共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
HnRNP L stimulates splicing of the eNOS gene by binding to variable-length CA repeats 总被引:13,自引:0,他引:13
In the human genome, dinucleotide repeats are common sequence elements of unknown functional significance. Here we demonstrate that CA repeats in intron 13 of the human endothelial nitric oxide synthase (eNOS) gene function as an unusual intronic splicing enhancer, whose activity depends on the CA repeat number. We identify the 65 kDa heterogenous nuclear ribonucleoprotein (hnRNP) L as the major factor that binds specifically and in a length-dependent manner to the CA-repeat enhancer. In addition, we show that hnRNP L functions as a specific activator of eNOS splicing, providing the first evidence for a role of hnRNP L in the regulation of mRNA splicing. We hypothesize that hnRNP L may be involved in the regulation of many other genes containing CA repeats or A/C-rich enhancers. 相似文献
3.
Opresko PL Mason PA Podell ER Lei M Hickson ID Cech TR Bohr VA 《The Journal of biological chemistry》2005,280(37):32069-32080
Defects in human RecQ helicases WRN and BLM are responsible for the cancer-prone disorders Werner syndrome and Bloom syndrome. Cellular phenotypes of Werner syndrome and Bloom syndrome, including genomic instability and premature senescence, are consistent with telomere dysfunction. RecQ helicases are proposed to function in dissociating alternative DNA structures during recombination and/or replication at telomeric ends. Here we report that the telomeric single-strand DNA-binding protein, POT1, strongly stimulates WRN and BLM to unwind long telomeric forked duplexes and D-loop structures that are otherwise poor substrates for these helicases. This stimulation is dependent on the presence of telomeric sequence in the duplex regions of the substrates. In contrast, POT1 failed to stimulate a bacterial 3'-5'-helicase. We find that purified POT1 binds to WRN and BLM in vitro and that full-length POT1 (splice variant 1) precipitates a higher amount of endogenous WRN protein, compared with BLM, from the HeLa nuclear extract. We propose roles for the cooperation of POT1 with RecQ helicases WRN and BLM in resolving DNA structures at telomeric ends, in a manner that protects the telomeric 3' tail as it is exposed during unwinding. 相似文献
4.
5.
Telomeric DNA sequences have been at the center stage of drug design for cancer treatment in recent years. The ability of these DNA structures to form four-stranded nucleic acid structures, called G-quadruplexes, has been perceived as target for inhibiting telomerase activity vital for the longevity of cancer cells. Being highly diverse in structural forms, these G-quadruplexes are subjects of detailed studies of ligand-DNA interactions of different classes, which will pave the way for logical design of more potent ligands in future. The binding of aminoglycosides was investigated with Oxytricha nova quadruplex forming DNA sequence (GGGGTTTTGGGG)(2). Isothermal titration calorimetry (ITC) determined ligand to quadruplex binding ratio shows 1:1 neomycin:quadruplex binding with association constants (K(a)) ~ 10(5) M(-1) while paromomycin was found to have a 2-fold weaker affinity than neomycin. The CD titration experiments with neomycin resulted in minimal changes in the CD signal. FID assays, performed to determine the minimum concentration required to displace half of the fluorescent probe bound, showed neomycin as the best of the all aminoglycosides studied for quadruplex binding. Initial NMR footprint suggests that ligand-DNA interactions occur in the wide groove of the quadruplex. Computational docking studies also indicate that aminoglycosides bind in the wide groove of the quadruplex. 相似文献
6.
Torigoe H 《Nucleosides, nucleotides & nucleic acids》2007,26(10-12):1255-1260
To understand the regulation mechanism of fission yeast telomeric DNA, we analyzed the structural properties of 4Gn: d(G(n)TTAC)(4) (n = 3, 4) and their interaction with the single-stranded telomeric DNA binding domain of telomere-binding protein Pot1 (Pot1DBD). 4G4 adopted only an antiparallel tetraplex in spite of a mixture of parallel and antiparallel tetraplexes of 4G3. The antiparallel tetraplex of 4G4 became unfolded upon the interaction with Pot1DBD. Considering that the antiparallel tetraplex inhibits telomerase-mediated telomere elongation, we conclude that the ability of Pot1 to unfold the antiparallel tetraplex is required for telomerase-mediated telomere regulation. 相似文献
7.
8.
hnRNP A1 may interact simultaneously with telomeric DNA and the human telomerase RNA in vitro 总被引:3,自引:0,他引:3 下载免费PDF全文
The hnRNP A1 protein and a shortened derivative (UP1) promote telomere elongation in mammalian cells. In support of a direct role for A1 in telomere biogenesis, we have shown that the recombinant UP1 protein binds to telomeric DNA sequences in vitro, and pulls down telomerase activity from a cell extract. Here we show that A1/UP1 can interact directly with the RNA component of human telomerase (hTR). A portion of A1/UP1 that contains RNA recognition motif 2 (RRM2) is sufficient for an interaction with the first 208 nt of hTR. Given that the portion of A1/UP1 that contains RRM1 is sufficient for binding to a telomeric DNA oligonucleotide, we have tested whether A1/UP1 can interact simultaneously with both nucleic acids. Using a chromatography assay, we find that A1/UP1 bound to hTR can interact with telomeric DNA. Notably, these interactions are sufficiently robust to withstand incubation in a cell extract. Our results suggest that hnRNP A1 may help recruit telomerase to the ends of chromosomes. 相似文献
9.
The fission yeast (Schizosaccharomyces pombe) taz1 gene encodes a telomere-associated protein. It contains a single copy of a Myb-like motif termed the telobox that is also found in the human telomere binding proteins TRF1 and TRF2, and Tbf1p, a protein that binds to sequences found within the sub-telomeric regions of budding yeast (Saccharomyces cerevisiae) chromosomes. Taz1p was synthesised in vitro and shown to bind to a fission yeast telomeric DNA fragment in a sequence specific manner that required the telobox motif. Like the mammalian TRF proteins, Taz1p bound to DNA as a preformed homodimer. The isolated Myb-like domain was also capable of sequence specific DNA binding, although with less specificity than the full-length dimer. Surprisingly, a protein extract produced from a taz1–fission yeast strain still contained the major telomere binding activity (complex I) we have characterised previously, suggesting that there could be other abundant telomere binding proteins in fission yeast. One candidate, SpX, was also synthesised in vitro, but despite the presence of two telobox domains, no sequence specific binding to telomeric DNA was detected. 相似文献
10.
The telomerase enzyme, which synthesizes telomeric DNA repeats, is regulated in cis at individual chromosome ends by the telomeric protein/DNA complex in a manner dependent on telomere repeat-array length. A dynamic interplay between telomerase-inhibiting factors bound at duplex DNA repeats and telomerase-promoting ones bound at single-stranded terminal DNA overhangs appears to modulate telomerase activity and to be directly related to the transient deprotection of telomeres. We discuss recent advances on the mechanism of telomerase regulation at chromosome ends in both yeast and mammalian systems. 相似文献
11.
Telomeres are specific protein–DNA complexes that protect the ends of eukaryotic chromosomes from fusion and degradation and are maintained by a specialized mechanism exerted by telomerase and telomere-binding proteins (TBPs), which are evolutionarily conserved. AtTBP1 is an Arabidopsis thaliana protein that binds plant telomeric DNA in vitro. Here, we demonstrated that lack of AtTBP1 results in a deregulation of telomere length control, with mutant telomeres expanding steadily by the fourth generation. DNA-binding studies with mutant AtTBP1 proteins showed that the Myb-extension domain of AtTBP1 is required for binding to plant telomeric DNA. Our results suggest that AtTBP1 is involved in the telomere length mechanism in A. thaliana and that the Myb-extension domain of AtTBP1 may stabilize plant telomeric DNA binding. 相似文献
12.
Jacob A. Theruvathu Agus Darwanto Chia Wei Hsu Lawrence C. Sowers 《Nucleic acids research》2014,42(14):9063-9073
Telomeric DNA can form duplex regions or single-stranded loops that bind multiple proteins, preventing it from being processed as a DNA repair intermediate. The bases within these regions are susceptible to damage; however, mechanisms for the repair of telomere damage are as yet poorly understood. We have examined the effect of three thymine (T) analogs including uracil (U), 5-fluorouracil (5FU) and 5-hydroxymethyluracil (5hmU) on DNA–protein interactions and DNA repair within the GGTTAC telomeric sequence. The replacement of T with U or 5FU interferes with Pot1 (Pot1pN protein of Schizosaccharomyces pombe) binding. Surprisingly, 5hmU substitution only modestly diminishes Pot1 binding suggesting that hydrophobicity of the T-methyl group likely plays a minor role in protein binding. In the GGTTAC sequence, all three analogs can be cleaved by DNA glycosylases; however, glycosylase activity is blocked if Pot1 binds. An abasic site at the G or T positions is cleaved by the endonuclease APE1 when in a duplex but not when single-stranded. Abasic site formation thermally destabilizes the duplex that could push a damaged DNA segment into a single-stranded loop. The inability to enzymatically cleave abasic sites in single-stranded telomere regions would block completion of the base excision repair cycle potentially causing telomere attrition. 相似文献
13.
Eugene V. Shakirov Thomas D. McKnight Dorothy E. Shippen 《The Plant journal : for cell and molecular biology》2009,58(6):1004-1015
Telomeres define the ends of linear eukaryotic chromosomes and are required for genome maintenance and continued cell proliferation. The extreme ends of telomeres terminate in a single-strand protrusion, termed the G-overhang, which, in vertebrates and fission yeast, is bound by evolutionarily conserved members of the POT1 (protection of telomeres) protein family. Unlike most other model organisms, the flowering plant Arabidopsis thaliana encodes two divergent POT1-like proteins. Here we show that the single-strand telomeric DNA binding activity present in A. thaliana nuclear extracts is not dependent on POT1a or POT1b proteins. Furthermore, in contrast to POT1 proteins from yeast and vertebrates, recombinant POT1a and POT1b proteins from A. thaliana , and from two additional Brassicaceae species, Arabidopsis lyrata and Brassica oleracea (cauliflower), fail to bind single-strand telomeric DNA in vitro under the conditions tested. Finally, although we detected four single-strand telomeric DNA binding activities in nuclear extracts from B. oleracea , partial purification and DNA cross-linking analysis of these complexes identified proteins that are smaller than the predicted sizes of BoPOT1a or BoPOT1b. Taken together, these data suggest that POT1 proteins are not the major single-strand telomeric DNA binding activities in A. thaliana and its close relatives, underscoring the remarkable functional divergence of POT1 proteins from plants and other eukaryotes. 相似文献
14.
Pollice A Zibella MP Bilaud T Laroche T Pulitzer JF Gilson E 《Biochemical and biophysical research communications》2000,268(3):909-915
We have purified a 100 kDa protein, resolved in a Southwestern binding screen of total nuclear proteins from Hela cells with double-stranded human telomeric probe. A polyclonal antiserum raised by this protein recognizes purified nucleolin and stains nucleoli in growing Hela cells. We demonstrate that a truncated form of human nucleolin and a purified deletion derivative of mouse nucleolin bind in vitro to duplex telomeric DNA. This study suggests a new link between telomeres and the nucleolus. 相似文献
15.
Nagata T Takada Y Ono A Nagata K Konishi Y Nukina T Ono M Matsugami A Furukawa A Fujimoto N Fukuda H Nakagama H Katahira M 《Nucleic acids research》2008,36(21):6816-6824
We found that UP1, a proteolytic product of heterogeneous nuclear ribonucleoprotein A1 (hnRNP A1), both enhances and represses the telomerase activity. The formation of the UP1–telomerase RNA–telomeric DNA ternary complex was revealed by a gel retardation experiment. The interactions in the ternary and binary complexes were elucidated by NMR. UP1 has two nucleic acid-binding domains, BD1 and BD2. In the UP1–telomerase RNA binary complex, both BD1 and BD2 interact with telomerase RNA. Interestingly, when telomeric DNA was added to the binary complex, telomeric DNA bound to BD1 in place of telomerase RNA. Thus, BD1 basically binds to telomeric DNA, while BD2 mainly binds to telomerase RNA, which resulted in the formation of the ternary complex. Here, UP1 bridges telomerase and telomeric DNA. It is supposed that UP1/hnRNP A1 serves to recruit telomerase to telomeric DNA through the formation of the ternary complex. A model has been proposed for how hnRNP A1/UP1 contributes to enhancement of the telomerase activity through recruitment and unfolding of the quadruplex of telomeric DNA. 相似文献
16.
p53 stimulates human topoisomerase I activity by modulating its DNA binding 总被引:1,自引:0,他引:1 下载免费PDF全文
The tumor suppressor protein p53 and the human DNA topoisomerase I (htopoI) interact with each other, which leads to a stimulation of the catalytic activity of htopoI. Moreover, p53 stimulates the topoisomerase I-induced recombination repair (TIRR) reaction. However, little was known about how p53 stimulates this topoisomerase I activity. Here we demonstrate that monomeric p53 is sufficient for the stimulation of the topoisomerase I-catalyzed relaxation activity, but the tetrameric form of p53 is required for the stimulation of TIRR. We also show that p53 stimulates topoisomerase I activity by increasing the dissociation of htopoI from DNA. Since htopoI forms a closed ring structure around the DNA, our results suggest that p53 induces a conformational change within htopoI that results in an opening of the clamp, and thereby releases htopoI from DNA. 相似文献
17.
Sequence-specific binding property of Arabidopsis thaliana telomeric DNA binding protein 1 (AtTBP1) 总被引:1,自引:0,他引:1
We have identified an Arabidopsis thaliana cDNA, designated as AtTBP1, encoding a protein with a predicted size of 70.6 kDa that specifically binds to the plant telomeric repeat sequence TTTAGGG. AtTBP1 is present as a single-copy gene in Arabidopsis genome and is expressed ubiquitously in various organs. AtTBP1 has a single Myb telomeric DNA binding domain at the C-terminus and an extensive homology with other known telomere-binding proteins. The isolated C-terminus of AtTBP1 is capable of sequence-specific DNA binding to plant duplex telomeric DNA. These results suggest that AtTBP1 may play important roles in plant telomere function in vivo. 相似文献
18.
We examined structural properties of poly d(C4A2).d(T2G4), the telomeric DNA sequence of the ciliated protozoan Tetrahymena. Under conditions of high negative supercoiling, poly d(C4A2).d(T2G4) inserted in a circular plasmid vector was preferentially sensitive to digestion with S1 nuclease. Only the C4A2 strand was sensitive to first-strand S1 cutting, with a markedly skewed pattern of hypersensitive sites in tracts of either 46 or 7 tandem repeats. Linear poly d(C4A2).(T2G4) showed no preferential S1 sensitivity, no circular dichroism spectra indicative of a Z-DNA conformation, no unusual Tm, and no unusual migration in polyacrylamide gel electrophoresis. The S1 nuclease sensitivity properties are consistent with a model proposed previously for supercoiled poly d(CT).d(AG) (Pulleyblank et al., Cell 42:271-280, 1985), consisting of a double-stranded, protonated, right-handed underwound helix. We propose that this structure is shared by related telomeric sequences and may play a role in their biological recognition. 相似文献
19.
The fission yeast Pot1 (protection of telomeres) protein is a single-stranded telomeric DNA-binding protein and is required to protect the ends of chromosomes. Its N-terminal DNA-binding domain, Pot1pN, shows sequence similarity to the first OB fold of the telomere-binding protein alpha subunit of Oxytricha nova. The minimal-length telomeric ssDNA required to bind Pot1pN was determined to consist of six nucleotides, GGTTAC, by gel filtration chromatography and filter-binding assay (K(D) = 83 nM). Pot1pN is a monomer, and each monomer binds one hexanucleotide. Experiments with nucleotide substitutions demonstrated that the central four nucleotides are crucial for binding. The dependence of Pot1pN-ssDNA binding on salt concentration was consistent with a single ionic contact between the protein and the ssDNA phosphate backbone, such that at physiological salt condition 83% of the free energy of binding is nonelectrostatic. Subsequent binding experiments with longer ssDNAs indicated that Pot1pN binds to telomeric ssDNA with 3' end preference and in a highly cooperative manner that mainly results from DNA-induced protein-protein interactions. Together, the binding properties of Pot1pN suggest that the protein anchors itself at the very 3' end of a chromosome and then fills in very efficiently, coating the entire single-stranded overhang of the telomere. 相似文献
20.
Yoo SJ 《Molecules and cells》2005,20(3):446-451
Diap1 is an essential Drosophila cell death regulator that binds to caspases and inhibits their activity. Reaper, Grim and Hid each antagonize Diap1 by binding to its BIR domain, activating the caspases and eventually causing cell death. Reaper and Hid induce cell death in a Ring-dependent manner by stimulating Diap1 auto-ubiquitination and degradation. It was not clear that how Grim causes the ubiquitination and degradation of Diap1 in Grim-dependent cell death. We found that Grim stimulates poly-ubiquitination of Diap1 in the presence of UbcD1 and that it binds to UbcD1 in a GST pull-down assay, so presumably promoting Diap1 degradation. The possibility that dBruce is another E2 interacting with Diap1 was examined. The UBC domain of dBruce slightly stimulated poly-ubiquitination of Diap1 in Drosophila extracts but not in the reconstitution assay. However Grim did not stimulate Diap1 poly-ubiquitination in the presence of the UBC domain of dBruce. Taken together, these results suggest that Grim stimulates the poly-ubiquitination and presumably degradation of Diap1 in a novel way by binding to UbcD1 but not to the UBC domain of dBruce as an E2. 相似文献