordinates (males they saw losingtwice in contests to previous mates); and dominant males survivedfor longer after their first mating. Females judged male rankbased on direct observation of male competitive interactionsat the time of mating and apparently could not distinguish rankfrom male scent. Effects of size and dominance on male reproductivesuccess are not confounded by age because male antechinusesare semelparous.  相似文献   

15.
Island biogeography has provided fundamental hypotheses in population genetics, ecology and evolutionary biology. Insular populations usually face different feeding conditions, predation pressure, intraspecific and interspecific competition than continental populations. This so‐called island syndrome can promote the evolution of specific phenotypes like a small (or large) body size and a light (or dark) colouration as well as influence the evolution of sexual dimorphism. To examine whether insularity leads to phenotypic differentiation in a consistent way in a worldwide‐distributed nonmigratory species, we compared body size, body shape and colouration between insular and continental barn owl (Tyto alba) populations by controlling indirectly for phylogeny. This species is suitable because it varies in pheomelanin‐based colouration from reddish‐brown to white, and it displays eumelanic black spots for which the number and size vary between individuals, populations and species. Females are on average darker pheomelanic and display more and larger eumelanic spots than males. Our results show that on islands barn owls exhibited smaller and fewer eumelanic spots and lighter pheomelanic colouration, and shorter wings than on continents. Sexual dimorphism in pheomelanin‐based colouration was less pronounced on islands than continents (i.e. on islands males tended to be as pheomelanic as females), and on small islands owls were redder pheomelanic and smaller in size than owls living on larger islands. Sexual dimorphism in the size of eumelanic spots was more pronounced (i.e. females displayed much larger spots than males) in barn owls living on islands located further away from a continent. Our study indicates that insular conditions drive the evolution towards a lower degree of eumelanism, smaller body size and affects the evolution of sexual dichromatism in melanin‐based colour traits. The effect of insularity was more pronounced on body size and shape than on melanic traits.  相似文献   

16.
Sexual selection, through female choice and/or male–male competition, has influenced the nature and direction of sexual size dimorphism in numerous species. However, few studies have examined the influence of sperm competition on size dimorphism. The orb‐web spider Nephila edulis has a polygamous mating system and extreme size dimorphism. Additionally, the frequency distribution of male body size is extremely skewed with most males being small and few large. The duration of copulation, male size and sexual cannibalism have been identified as the significant factors determining patterns of sperm precedence in spiders. In double mating trials, females were assigned to three treatments: either they mated once with both males or the first or the second male was allowed to mate twice. Paternity was strongly associated with the duration of copulation, independent of mating order. Males that were allowed to mate twice not only doubled the duration of copulation but also their paternity. Small males had a clear mating advantage, they copulated longer than large males and fertilized more eggs. Males of different sizes used different tactics to mate. Large males were more likely to mate through a hole they cut into the web, whereas small males approached the female directly. Furthermore, small males usually mated at their first attempt but large males required several attempts before mating took place. There was no obvious female reaction towards males of different sizes.  相似文献   

17.
Among species with sexual size dimorphism (SSD), taxa in which males are the larger sex have increasing SSD with increasing body size, whereas in taxa in which females are the larger sex, SSD decreases with body size: Rensch's rule. We show in flying lizards, a clade of mostly female‐larger species, that SSD increases with body size, a pattern similar to that in clades with male‐biased SSD or more evenly mixed SSD. The observed pattern in Draco appears due to SSD increasing with evolutionary changes in male body size; specifically divergence in body size among species that are in sympatric congeneric assemblages. We suggest that increasing body size, resulting in decreased gliding performance, reduces the relative gliding cost of gravidity in females, and switches sexual selection in males away from a small‐male, gliding advantage and toward selection on large size and fighting ability as seen in many other lizards. Thus, selection for large females is likely greater than selection for large males at the smaller end of the body size continuum, whereas this relationship reverses for species at the larger end of the continuum. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 270–282.  相似文献   

18.
Theory predicts that the strength of male mate choice should vary depending on male quality when higher-quality males receive greater fitness benefits from being choosy. This pattern extends to differences in male body size, with larger males often having stronger pre- and post-copulatory preferences than smaller males. We sought to determine whether large males and small males differ in the strength (or direction) of their preference for large, high-fecundity females using the fruit fly, Drosophila melanogaster. We measured male courtship preferences and mating duration to show that male body size had no impact on the strength of male mate choice; all males, regardless of their size, had equally strong preferences for large females. To understand the selective pressures shaping male mate choice in males of different sizes, we also measured the fitness benefits associated with preferring large females for both large and small males. Male body size did not affect the benefits that males received: large and small males were equally successful at mating with large females, received the same direct fitness benefits from mating with large females, and showed similar competitive fertilization success with large females. These findings provide insight into why the strength of male mate choice was not affected by male body size in this system. Our study highlights the importance of evaluating the benefits and costs of male mate choice across multiple males to predict when differences in male mate choice should occur.  相似文献   

19.
Sexual selection influences the evolution of morphological traits that increase the likelihood of monopolizing scarce resources. When such traits are used during contests, they are termed weapons. Given that resources are typically linked to monopolizing mating partners, theory expects only males to bear weapons. In some species, however, females also bear weapons, although typically smaller than male weapons. Understanding why females bear smaller weapons can thus help us understand the selective pressures behind weapon evolution. However, most of our knowledge comes from studies on weapon size, while the biomechanics of weapons, such as the size of the muscles, efficiency, and shape are seldom studied. Our goal was to test if the theoretical expectations for weapon size sexual dimorphism also occur for weapon biomechanics using two aeglid crab species. Males of both species had larger claws which were also stronger than female claws. Male claws were also more efficient than females' claws (although we used only one species in this analysis). For weapon shape, though, only one species differed in the mean claw shape. Regarding scaling differences, in both species, male claws had higher size scaling than females, while only one species had a higher shape scaling. However, male weapons did not have higher scaling regarding strength and efficiency than females. Thus, males apparently allocate more resources in weapons than females, but once allocated, muscle and efficiency follow a similar developmental pathway in both sexes. Taken together, our results show that sexual dimorphism in weapons involves more than differences in size. Shape differences are especially intriguing because we cannot fully understand its causes. Yet, we highlight that such subtle differences can only be detected by measuring and analysing weapon shape and biomechanical components. Only then we might better understand how weapons are forged.  相似文献   

20.
Body size is often assumed to represent the outcome of conflicting selection pressures of natural and sexual selection. Marine iguana (Amblyrhynchus cristatus) populations in the Galápagos exhibit 10-fold differences in body mass between island populations. There is also strong sexual size dimorphism, with males being about twice as heavy as females. To understand the evolutionary processes shaping body size in marine iguanas, we analyzed the selection differentials on body size in two island populations (max. male mass 900 g in Genovesa, 3500 g in Santa Fé). Factors that usually confound any evolutionary analysis of body sizes—predation, interspecific food competition, reproductive role division—are ruled out for marine iguanas. We show that, above hatchlings, mortality rates increased with body size in both sexes to the same extent. This effect was independent of individual age. The largest animals (males) of each island were the first to die once environmental conditions deteriorated (e.g., during El Niños). This sex-biased mortality was the result of sexual size dimorphism, but at the same time caused sexual size dimorphism to fluctuate. Mortality differed between seasons (selection differentials as low as –1.4) and acted on different absolute body sizes between islands. Both males and females did not cease growth when an optimal body size for survival was reached, as demonstrated by the fact that individual adult body size phenotypically increased in each population under favorable environmental conditions beyond naturally selected limits. But why did marine iguanas grow “too large” for survival? Due to lek mating, sexual selection constantly favored large body size in males (selection differentials up to +0.77). Females only need to reach a body size sufficient to produce surviving offspring. Thereafter, large body size of females was less favored by fertility selection than large size in males. Resulting from these different selection pressures on male and female size, sexual size dimorphism was mechanistically caused by the fact that females matured at an earlier age and size than males, whereafter they constantly allocated resources into eggs, which slowed growth. The observed allometric increase in sexual size dimorphism is explained by the fact that the difference between these selective processes becomes larger as energy abundance in the environment increases. Because body size is generally highly heritable, these selective processes are expected to lead to genetic differences in body size between islands. We propose a common-garden experiment to determine the influence of genetic factors and phenotypic reaction norms of final body size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号