首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Despite the ubiquitous presence of the COPI, COPII, and clathrin vesicle budding machineries in all eukaryotes, the organization of the secretory pathway in plants differs significantly from that in yeast and mammalian cells. Mobile Golgi stacks and the lack of both transitional endoplasmic reticulum (ER) and a distinct ER-to-Golgi intermediate compartment are the most prominent distinguishing morphological features of the early secretory pathway in plants. Although the formation of COPI vesicles at periphery of Golgi cisternae has been demonstrated in plants, exit from the ER has been difficult to visualize, and the spatial relationship of this event is now a matter of controversy. Using tobacco (Nicotiana tabacum) BY-2 cells, which represent a highly active secretory system, we have used two approaches to investigate the location and dynamics of COPII binding to the ER and the relationship of these ER exit sites (ERES) to the Golgi apparatus. On the one hand, we have identified endogenous COPII using affinity purified antisera generated against selected COPII-coat proteins (Sar1, Sec13, and Sec23); on the other hand, we have prepared a BY-2 cell line expressing Sec13:green fluorescent protein (GFP) to perform live cell imaging with red fluorescent protein-labeled ER or Golgi stacks. COPII binding to the ER in BY-2 cells is visualized as fluorescent punctate structures uniformly distributed over the surface of the ER, both after antibody staining as well as by Sec13:GFP expression. These structures are smaller and greatly outnumber the Golgi stacks. They are stationary, but have an extremely short half-life (<10 s). Without correlative imaging data on the export of membrane or lumenal ER cargo it was not possible to equate unequivocally these COPII binding loci with ERES. When a GDP-fixed Sar1 mutant is expressed, ER export is blocked and the visualization of COPII binding is perturbed. On the other hand, when secretion is inhibited by brefeldin A, COPII binding sites on the ER remain visible even after the Golgi apparatus has been lost. Live cell imaging in a confocal laser scanning microscope equipped with spinning disk optics allowed us to investigate the relationship between mobile Golgi stacks and COPII binding sites. As they move, Golgi stacks temporarily associated with COPII binding sites at their rims. Golgi stacks were visualized with their peripheries partially or fully occupied with COPII. In the latter case, Golgi stacks had the appearance of a COPII halo. Slow moving Golgi stacks tended to have more peripheral COPII than faster moving ones. However, some stationary Golgi stacks entirely lacking COPII were also observed. Our results indicate that, in a cell type with highly mobile Golgi stacks like tobacco BY-2, the Golgi apparatus is not continually linked to a single ERES. By contrast, Golgi stacks associate intermittently and sometimes concurrently with several ERES as they move.  相似文献   

2.
Previous studies have shown that yeast glycosylphosphatidylinositol‐anchored proteins (GPI‐APs) and other secretory proteins are preferentially incorporated into distinct coat protein II (COPII) vesicle populations for their transport from the endoplasmic reticulum (ER) to the Golgi apparatus, and that incorporation of yeast GPI‐APs into COPII vesicles requires specific lipid interactions. We compared the ER exit mechanism and segregation of GPI‐APs from other secretory proteins in mammalian and yeast cells. We find that, unlike yeast, ER‐to‐Golgi transport of GPI‐APs in mammalian cells does not depend on sphingolipid synthesis. Whereas ER exit of GPI‐APs is tightly dependent on Sar1 in mammalian cells, it is much less so in yeast. Furthermore, in mammalian cells, GPI‐APs and other secretory proteins are not segregated upon COPII vesicle formation, in contrast to the remarkable segregation seen in yeast. These findings suggest that GPI‐APs use different mechanisms to concentrate in COPII vesicles in the two organisms, and the difference might explain their propensity to segregate from other secretory proteins upon ER exit.  相似文献   

3.
Protein trafficking is achieved by a bidirectional vesicle flow between the various compartments of the eukaryotic cell. COPII coated vesicles mediate anterograde protein transport from the endoplasmic reticulum to the Golgi apparatus, whereas retrograde Golgi-to-endoplasmic reticulum vesicles use the COPI coat. Inactivation of COPI vesicle formation in conditional sec21 (gamma-COP) mutants rapidly blocks transport of certain proteins along the early secretory pathway. We have identified the integral membrane protein Mst27p as a strong suppressor of sec21-3 and ret1-1 mutants. A C-terminal KKXX motif of Mst27p that allows direct binding to the COPI complex is crucial for its suppression ability. Mst27p and its homolog Yar033w (Mst28p) are part of the same complex. Both proteins contain cytoplasmic exposed C termini that have the ability to interact directly with COPI and COPII coat complexes. Site-specific mutations of the COPI binding domain abolished suppression of the sec21 mutants. Our results indicate that overexpression of MST27 provides an increased number of coat binding sites on membranes of the early secretory pathway and thereby promotes vesicle formation. As a consequence, the amount of cargo that can bind COPI might be important for the regulation of the vesicle flow in the early secretory pathway.  相似文献   

4.
Poliovirus (PV) replicates its genome in association with membranous vesicles in the cytoplasm of infected cells. To elucidate the origin and mode of formation of PV vesicles, immunofluorescence labeling with antibodies against the viral vesicle marker proteins 2B and 2BC, as well as cellular markers of the endoplasmic reticulum (ER), anterograde transport vesicles, and the Golgi complex, was performed in BT7-H cells. Optical sections obtained by confocal laser scanning microscopy were subjected to a deconvolution process to enhance resolution and signal-to-noise ratio and to allow for a three-dimensional representation of labeled membrane structures. The mode of formation of the PV vesicles was, on morphological grounds, similar to the formation of anterograde membrane traffic vesicles in uninfected cells. ER-resident membrane markers were excluded from both types of vesicles, and the COPII components Sec13 and Sec31 were both found to be colocalized on the vesicular surface, indicating the presence of a functional COPII coat. PV vesicle formation during early time points of infection did not involve the Golgi complex. The expression of PV protein 2BC or the entire P2 and P3 genomic region led to the production of vesicles carrying a COPII coat and showing the same mode of formation as vesicles produced after PV infection. These results indicate that PV vesicles are formed at the ER by the cellular COPII budding mechanism and thus are homologous to the vesicles of the anterograde membrane transport pathway.  相似文献   

5.
Coat protein complexes contain an inner shell that sorts cargo and an outer shell that helps deform the membrane to give the vesicle its shape. There are three major types of coated vesicles in the cell: COPII, COPI, and clathrin. The COPII coat complex facilitates vesicle budding from the endoplasmic reticulum (ER), while the COPI coat complex performs an analogous function in the Golgi. Clathrin-coated vesicles mediate traffic from the cell surface and between the trans-Golgi and endosome. While the assembly and structure of these coat complexes has been extensively studied, the disassembly of COPII and COPI coats from membranes is less well understood. We describe a proteomic and genetic approach that connects the J-domain chaperone auxilin, which uncoats clathrin-coated vesicles, to COPII and COPI coat complexes. Consistent with a functional role for auxilin in the early secretory pathway, auxilin binds to COPII and COPI coat subunits. Furthermore, ER–Golgi and intra-Golgi traffic is delayed at 15°C in swa2Δ mutant cells, which lack auxilin. In the case of COPII vesicles, we link this delay to a defect in vesicle fusion. We propose that auxilin acts as a chaperone and/or uncoating factor for transport vesicles that act in the early secretory pathway.  相似文献   

6.
Coat protein complex II (COPII) vesicle formation at the endoplasmic reticulum (ER) transports nascent secretory proteins forward to the Golgi complex. To further define the machinery that packages secretory cargo and targets vesicles to Golgi membranes, we performed a comprehensive proteomic analysis of purified COPII vesicles. In addition to previously known proteins, we identified new vesicle proteins including Coy1, Sly41 and Ssp120, which were efficiently packaged into COPII vesicles for trafficking between the ER and Golgi compartments. Further characterization of the putative calcium‐binding Ssp120 protein revealed a tight association with Emp47 and in emp47Δ cells Ssp120 was mislocalized and secreted. Genetic analyses demonstrated that EMP47 and SSP120 display identical synthetic positive interactions with IRE1 and synthetic negative interactions with genes involved in cell wall assembly. Our findings support a model in which the Emp47–Ssp120 complex functions in transport of plasma membrane glycoproteins through the early secretory pathway.   相似文献   

7.
Prior to binding to a high affinity peptide and transporting it to the cell surface, major histocompatibility complex class I molecules are retained inside the cell by retention in the endoplasmic reticulum (ER), recycling through the ER-Golgi intermediate compartment and possibly the cis-Golgi, or both. Using fluorescence microscopy and a novel in vitro COPII (ER-to-ER-Golgi intermediate compartment) vesicle formation assay, we find that in both lymphocytes and fibroblasts that lack the functional transporter associated with antigen presentation, class I molecules exit the ER and reach the cis-Golgi. Intriguingly, in wild-type T1 lymphoma cells, peptide-occupied and peptide-receptive class I molecules are simultaneously exported from ER membranes with similar efficiencies. Our results suggest that binding of high affinity peptide and exit from the ER are not coupled, that the major histocompatibility complex class I quality control compartment extends into the Golgi apparatus under standard conditions, and that peptide loading onto class I molecules may occur in post-ER compartments.  相似文献   

8.
Upon starvation, Grh1, a peripheral membrane protein located at endoplasmic reticulum (ER) exit sites and early Golgi in Saccharomyces cerevisiae under growth conditions, relocates to a compartment called compartment for unconventional protein secretion (CUPS). Here we report that CUPS lack Golgi enzymes, but contain the coat protein complex II (COPII) vesicle tethering protein Uso1 and the Golgi t-SNARE Sed5. Interestingly, CUPS biogenesis is independent of COPII- and COPI-mediated membrane transport. Pik1- and Sec7-mediated membrane export from the late Golgi is required for complete assembly of CUPS, and Vps34 is needed for their maintenance. CUPS formation is triggered by glucose, but not nitrogen starvation. Moreover, upon return to growth conditions, CUPS are absorbed into the ER, and not the vacuole. Altogether our findings indicate that CUPS are not specialized autophagosomes as suggested previously. We suggest that starvation triggers relocation of secretory and endosomal membranes, but not their enzymes, to generate CUPS to sort and secrete proteins that do not enter, or are not processed by enzymes of the ER–Golgi pathway of secretion.  相似文献   

9.
COPII-coated vesicles are involved in protein transport from the endoplasmic reticulum to the Golgi apparatus. COPII consists of three parts: Sar1p and the two protein complexes, Sec23p-Sec24p and Sec13p-Sec31p. Using a glutathione S-transferase fusion protein with mouse Sec23p, we identified a novel mammalian Sec23p-interacting protein, p125, which is clearly distinct from Sec24p. The N-terminal region of p125 is rich in proline residues, and the central and C-terminal regions exhibit significant homology to phospholipid-modifying proteins, especially phosphatidic acid preferring-phospholipase A1. We transiently expressed p125 and mouse Sec23p in mammalian cells and examined their interaction. The results showed that the N-terminal region of p125 is important for the interaction with Sec23p. We confirmed the interaction between the two proteins by a yeast two-hybrid assay. Overexpression of p125, like that of mammalian Sec23p, caused disorganization of the endoplasmic reticulum-Golgi intermediate compartment and Golgi apparatus, suggesting its role in the early secretory pathway.  相似文献   

10.
In contrast with animals, plant cells contain multiple mobile Golgi stacks distributed over the entire cytoplasm. However, the distribution and dynamics of protein export sites on the plant endoplasmic reticulum (ER) surface have yet to be characterized. A widely accepted model for ER-to-Golgi transport is based on the sequential action of COPII and COPI coat complexes. The COPII complex assembles by the ordered recruitment of cytosolic components on the ER membrane. Here, we have visualized two early components of the COPII machinery, the small GTPase Sar1p and its GTP exchanging factor Sec12p in live tobacco (Nicotiana tabacum) leaf epidermal cells. By in vivo confocal laser scanning microscopy and fluorescence recovery after photobleaching experiments, we show that Sar1p cycles on mobile punctate structures that track with the Golgi bodies in close proximity but contain regions that are physically separated from the Golgi bodies. By contrast, Sec12p is uniformly distributed along the ER network and does not accumulate in these structures, consistent with the fact that Sec12p does not become part of a COPII vesicle. We propose that punctate accumulation of Sar1p represents ER export sites (ERES). The sites may represent a combination of Sar1p-coated ER membranes, nascent COPII membranes, and COPII vectors in transit, which have yet to lose their coats. ERES can be induced by overproducing Golgi membrane proteins but not soluble bulk-flow cargos. Few punctate Sar1p loci were observed that are independent of Golgi bodies, and these may be nascent ERES. The vast majority of ERES form secretory units that move along the surface of the ER together with the Golgi bodies, but movement does not influence the rate of cargo transport between these two organelles. Moreover, we could demonstrate using the drug brefeldin A that formation of ERES is strictly dependent on a functional retrograde transport route from the Golgi apparatus.  相似文献   

11.
To analyze the role of coat protein type II (COPII) coat components and targeting and fusion factors in selective export from the endoplasmic reticulum (ER) and transport to the Golgi, we have developed three novel, stage-specific assays. Cargo selection can be measured using a "stage 1 cargo capture assay," in which ER microsomes are incubated in the presence of glutathione S-transferase (GST)-tagged Sar1 GTPase and purified Sec23/24 components to follow recruitment of biosynthetic cargo to prebudding complexes. This cargo recruitment assay can be followed by two sequential assays that measure separately the budding of COPII-coated vesicles from ER microsomes (stage 2) and, finally, delivery of cargo-containing vesicles to the Golgi (stage 3). We show how these assays provide a means to identify the snap receptor (SNARE) protein rBet1 as an essential component that is not required for vesicle formation, but is required for vesicle targeting and fusion during ER-to-Golgi transport. In general, these assays provide an approach to characterize the biochemical basis for the recruitment of a wide variety of biosynthetic cargo proteins to COPII vesicles and the role of different transport components in the early secretory pathway of mammalian cells.  相似文献   

12.
Parasitophorous vacuoles (PV) that harbour Leishmania parasites acquire some characteristics from fusion with host cell vesicles. Recent studies have shown that PVs acquire and display resident endoplasmic reticulum (ER) molecules. We investigated the importance of ER molecules to PV biology by assessing the consequence of blocking the fusion of PVs with vesicles that originate from the early secretory pathway. This was achieved by targeting the N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) that mediate the fusion of early secretory vesicles. In the presence of dominant negative variants of sec22b or some of its known cognate partners, D12 and syntaxin 18, PVs failed to distend and harboured fewer parasites. These observations were confirmed in studies in which each of the SNAREs listed above including the intermediate compartment ER/Golgi SNARE, syntaxin 5, was knocked down. The knock-down of these SNARES had little or no measurable effect on the morphology of the ER or on activated secretion even though they resulted in a more significant reduction of PV size. Moreover, the knock-down of the ER/Golgi SNAREs resulted in significant reduction in parasite replication. Taken together, these studies provide further evidence that PVs acquire ER components by fusing with vesicles derived from the early secretory pathway; disruption of this interaction results in inhibition of the development of PVs as well as the limitation of parasite replication within infected cells.  相似文献   

13.
Carbon tetrachloride (CCl4) causes hepatotoxicity in mammals, with its hepatocytic metabolism producing radicals that attack the intracellular membrane system and destabilize intracellular vesicle transport. Inhibition of intracellular transport causes lipid droplet retention and abnormal protein distribution. The intracellular transport of synthesized lipids and proteins from the endoplasmic reticulum (ER) to the Golgi apparatus is performed by coat complex II (COPII) vesicle transport, but how CCl4 inhibits COPII vesicle transport has not been elucidated. COPII vesicle formation on the ER membrane is initiated by the recruitment of Sar1 protein from the cytoplasm to the ER membrane, followed by that of the COPII coat constituent proteins (Sec23, Sec24, Sec13, and Sec31). In this study, we evaluated the effect of CCl4 on COPII vesicle formation using the RLC-16 rat hepatocyte cell line. Our results showed that CCl4 suppressed ER-Golgi transport in RLC-16 cells. Using a reconstituted system of rat liver tissue-derived cytoplasm and RLC-16 cell-derived ER membranes, CCl4 treatment inhibited the recruitment of Sar1 and Sec13 from the cytosolic fraction to ER membranes. CCl4-induced changes in the ER membrane accordingly inhibited the accumulation of COPII vesicle-coated constituent proteins on the ER membrane, as well as the formation of COPII vesicles, which suppressed lipid and protein transport between the ER and Golgi apparatus. Our data suggest that CCl4 inhibits ER-Golgi intracellular transport by inhibiting COPII vesicle formation on the ER membrane in hepatocytes.  相似文献   

14.
Yeast Ypt1p-interacting protein (Yip1p) belongs to a conserved family of transmembrane proteins that interact with Rab GTPases. We encountered Yip1p as a constituent of ER-derived transport vesicles, leading us to hypothesize a direct role for this protein in transport through the early secretory pathway. Using a cell-free assay that recapitulates protein transport from the ER to the Golgi complex, we find that affinity-purified antibodies directed against the hydrophilic amino terminus of Yip1p potently inhibit transport. Surprisingly, inhibition is specific to the COPII-dependent budding stage. In support of this in vitro observation, strains bearing the temperature-sensitive yip1-4 allele accumulate ER membranes at a nonpermissive temperature, with no apparent accumulation of vesicle intermediates. Genetic interaction analyses of the yip1-4 mutation corroborate a function in ER budding. Finally, ordering experiments show that preincubation of ER membranes with COPII proteins decreases sensitivity to anti-Yip1p antibodies, indicating an early requirement for Yip1p in vesicle formation. We propose that Yip1p has a previously unappreciated role in COPII vesicle biogenesis.  相似文献   

15.
TRAPP I implicated in the specificity of tethering in ER-to-Golgi transport   总被引:9,自引:0,他引:9  
TRAPP is a conserved protein complex required early in the secretory pathway. Here, we report two forms of TRAPP, TRAPP I and TRAPP II, that mediate different transport events. Using chemically pure TRAPP I and COPII vesicles, we have reconstituted vesicle targeting in vitro. The binding of COPII vesicles to TRAPP I is specific, blocked by GTPgammaS, and, surprisingly, does not require other tethering factors. Our findings imply that TRAPP I is the receptor on the Golgi for COPII vesicles. Once the vesicle binds to TRAPP I, the small GTP binding protein Ypt1p is activated and other tethering factors are recruited.  相似文献   

16.
Annika Budnik 《FEBS letters》2009,583(23):3796-58
The first membrane trafficking step in the biosynthetic secretory pathway, the export of proteins and lipids from the endoplasmic reticulum (ER), is mediated by COPII-coated vesicles. In mammalian cells, COPII vesicle budding occurs at specialized sites on the ER, the so-called transitional ER (tER). Here, we discuss aspects of the formation and maintenance of these sites, the mechanisms by which cargo becomes segregated within them, and the propagation of ER exit sites (ERES) during cell division. All of these features are inherently linked to the formation, maintenance and function of the Golgi apparatus underlining the importance of ERES to Golgi function and more widely in terms of intracellular organization and cellular function.  相似文献   

17.
Coat proteins play multiple roles in the life cycle of a membrane‐bound transport intermediate, functioning in lipid bilayer remodeling, cargo selection and targeting to an acceptor compartment. The Coat Protein complex II (COPII) coat is known to act in each of these capacities, but recent work highlights the necessity for numerous accessory factors at all stages of transport carrier existence. Here, we review recent findings that highlight the roles of COPII and its regulators in the biogenesis of tubular COPII‐coated carriers in mammalian cells that enable cargo transport between the endoplasmic reticulum and ER‐Golgi intermediate compartments, the first step in a series of trafficking events that ultimately allows for the distribution of biosynthetic secretory cargoes throughout the entire endomembrane system.  相似文献   

18.
Traffic COPs and the formation of vesicle coats   总被引:9,自引:0,他引:9  
Forward and retrograde trafficking of secretory proteins between the endoplasmic reticulum and the Golgi apparatus is driven by two biochemically distinct vesicle coats, COPI and COPII. Assembly of the coats on their target membranes is thought to provide the driving force for membrane deformation and the selective packaging of cargo and targeting molecules into nascent transport vesicles. This review describes our current knowledge on these issues and discusses how the two coats may be differentially targeted and assembled to achieve protein sorting and transport within the early secretory pathway.  相似文献   

19.
COPII-coated vesicles, first identified in yeast and later characterized in mammalian cells, mediate protein export from the endoplasmic reticulum (ER) to the Golgi apparatus within the secretory pathway. In these organisms, the mechanism of vesicle formation is well understood, but the process of soluble cargo sorting has yet to be resolved. In plants, functional complements of the COPII-dependent protein traffic machinery were identified almost a decade ago, but the selectivity of the ER export process has been subject to considerable debate. To study the selectivity of COPII-dependent protein traffic in plants, we have developed an in vivo assay in which COPII vesicle transport is disrupted at two distinct steps in the pathway. First, overexpression of the Sar1p-specific guanosine nucleotide exchange factor Sec12p was shown to result in the titration of the GTPase Sar1p, which is essential for COPII-coated vesicle formation. A second method to disrupt COPII transport at a later step in the pathway was based on coexpression of a dominant negative mutant of Sar1p (H74L), which is thought to interfere with the uncoating and subsequent membrane fusion of the vesicles because of the lack of GTPase activity. A quantitative assay to measure ER export under these conditions was achieved using the natural secretory protein barley alpha-amylase and a modified version carrying an ER retention motif. Most importantly, the manipulation of COPII transport in vivo using either of the two approaches allowed us to demonstrate that export of the ER resident protein calreticulin or the bulk flow marker phosphinothricin acetyl transferase is COPII dependent and occurs at a much higher rate than estimated previously. We also show that the instability of these proteins in post-ER compartments prevents the detection of the true rate of bulk flow using a standard secretion assay. The differences between the data on COPII transport obtained from these in vivo experiments and in vitro experiments conducted previously using yeast components are discussed.  相似文献   

20.
Exit of cargo molecules from the endoplasmic reticulum (ER) for transport to the Golgi is the initial step in intracellular vesicular trafficking. The coat protein complex II (COPII) machinery is recruited to specialized regions of the ER, called ER exit sites (ERES), where it plays a central role in the early secretory pathway. It has been known for more than two decades that calcium is an essential factor in vesicle trafficking from the ER to Golgi apparatus. However, the role of calcium in the early secretory pathway is complicated and poorly understood. We and others previously identified Sec31A, an outer cage component of COPII, as an interacting protein for the penta-EF-hand calcium-binding protein ALG-2. In this study, we show that another calcium-binding protein, annexin A11 (AnxA11), physically associates with Sec31A by the adaptor function of ALG-2. Depletion of AnxA11 or ALG-2 decreases the population of Sec31A that is stably associated with the ERES and causes scattering of juxtanuclear ERES to the cell periphery. The synchronous ER-to-Golgi transport of transmembrane cargoes is accelerated in AnxA11- or ALG-2-knockdown cells. These findings suggest that AnxA11 maintains architectural and functional features of the ERES by coordinating with ALG-2 to stabilize Sec31A at the ERES.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号