首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Alterations in renal function contribute to Goldblatt two-kidney, one-clip (2K1C) hypertension. A previous study indicated that bioavailability of cytochrome P-450 metabolites epoxyeicosatrienoic acids (EETs) is decreased while that of 20-hydroxyeicosatetraenoic acids (20-HETE) is increased in this model. We utilized the inhibitor of soluble epoxide hydrolase cis-4-[4-(3-adamantan-1-yl-ureido)-cyclohexyloxy]-benzoic acid (c-AUCB) and HET-0016, the inhibitor of 20-HETE production, to study the role of EETs and 20-HETE in the regulation of renal function. Chronic c-AUCB treatment significantly decreased systolic blood pressure (SBP) (133 ± 1 vs. 163 ± 3 mmHg) and increased sodium excretion (1.23 ± 0.10 vs. 0.59 ± 0.03 mmol/day) in 2K1C rats. HET-0016 did not affect SBP and sodium excretion. In acute experiments, renal blood flow (RBF) was decreased in 2K1C rats (5.0 ± 0.2 vs. 6.9 ± 0.2 ml·min(-1)·g(-1)). c-AUCB normalized RBF in 2K1C rats (6.5 ± 0.6 ml·min(-1)·g(-1)). HET-0016 also increased RBF in 2K1C rats (5.8 ± 0.2 ml·min(-1)·g(-1)). Although RBF and glomerular filtration rate (GFR) remained stable in normotensive rats during renal arterial pressure (RAP) reductions, both were significantly reduced at 100 mmHg RAP in 2K1C rats. c-AUCB did not improve autoregulation but increased RBF at all RAPs and shifted the pressure-natriuresis curve to the left. HET-0016-treated 2K1C rats exhibited impaired autoregulation of RBF and GFR. Our data indicate that c-AUCB displays antihypertensive properties in 2K1C hypertension that are mediated by an improvement of RBF and pressure natriuresis. While HET-0016 enhanced RBF, its anti-natriuretic effect likely prevented it from producing a blood pressure-lowering effect in the 2K1C model.  相似文献   

2.
Recent studies in smooth muscle-specific Na(+)/Ca(2+) exchanger-1 knockout (NCX1(sm-/-)) mice reveal reduced arterial pressure and impaired myogenic responses compared with heterozygous littermates. In this study, we determined renal function in male anesthetized NCX1(sm-/-) mice and NCX1 heterozygous (NCX1(+/-)) littermates before and during acute ANG II infusions. Systolic blood pressure in awake mice was lower in NCX1(sm-/-) mice compared with NCX1(+/-) mice (119 ± 4 vs. 131 ± 3 mmHg, P < 0.05). Acute ANG II infusions (5 ng·min(-1)·g(-1) body wt) increased mean arterial pressure in anesthetized NCX1(+/-) (109 ± 2 to 134 ± 3 mmHg, P < 0.001, n = 8) and NCX1(sm-/-) (101 ± 8 to 129 ± 8 mmHg, P < 0.01, n = 6) mice to a similar extent (Δ25 ± 1 vs. Δ28 ± 4 mmHg, P > 0.05). In response to ANG II infusions, PAH clearance (C(PAH)) decreased from 1.39 ± 0.27 to 0.98 ± 0.22 ml·min(-1)·g(-1) (P < 0.05) and glomerular filtration rate (GFR) was reduced from 0.50 ± 0.09 to 0.32 ± 0.06 ml·min(-1)·g(-1) (P < 0.05) in NCX1(+/-) mice. In contrast, the NCX1(sm-/-) did not exhibit significant reductions in either C(PAH) (1.16 ± 0.30 to 1.22 ± 0.34 ml·min(-1)·g(-1), P > 0.05) or GFR (0.48 ± 0.08 to 0.41 ± 0.05 ml·min(-1)·g(-1), P > 0.05) during acute ANG II infusions. Using flometry to measure renal blood flow continuously, NCX1(sm-/-) mice had significantly attenuated responses to ANG II infusions (-34.2 ± 3.9%, P < 0.05) compared with those in NCX1(+/-) mice (-48 ± 2%) or in wild-type mice (-69 ± 7%). These data indicate that renal vascular responses to ANG II are attenuated in NCX1(sm-/-) mice compared with NCX1(+/-) mice and that NCX1 contributes to the renal vasoconstriction response to acute ANG II infusions.  相似文献   

3.
The tubuloglomerular feedback mechanism (TGF) plays an important role in regulating single-nephron glomerular filtration rate (GFR) by coupling distal tubular flow to arteriolar tone. It is not known whether TGF is active in the developing kidney or whether it can regulate renal vascular tone and thus GFR during intrauterine life. TGF characteristics were examined in late-gestation ovine fetuses and lambs under normovolemic and volume-expanded (VE) conditions. Lambs and pregnant ewes were anesthetized and the fetuses were delivered via a caesarean incision into a heated water bath, with the umbilical cord intact. Under normovolemic conditions, mean arterial pressure of the fetuses was lower than lambs (51 ± 1 vs. 64 ± 3 mmHg). The maximum TGF response (ΔP(SFmax)) was found to be lower in fetuses than lambs when tubular perfusion was increased from 0 to 40 nl/min (5.4 ± 0.7 vs. 10.6 ± 0.4 mmHg). Furthermore, the flow rate eliciting half-maximal response [turning point (TP)] was 15.7 ± 0.9 nl/min in fetuses compared with 19.3 ± 1.0 nl/min in lambs, indicating a greater TGF sensitivity of the prenatal kidney. VE decreased ΔP(SFmax) (4.2 ± 0.4 mmHg) and increased TP to 23.7 ± 1.3 nl/min in lambs. In fetuses, VE increased stop-flow pressure from 26.6 ± 1.5 to 30.3 ± 0.8 mmHg, and reset TGF sensitivity so that TP increased to 21.3 ± 0.7 nl/min, but it had no effect on ΔP(SFmax). This study provides direct evidence that the TGF mechanism is active during fetal life and responds to physiological stimuli. Moreover, reductions in TGF sensitivity may contribute to the increase in GFR at birth.  相似文献   

4.
Diabetic nephropathy is a major cause of end-stage renal disease worldwide. The current studies were performed to determine the later stages of the progression of renal disease in type II diabetic mice (BKS; db/db). Methodology was developed for determining glomerular filtration rate (GFR) in conscious, chronically instrumented mice using continuous intravenous infusion of FITC-labeled inulin to achieve a steady-state plasma inulin concentration. Obese diabetic mice exhibited increased GFR compared with control mice. GFR averaged 0.313 ± 0.018 and 0.278 ± 0.007 ml/min in 18-wk-old obese diabetic (n = 11) and control (n = 13) mice, respectively (P < 0.05). In 28-wk-old obese diabetic (n = 10) and control (n = 15) mice, GFR averaged 0.348 ± 0.030 and 0.279 ± 0.009 ml/min, respectively (P < 0.05). GFR expressed per gram BW was significantly reduced in 18- and 28-wk-old obese diabetic compared with control mice (5.9 ± 0.3 vs. 9.0 ± 0.3; 6.6 ± 0.6 vs. 7.8 ± 0.3 μl·min(-1)·g body wt(-1)), respectively (P < 0.05). However, older nonobese type II diabetic mice had significantly reduced GFR (0.179 ± 0.023 ml/min; n = 6) and elevated urinary albumin excretion (811 ± 127 μg/day) compared with obese diabetic and control mice (514 ± 54, 171 ± 18 μg/day), which are consistent with the advanced stages of renal disease. These studies suggest that hyperfiltration contributes to the progression of renal disease in type II diabetic mice.  相似文献   

5.
Fetal uninephrectomy (uni-x) at 100 days of gestation results in compensatory nephrogenesis in the remaining kidney, resulting in a 30% reduction in total nephron number in male sheep. Recently, we showed that uni-x males at 6 mo of age have elevated arterial pressure, reduced renal blood flow (RBF), glomerular filtration rate (GFR), and low plasma renin levels (Singh R, Denton K, Bertram J, Jefferies A, Head G, Lombardo P, Schneider-Kolsky M, Moritz K. J Hypertens 27: 386-396, 2009; Singh R, Denton K, Jefferies A, Bertram J, Moritz K. Clin Sci (Lond) 118: 669-680, 2010). We hypothesized this was due to upregulation of the intrarenal renin-angiotensin system (RAS). In this study, renal responses to ANG II infusion and ANG II type 1 receptor (AT1R) blockade were examined in the same 6-mo-old male sheep. Uni-x animals had reduced levels of renal tissue and plasma renin and ANG II. Renal gene expression of renin, and gene and protein levels of AT1R and AT2R, were significantly lower in uni-x animals. In response to graded ANG II infusion, sham animals had the expected decrease in conscious RBF and GFR. Interestingly, the response was biphasic in uni-x sheep, with GFR initially decreasing, but then increasing at higher ANG II doses (34 ± 7%; P(group × treatment) < 0.001), due to a paradoxical decrease in renal vascular resistance (P(group × treatment) < 0.001). In response to AT1R blockade, while GFR and RBF responded similarly between groups, there was a marked increase in sodium excretion in uni-x compared with sham sheep (209 ± 35 vs. 25 ± 12%; P < 0.001). In conclusion, in 6-mo-old male sheep born with a single kidney, these studies demonstrate that this is a low-renin form of hypertension, in which responses to ANG II are perturbed and the intrarenal RAS is downregulated.  相似文献   

6.
Patients with pre-existing hypertension are at a particular risk of fatal outcome due to acute renal failure (ARF). We investigate the effects of angiotensin II type-1 receptor blocker (ARB) losartan, on haemodynamics and biochemical parameters in adult male spontaneously hypertensive rats (SHR) with ischemia/reperfusion ARF. SHR were randomly selected in three experimental groups: sham-operated group (SHAM), ARF group, and ARF+LOS group (losartan, 10 mg/kg/b.w. given by infusion during the period of three hours after reperfusion). Beside the improvement of systemic haemodynamics 24 h after reperfusion, losartan significantly increased renal blood flow (RBF: 19.33±3.29 ml/min/kg vs. 8.03±1.04 ml/min/kg, p<0.05) and decreased renal vascular resistance (RVR) compared to ARF (8.85±1.21 mmHg × min × kg/ml vs. 19.90±2.35 mmHg × min × kg/ml, p<0.001). Plasma creatinine (Pcr), urea (Pu) and phosphates (Pphos) were significantly reduced in ARF+LOS group compared to ARF group (Pcr: 99.11±14.56 μmol/l vs. 242.71±20.25 μmol/l, p<0.001; Pu: 33.72±4.69 mmol/l vs. 61.90±3.93 mmol/l, p<0.001; 2.7±0.42 mmol/l vs. 5.57±0.61 mmol/l, p<0.01). Our results demonstrate that losartan improves systemic and regional haemodynamic and biochemical parameters in hypertension with ARF.  相似文献   

7.
Sustained hyperglycemia is associated with increased oxidative stress resulting in decreased intrarenal oxygen tension (Po(2)) due to increased oxygen consumption (Qo(2)). Chronic blockade of the main superoxide radicals producing system, the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, normalizes Qo(2) by isolated proximal tubular cells (PTC) and reduces proteinuria in diabetes. The aim was to investigate the effects of acute NADPH oxidase inhibition on tubular Na(+) transport and kidney Po(2) in vivo. Glomerular filtration rate (GFR), renal blood flow (RBF), filtration fraction (FF), Na(+) excretion, fractional Li(+) excretion, and intrarenal Po(2) was measured in control and streptozotocin-diabetic rats during baseline and after acute NADPH oxidase inhibition using apocynin. The effects on tubular transporters were investigated using freshly isolated PTC. GFR was increased in diabetics compared with controls (2.2 ± 0.3 vs. 1.4 ± 0.1 ml·min(-1)·kidney(-1)). RBF was similar in both groups, resulting in increased FF in diabetics. Po(2) was reduced in cortex and medulla in diabetic kidneys compared with controls (34.4 ± 0.7 vs. 42.5 ± 1.2 mmHg and 15.7 ± 1.2 vs. 25.5 ± 2.3 mmHg, respectively). Na(+) excretion was increased in diabetics compared with controls (24.0 ± 4.7 vs. 9.0 ± 2.0 μm·min(-1)·kidney(-1)). In controls, all parameters were unaffected. However, apocynin increased Na(+) excretion (+112%) and decreased fractional lithium reabsorption (-10%) in diabetics, resulting in improved cortical (+14%) and medullary (+28%) Po(2). Qo(2) was higher in PTC isolated from diabetic rats compared with control. Apocynin, dimethylamiloride, and ouabain reduced Qo(2), but the effects of combining apocynin with either dimethylamiloride or ouabain were not additive. In conclusion, NADPH oxidase inhibition reduces tubular Na(+) transport and improves intrarenal Po(2) in diabetes.  相似文献   

8.
A close relationship between changes in renal interstitial fluid (RIF) ATP concentrations and renal autoregulatory or tubuloglomerular feedback (TGF)-dependent changes in renal vascular resistance (RVR) has been demonstrated, but it has not been determined whether the changes in RIF ATP are a consequence or the cause of the changes in RVR. The present study was performed in anesthetized dogs to assess the changes in RIF ATP following changes in renal arterial pressure (RAP) or stimulation of the TGF mechanism under conditions where changes in RVR were prevented by nifedipine, a calcium channel blocker. RIF ATP levels were measured by using microdialysis probes. Intra-arterial infusion of nifedipine (0.36 microg x kg(-1) x min(-1)) increased renal blood flow (RBF: from 4.49 +/- 0.27 to 5.34 +/- 0.39 ml x min(-1) x g(-1)) and glomerular filtration rate (GFR: from 0.84 +/- 0.07 to 1.09 +/- 0.11 ml x min(-1) x g(-1)). Under conditions of nifedipine infusion, autoregulatory adjustments in RBF, GFR, and RVR were not observed during stepwise reductions in RAP within the autoregulatory range (from 135 +/- 7 to 76 +/- 1 mmHg, n = 7). Furthermore, stimulation of the TGF mechanism with intra-arterial infusion of acetazolamide (100 microg x kg(-1) x min(-1)) did not alter RBF, GFR, and RVR (n = 7). During treatment with nifedipine, RIF ATP levels were significantly decreased in response to reductions in RAP (10.7 +/- 0.7, 5.8 +/- 0.7 and 2.8 +/- 0.3 nmol/l at 135 +/- 7, 101 +/- 4, and 76 +/- 1 mmHg, n = 7) and increased by acetazolamide infusion (from 8.8 +/- 0.8 to 17.0 +/- 1.8 nmol/l, n = 7). These results are similar to those that occurred in dogs not treated with nifedipine and thus demonstrate that the changes in RIF ATP can occur in the absence of autoregulatory or TGF-mediated changes in RVR. The data provide further support to the hypothesis that RIF ATP contributes to adjustments in RVR associated with renal autoregulation and changes in activity of the TGF mechanism.  相似文献   

9.
Renal microvascular (MV) damage and loss contribute to the progression of renal injury in renovascular disease (RVD). Whether a targeted intervention in renal microcirculation could reverse renal damage is unknown. We hypothesized that intrarenal vascular endothelial growth factor (VEGF) therapy will reverse renal dysfunction and decrease renal injury in experimental RVD. Unilateral renal artery stenosis (RAS) was induced in 14 pigs, as a surrogate of chronic RVD. Six weeks later, renal blood flow (RBF) and glomerular filtration rate (GFR) were quantified in vivo in the stenotic kidney using multidetector computed tomography (CT). Then, intrarenal rhVEGF-165 or vehicle was randomly administered into the stenotic kidneys (n = 7/group), they were observed for 4 additional wk, in vivo studies were repeated, and then renal MV density was quantified by 3D micro-CT, and expression of angiogenic factors and fibrosis was determined. RBF and GFR, MV density, and renal expression of VEGF and downstream mediators such as p-ERK 1/2, Akt, and eNOS were significantly reduced after 6 and at 10 wk of untreated RAS compared with normal controls. Remarkably, administration of VEGF at 6 wk normalized RBF (from 393.6 ± 50.3 to 607.0 ± 45.33 ml/min, P < 0.05 vs. RAS) and GFR (from 43.4 ± 3.4 to 66.6 ± 10.3 ml/min, P < 0.05 vs. RAS) at 10 wk, accompanied by increased angiogenic signaling, augmented renal MV density, and attenuated renal scarring. This study shows promising therapeutic effects of a targeted renal intervention, using an established clinically relevant large-animal model of chronic RAS. It also implies that disruption of renal MV integrity and function plays a pivotal role in the progression of renal injury in the stenotic kidney. Furthermore, it shows a high level of plasticity of renal microvessels to a single-dose VEGF-targeted intervention after established renal injury, supporting promising renoprotective effects of a novel potential therapeutic intervention to treat chronic RVD.  相似文献   

10.
Glomerular filtration rate (GFR) and renal blood flow (RBF) are normally kept constant via renal autoregulation. However, early diabetes results in increased GFR and the potential mechanisms are debated. Tubuloglomerular feedback (TGF) inactivation, with concomitantly increased RBF, is proposed but challenged by the finding of glomerular hyperfiltration in diabetic adenosine A(1) receptor-deficient mice, which lack TGF. Furthermore, we consistently find elevated GFR in diabetes with only minor changes in RBF. This may relate to the use of a lower streptozotocin dose, which produces a degree of hyperglycemia, which is manageable without supplemental suboptimal insulin administration, as has been used by other investigators. Therefore, we examined the relationship between RBF and GFR in diabetic rats with (diabetes + insulin) and without suboptimal insulin administration (untreated diabetes). As insulin can affect nitric oxide (NO) release, the role of NO was also investigated. GFR, RBF, and glomerular filtration pressures were measured. Dynamic RBF autoregulation was examined by transfer function analysis between arterial pressure and RBF. Both diabetic groups had increased GFR (+60-67%) and RBF (+20-23%) compared with controls. However, only the diabetes + insulin group displayed a correlation between GFR and RBF (R(2) = 0.81, P < 0.0001). Net filtration pressure was increased in untreated diabetes compared with both other groups. The difference between untreated and insulin-treated diabetic rats disappeared after administering N(ω)-nitro-l-arginine methyl ester to inhibit NO synthase and subsequent NO release. In conclusion, mechanisms causing diabetes-induced glomerular hyperfiltration are animal model-dependent. Supplemental insulin administration results in a RBF-dependent mechanism, whereas elevated GFR in untreated diabetes is mediated primarily by a tubular event. Insulin-induced NO release partially contributes to these differences.  相似文献   

11.
Using pancreactectomized (PX) dogs, we recently suggested the importance of glucagon in modulating amino acid-induced increases in renal blood flow (RBF) and glomerular filtration rate (GFR). We have now ascertained whether glucagon's modulatory effect is associated with an impairment in renal autoregulation. As renal arterial pressure (RAP) was reduced to 70 mmHg (the lower limit of the autoregulatory range) in both sham-operated control (C) and PX control dogs, RBF and GFR remained at values that were greater than 90% of their respective controls. In control dogs infused with amino acids (0.051 mmol/kg per min, i.v.), RBF and GFR rose by 26 and 27%, respectively, at baseline RAP. As RAP was reduced to 70 mmHg, RBF and GFR fell by 25 and 37%, respectively. In PX dogs infused with either amino acids or glucagon (0.86 pmol/kg per min, i.v.) alone, RBF and GFR did not increase appreciably at baseline RAP. As RAP was reduced to 70 mmHg in these dogs, RBF and GFR remained at values that were greater than 90% of their respective controls. Yet, in PX dogs infused simultaneously with amino acids and glucagon, RBF and GFR rose by 22 and 24%, respectively, at baseline RAP. Moreover, as RAP was reduced to 70 mmHg, RBF and GFR fell by 22 and 31%, respectively. These data suggest that the ability of glucagon to modulate the renal hemodynamic response to amino acid infusion involves an impairment in renal autoregulation.  相似文献   

12.
Renal artery stenosis (RAS), the main cause of chronic renovascular disease (RVD), is associated with significant oxidative stress. Chronic RVD induces renal injury partly by promoting renal microvascular (MV) damage and blunting MV repair in the stenotic kidney. We tested the hypothesis that superoxide anion plays a pivotal role in MV dysfunction, reduction of MV density, and progression of renal injury in the stenotic kidney. RAS was induced in 14 domestic pigs and observed for 6 wk. Seven RAS pigs were chronically treated with the superoxide dismutase mimetic tempol (RAS+T) to reduce oxidative stress. Single-kidney hemodynamics and function were quantified in vivo using multidetector computer tomography (CT) and renal MV density was quantified ex vivo using micro-CT. Expression of angiogenic, inflammatory, and apoptotic factors was measured in renal tissue, and renal apoptosis and fibrosis were quantified in tissue sections. The degree of RAS and blood pressure were similarly increased in RAS and RAS+T. Renal blood flow (RBF) and glomerular filtration rate (GFR) were reduced in the stenotic kidney (280.1 ± 36.8 and 34.2 ± 3.1 ml/min, P < 0.05 vs. control). RAS+T kidneys showed preserved GFR (58.5 ± 6.3 ml/min, P = not significant vs. control) but a similar decreases in RBF (293.6 ± 85.2 ml/min) and further decreases in MV density compared with RAS. These changes were accompanied by blunted angiogenic signaling and increased apoptosis and fibrosis in the stenotic kidney of RAS+T compared with RAS. The current study shows that tempol administration provided limited protection to the stenotic kidney. Despite preserved GFR, renal perfusion was not improved by tempol, and MV density was further reduced compared with untreated RAS, associated with increased renal apoptosis and fibrosis. These results suggest that a tight balance of the renal redox status is necessary for a normal MV repair response to injury, at least at the early stage of RVD, and raise caution regarding antioxidant strategies in RAS.  相似文献   

13.
This study investigated the effects of alcohol septal ablation (ASA) on microcirculatory function and myocardial energetics in patients with hypertrophic cardiomyopathy (HCM) and left ventricular outflow tract (LVOT) obstruction. In 15 HCM patients who underwent ASA, echocardiography was performed before and 6 mo after the procedure to assess the LVOT gradient (LVOTG). Additionally, [(15)O]water PET was performed to obtain resting myocardial blood flow (MBF) and coronary vasodilator reserve (CVR). Changes in LV mass (LVM) and volumes were assessed by cardiovascular magnetic resonance imaging. Myocardial oxygen consumption (MVo(2)) was evaluated by [(11)C]acetate PET in a subset of seven patients to calculate myocardial external efficiency (MEE). After ASA, peak LVOTG decreased from 41 ± 32 to 23 ± 19 mmHg (P = 0.04), as well as LVM (215 ± 74 to 169 ± 63 g; P < 0.001). MBF remained unchanged (0.94 ± 0.23 to 0.98 ± 0.15 ml·min(-1)·g(-1); P = 0.45), whereas CVR increased (2.55 ± 1.23 to 3.05 ± 1.24; P = 0.05). Preoperatively, the endo-to-epicardial MBF ratio was lower during hyperemia compared with rest (0.80 ± 0.18 vs. 1.18 ± 0.15; P < 0.001). After ASA, the endo-to-epicardial hyperemic (h)MBF ratio increased to 1.03 ± 0.26 (P = 0.02). ΔCVR was correlated to ΔLVOTG (r = -0.82; P < 0.001) and ΔLVM (r = -0.54; P = 0.04). MEE increased from 15 ± 6 to 20 ± 9% (P = 0.04). Coronary microvascular dysfunction in obstructive HCM is at least in part reversible by relief of LVOT obstruction. After ASA, hMBF and CVR increased predominantly in the subendocardium. The improvement in CVR was closely correlated to the absolute reduction in peak LVOTG, suggesting a pronounced effect of LV loading conditions on microvascular function of the subendocardium. Furthermore, ASA has favorable effects on myocardial energetics.  相似文献   

14.

Background

Patients with type 1 diabetes mellitus (DM) and renal hyperfiltration also exhibit systemic microvascular abnormalities, including endothelial dysfunction. The effect of renal hyperfiltration on systemic blood pressure (BP) is less clear. We therefore measured BP, renal hemodynamic function and circulating renin angiotensin aldosterone system (RAAS) mediators in type 1 DM patients with hyperfiltration (n = 36, DM-H, GFR≥135 ml/min/1.73 m2) or normofiltration (n = 40, DM-N), and 56 healthy controls (HC). Since renal hyperfiltration represents a state of intrarenal RAAS activation, we hypothesized that hyperfiltration would be associated with higher BP and elevated levels of circulating RAAS mediators.

Methods

BP, glomerular filtration rate (GFR - inulin), effective renal plasma flow (paraaminohippurate) and circulating RAAS components were measured in DM-H, DM-N and HC during clamped euglycemia (4–6 mmol/L). Studies were repeated in DM-H and DM-N during clamped hyperglycemia (9–11 mmol/L).

Results

Baseline GFR was elevated in DM-H vs. DM-N and HC (167±6 vs. 115±2 and 115±2 ml/min/1.73 m2, p<0.0001). Baseline systolic BP (SBP, 117±2 vs. 111±2 vs. 109±1, p = 0.004) and heart rate (76±1 vs. 67±1 vs. 61±1, p<0.0001) were higher in DM-H vs. DM-N and HC. Despite higher SBP in DM-H, plasma aldosterone was lower in DM-H vs. DM-N and HC (42±5 vs. 86±14 vs. 276±41 ng/dl, p = 0.01). GFR (p<0.0001) and SBP (p<0.0001) increased during hyperglycemia in DM-N but not in DM-H.

Conclusions

DM-H was associated with higher heart rate and SBP values and an exaggerated suppression of systemic aldosterone. Future work should focus on the mechanisms that explain this paradox in diabetes of renal hyperfiltration coupled with systemic RAAS suppression.  相似文献   

15.
Chronic kidney disease (CKD) is a major public health problem, especially for people with diabetes. Not only is it a risk factor for end-stage renal disease (ESRD) but it is also a major cardiovascular disease (CVD) risk factor. Methods that accurately and simply estimate glomerular filtration rate (GFR) are therefore needed to optimise the detection and management of CKD in people with diabetes. One of the main failures of commonly used creatinine-based methods for estimating renal function is that they lack applicability across the full range of GFR values and underestimate GFR levels >60 mL/min/1.73m(2). Methods for accurately estimating an early pathological decline in GFR (i.e. ΔGFR >3.3 mL/min/year before reaching a GFR <60 mL/min/1.73m(2)) are especially needed as appropriate interventions have been shown to retard progression to ESRD and reduce CVD risk in people with diabetes. In contrast, recent studies have suggested that estimates of GFR based on serum cystatin C concentration might provide a simple and accurate method for detecting and monitoring an early decline in renal function.  相似文献   

16.
The deuterated water method is used extensively to measure gluconeogenesis in humans. This method assumes negligible exchange of the lower three carbons of fructose 6-phsophate via transaldolase exchange since this exchange will result in enrichment of carbon 5 of glucose in the absence of net gluconeogenesis. The present studies tested this assumption. 2H?O and acetaminophen were ingested and [1-13C]acetate infused in 11 nondiabetic subjects after a 16-h fast. Plasma and urinary glucuronide enrichments were measured using nuclear magnetic resonance spectroscopy before and during a 0.35 mU·kg FFM?1·min?1 insulin infusion. Rates of endogenous glucose production measured with [3-3H]- and [6,6-2H?]glucose did not differ either before (14.0 ± 0.7 vs. 13.8 ± 0.7 μmol·kg?1·min?1) or during the clamp (10.4 ± 0.9 vs. 10.9 ± 0.7 μmol·kg?1·min?1), consistent with equilibration and quantitative removal of tritium during triose isomerase exchange. Plasma [3-13C] glucose-to-[4-13C]glucose and urinary [3-13C] glucuronide-to-[4-13C]glucuronide ratios were <1.0 (P < 0.001) in all subjects both before (0.66 ± 0.04 and 0.60 ± 0.04) and during (059 ± 0.05 and 0.56 ± 0.06) the insulin infusion, respectively, indicating that ~35-45% of the labeling of the 5th carbon of glucose by deuterium was due to transaldolase exchange rather than gluconeogenesis. When corrected for transaldolase exchange, rates of gluconeogenesis were lower (P < 0.001) and glycogenolysis higher (P < 0.001) than uncorrected rates both before and during the insulin infusion. In conclusion, assuming negligible dilution by glycerol and near-complete triose isomerase equilibration, these data provide strong experimental evidence that transaldolase exchange occurs in humans, resulting in an overestimate of gluconeogenesis and an underestimate of glycogenolysis when measured with the 2H?O method. Use of appropriate 13C tracers provides a means of correcting for transaldolase exchange.  相似文献   

17.
Premenopausal women have a lower risk of cardiovascular disease (CVD) compared with men of a similar age. Furthermore, the regulation of factors that influence CVD appears to differ between the sexes, including control of the autonomic nervous system (ANS) and the renin-angiotensin system. We examined the cardiac ANS response to angiotensin II (Ang II) challenge in healthy subjects to determine whether differences in women and men exist. Thirty-six healthy subjects (21 women, 15 men, age 38 ± 2 years) were studied in a high-salt balance. Heart-rate variability (HRV) was calculated by spectral power analysis [low-frequency (LF) sympathetic modulation, high-frequency (HF) parasympathetic/vagal modulation, and LF:HF as a measure of overall ANS balance]. HRV was assessed at baseline and in response to graded Ang II infusions (3 ng·kg(-1)·min(-1) × 30 min; 6 ng·kg(-1)·min(-1) × 30 min). Cardiac ANS tone did not change significantly in women after each Ang II dose [3 ng·kg(-1)·min(-1) mean change (Δ)LF:HF (mean ± SE) 0.5 ± 0.3, P = 0.8, vs. baseline; 6 ng·kg(-1)·min(-1) ΔLF:HF (mean ± SE) 0.5 ± 0.4, P = 0.4, vs. baseline], whereas men exhibited an unfavorable shift in overall cardiac ANS activity in response to Ang II (ΔLF:HF 2.6 ± 0.2, P = 0.01, vs. baseline; P = 0.02 vs. female response). This imbalance in sympathovagal tone appeared to be largely driven by a withdrawal in cardioprotective vagal activity in response to Ang II challenge [ΔHF normalized units (nu), -5.8 ± 2.9, P = 0.01, vs. baseline; P = 0.006 vs. women] rather than an increase in sympathetic activity (ΔLF nu, -4.5 ± 5.7, P = 0.3, vs. baseline; P = 0.5 vs. women). Premenopausal women maintain cardiac ANS tone in response to Ang II challenge, whereas similarly aged men exhibit an unfavorable shift in cardiovagal activity. Understanding the role of gender in ANS modulation may help guide risk-reduction strategies in high-risk CVD populations.  相似文献   

18.
To investigate the mechanisms responsible for the neonatal increase in glomerular filtration rate (GFR), renal function studies (whole kidney and micropuncture) were carried out in anesthesized fetal sheep (133-140 days gestation; term = 150 days) and lambs (12-18 days). Fetuses were delivered and placed in a water bath (39.5 degrees C), keeping the umbilical cord moist and intact. Lambs were studied on a thermostatically controlled heating pad. Animals were prepared for either blood flow studies or micropuncture measurements. Expected differences in blood composition and cardiovascular and renal function were observed between fetuses and lambs, and values obtained for most variables were similar to those measured in chronically catheterized unanesthetized animals. Fetal GFR was much lower than that of lambs (0.20 vs. 0.62 ml.min(-1).g kidney(-1), P < 0.001). Free-flow, stop-flow, and net filtration pressures (NFP) were lower in the fetuses than the lambs (NFP 20.8 vs. 23.8 mmHg, P < 0.001), as was the calculated ultrafiltration coefficient (0.014 vs. 0.022 ml.min(-1).g(-1).mmHg(-1), P < 0.001). Thus, we conclude that rises in both net filtration pressure and the ultrafiltration coefficient contribute to the large increase in GFR between fetal life and approximately 2 wk after birth.  相似文献   

19.
Acute administration of tumor necrosis factor-α (TNF-α) resulted in decreases in renal blood flow (RBF) and glomerular filtration rate (GFR) but induced diuretic and natriuretic responses in mice. To define the receptor subtypes involved in these renal responses, experiments were conducted to assess the responses to human recombinant TNF-α (0.3 ng·min(-1)·g body wt(-1) iv infusion for 75 min) in gene knockout (KO) mice for TNF-α receptor type 1 (TNFαR1 KO, n = 5) or type 2 (TNFαR2 KO, n = 6), and the results were compared with those obtained in corresponding wild-type [WT (C57BL/6), n = 6] mice. Basal levels of RBF (PAH clearance) and GFR (inulin clearance) were similar in TNFαR1 KO, but were lower in TNFαR2 KO, than WT mice. TNF-α infusion in WT mice decreased RBF and GFR but caused a natriuretic response, as reported previously. In TNFαR1 KO mice, TNF-α infusion failed to cause such vasoconstrictor or natriuretic responses; rather, there was an increase in RBF and a decrease in renal vascular resistance. Similar responses were also observed with infusion of murine recombinant TNF-α in TNFαR1 KO mice (n = 5). However, TNF-α infusion in TNFαR2 KO mice caused changes in renal parameters qualitatively similar to those observed in WT mice. Immunohistochemical analysis in kidney slices from WT mice demonstrated that while both receptor types were generally located in the renal vascular and tubular cells, only TNFαR1 was located in vascular smooth muscle cells. There was an increase in TNFαR1 immunoreactivity in TNFαR2 KO mice, and vice versa, compared with WT mice. Collectively, these functional and immunohistological findings in the present study demonstrate that the activation of TNFαR1, not TNFαR2, is mainly involved in mediating the acute renal vasoconstrictor and natriuretic actions of TNF-α.  相似文献   

20.
Hyperfiltration has been implicated in the progression toward diabetic nephropathy in type 2 diabetes mellitus (DM2). This study focuses for the first time on the in vivo modulation of single-nephron GFR (SNGFR) in the classic B6.Cg-m(+/+)Lepr(db)/J (db/db) mouse model of DM2. To obtain stable preparations, it was necessary to use a sustaining infusion of 3.3 ml.100 g body wt(-1) x h(-1), or higher. SNGFR (measured both proximally and distally) was greater in db/db vs. heterozygote (db/m) mice (P < 0.05) but not vs. the wild-type (WT) mice. The tubuloglomerular feedback (TGF) responses, determined as free-flow proximal vs. distal SNGFR differences, were significant in db/db mice (11.6 +/- 0.8 vs. 9.3 +/- 1.0 nl/min, P < 0.01), in db/m mice (8.0 +/- 0.8 vs. 7.2 +/- 0.6 nl/min, P < 0.02), and WT mice (9.9 +/- 0.6 vs. 8.9 +/- 0.7 nl/min, P < 0.05). After increasing the sustaining infusion in the db/db mice, to offset glycosuric urine losses, the SNGFR increased significantly, and the TGF response was abolished. In these volume-replete db/db mice, absolute fluid reabsorption measured both at the late proximal and distal tubular sites were significantly increased vs. db/m mice infused at 3.3 ml.100 g body wt(-1) x h(-1). After infusion of the neuronal nitric oxide synthase (nNOS) inhibitor S-methylthiocitrulline, SNGFR fell in both db/db and db/m mice. These studies show that SNGFR is elevated in this mouse model of DM2, is suppressed by nNOS inhibition, and is modulated by TGF influences that are altered by the diabetic state and responsive to changes in extracellular fluid volume.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号