首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cosmetics industry is one of the most profitable in the world today. This multi-billion-dollar industry has a profound sociological impact worldwide. Its influence is global, with most individuals being concerned with conserving their physical appearance, beauty, and youth. The consumers’ desire for novel, better, and safer products has stimulated the utilization of natural-product-based cosmeceutical formulations over synthetic chemicals. With remarkable advancements in marine bioresource technology, algal polysaccharides have gained much attention as bioactive ingredients in cosmeceuticals. Algae biosynthesize a variety of polysaccharides including fucoidans, alginates, carrageenans, galactans, agar, porphyran, glucans, and ulvans, all of which exhibit distinctive structural and functional properties. Many of these materials have been proven to possess skin-protective effects, including anti-wrinkle, lightening, moisturizing, UV protective, antioxidative, and anti-inflammatory activity. Moreover, they have a wide spectrum of physicochemical properties, such as the ability to form hydrogels, which extend their utilization as emulsifiers, stabilizers, and viscosity controlling ingredients in cosmeceuticals. Accordingly, algal hydrocolloids and their synthetic derivatives can also be applied in tissue engineering and cosmetic surgery. The challenge is to increase awareness about these polysaccharides and consequently generate value-added products. This review discusses the beneficial biological and physicochemical properties of algal polysaccharides, highlighting their potential in cosmeceutical applications.  相似文献   

2.
3.
Cancer stem cells often have phenotypic and functional characteristics similar to normal stem cells including the properties of self-renewal and differentiation. Recent findings suggest that uncontrolled self-renewal may explain cancer relapses and may represent a critical target for cancer prevention. It is conceivable that the loss of regulatory molecules resulting from inappropriate consumption of specific foods and their constituents may foster the aberrant self-renewal of cancer stem cells. In fact, increasing evidence points to the network delivering signals for self-renewal from extracellular compartments to the nucleus including changes in stem cell environments, inducible expression of microRNAs, hyperplastic nuclear chromatin structures, and the on/off of differentiation process as possible sites of action for bioactive food components. Diverse dietary constituents such as vitamins A and D, genistein, (-)-epigallocatechin-3-gallate (EGCG), sulforaphane, curcumin, piperine, theanine and choline have been shown to modify self-renewal properties of cancer stem cells. The ability of these bioactive food components to influence the balance between proliferative and quiescent cells by regulating critical feedback molecules in the network including dickkopf 1 (DKK-1), secreted frizzled-related protein 2 (sFRP2), B cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and cyclin-dependent kinase 6 (CDK6) may account for their biological response. Overall, the response to food components does not appear to be tissue or organ specific, suggesting there may be common cellular mechanisms. Unquestionably, additional studies are needed to clarify the physiological role of these dietary components in preventing the resistance of tumor cells to traditional drugs and cancer recurrence.  相似文献   

4.
Cordycepin: A bioactive metabolite with therapeutic potential   总被引:1,自引:0,他引:1  
Cytotoxic nucleoside analogues were the first chemotherapeutic agents for cancer treatment. Cordycepin, an active ingredient of the insect fungus Cordyceps militaris, is a category of compounds that exhibit significant therapeutic potential. Cordycepin has many intracellular targets, including nucleic acid (DNA/RNA), apoptosis and cell cycle, etc. Investigations of the mechanism of anti-cancer drugs have yielded important information for the design of novel drug targets in order to enhance anti-tumor activity with less toxicity to patients. This extensive review covers various molecular aspects of cordycepin interactions with its recognized cellular targets and proposes the development of novel therapeutic strategies for cancer treatment.  相似文献   

5.
6.
Enteropeptidase (enterokinase EC 3.4.21.9), catalyzing trypsinogen activation, exhibits unique properties for high efficiency hydrolysis of the polypeptide chain after the N-terminal tetraaspartyl-lysyl sequence. This makes it a convenient tool for the processing of fusion proteins containing this sequence. We found the enteropeptidase-catalysing degradation of some bioactive peptides: cattle hemoglobin beta-chain fragments Hb (2–8) (LTAEEKA) and Hb (1–9) (MLTAEEKAA), human angiotensin II (DRVYIHPF) (AT). Model peptideswith truncated linker WDDRG and WDDKG also were shown to be susceptible to enteropeptidase action. Kinetic parameters ofenteropeptidase hydrolysis for these substrates were determined.K m values for all substrates with truncated linker (10-3 M) are an order of magnitude higher thancorresponding values for typical enteropeptidase artificial peptide or fusion protein substrates with full enteropeptidase linker –DDDDK– (K m 10-4 M). k cat values for AT, Hb (2–8), WDDRG and WDDKG are 30–40 min-1. But one additional amino acid residue at both N- and C-terminus of Hb (2–8) results in a drastic increase of hydrolysis efficiency: k cat value for Hb (1–9) is 1510 min-1. Recent study demonstrates the possibility of undesirable cleavage of target peptides or proteins containing the above-mentioned truncated linker sequences; further, the ability of enteropeptidase to hydrolyse specifically several biologically active peptides in vitro along with its unique natural substrate trypsinogen was demonstrated.  相似文献   

7.
Summary Enteropeptidase (enterokinase EC 3.4.21.9), catalyzing trypsinogen activation, exhibits unique properties for high efficiency hydrolysis of the polypeptide chain after the N-terminal tetraaspartyl-lysyl sequence. This makes it a convenient tool for the processing of fusion proteins containing this sequence. We found the enteropeptidase-catalysing degradation of some bioactive peptides: cattle hemoglobin beta-chain fragments Hb (2–8) (LTAEEKA) and Hb (1–9) (MLTAEEKAA), human angiotensin II (DRVYIHPF) (AT). Model peptides with truncated linker WDDRG and WDDKG also were shown to be susceptible to enteropeptidase action. Kinetic parameters of enteropeptidase hydrolysis for these substrates were determined.K m values for all substrates with truncated linker (≈10−3 M) are an order of magnitude higher than corresponding values for typical enteropeptidase artificial peptide or fusion protein substrates with full enteropeptidase linker-DDDDK-(K m ≈10−4 M).k cat values for AT, Hb (2–8), WDDRG and WDDKG are ≈30–40 min−1. But one additional amino acid residue at both N-and C-terminus of Hb (2–8) results in a drastic increase of hydrolysis efficiency:k cat value for Hb (1–9) is 1510 min−1. Recent study demonstrates the possibility of undesirable cleavage of target peptides or proteins containing the above-mentioned truncated linker sequences; further, the ability of enteropeptidase to hydrolyse specifically several biologically active peptidesin vitro along with its unique natural substrate trypsinogen was demonstrated.  相似文献   

8.
New data shows that edible fruit and nut production in Amazonian forests is substantially lower than most conservationists assume. Direct measures of production in Amazonian Peru show that two terra firma forest types produced significantly less edible fruit than an alluvial soil forest. Swamp forest produced more edible fruit than any other forest type measured. Palms produce 60% of edible fruit productivity, averaged over three forest types, but the most preferred palm fruits are difficult to harvest because they are borne too high for easy access by collectors. Forest fruit collection in Amazonia is less productive in the short-term than all other food-producing activities except for hunting and cattle ranching. Technological, social and political changes are essential so that sustainable but intrinsically low-yielding extractive activities like fruit collecting become more attractive to Amazonians.  相似文献   

9.
Although the complete picture for alopecia areata (AA) pathogenesis has yet to be determined, recent research has made much progress in our understanding of the disease mechanism. Numerous circumstantial evidence supports the notion that AA is fundamentally a disease mediated by inflammatory cells and may be autoimmune in nature. Recent research has shown the hair-loss phenotype is precipitated predominantly by CD8+ lymphocytes, but the disease mechanism is driven by CD4+ lymphocytes. Although genetic susceptibility is a key contributor to disease development, disease onset and phenotypic presentation are probably modified by complex environmental interplay. On the basis of our current understanding of AA disease pathogenesis, several experimental and theoretical therapeutic approaches might be possible. However, the pathogenetic disease mechanism is particularly robust and the development of a cure for AA will be a significant challenge.  相似文献   

10.
11.
Induction of apoptosis in cancer cells with chemotherapy and radiation treatment is a major strategy in cancer therapy at present. Nevertheless, innate or acquired resistance has been an obstacle for conventional clinical therapy. TNF-related apoptosis inducing ligand (TRAIL/Apo-2L) is a typical member of the TNF ligand family that induces apoptosis through activating the death receptors. In recent years, considerable attention has been focused on the potential benefits of TRAIL in cancer therapy, as the majority of cancer cells are sensitive to TRAIL-induced apoptosis, while most normal cells are TRAIL-resistant. Furthermore, the use of TRAIL in combination with chemotherapeutic agents or irradiation strengthens its apoptotic effects. In this review, we will discuss the regulation mechanism of TRAIL-induced apoptosis and the molecular basis of the synergies created by its use in combination with chemotherapeutic agents and irradiation. We also analyze in detail that TRAIL may be cytotoxic, as this is a potential obstacle to its development for being used in cancer therapy.  相似文献   

12.
Androgenetic alopecia occurs in men and women, and is characterised by the loss of hair from the scalp in a defined pattern. Determining factors appear to be genetic predisposition coupled with the presence of sufficient circulating androgens. The prevalence of this condition is high (up to 50% of white males are affected by 50 years of age) and, although there are no serious direct health consequences, the loss of scalp hair can be distressing. Knowledge of the pathogenesis of androgenetic alopecia has increased markedly in recent years. Pre-programmed follicles on the scalp undergo a transformation from long growth (anagen) and short rest (telogen) cycles, to long rest and short growth cycles. This process is coupled with progressive miniaturisation of the follicle. These changes are androgen dependent, and require the inheritance of several genes. To date, only one of these genes, which encodes the androgen receptor (AR), has been identified. Of the many treatments available for androgenetic alopecia, only two (finasteride and minoxidil) have been scientifically shown to be useful in the treatment of hair loss. However, these therapies are variable in their effectiveness. Discovery of the involvement of the AR gene, and the identification of other genes contributing to the condition, might lead to the development of new and more effective therapies that target the condition at a more fundamental level.  相似文献   

13.
Food-grade nanoemulsions are being increasingly used in the food and beverage industry to encapsulate, protect, and deliver hydrophobic functional components, such as oil-soluble flavors, colors, preservatives, vitamins, and nutraceuticals. These nanoemulsions contain lipid nanoparticles (radius <100 nm) whose physicochemical characteristics (e.g., composition, dimensions, structure, charge, and physical state) can be controlled by selection of appropriate ingredients and fabrication techniques. Nanoemulsions have a number of potential advantages over conventional emulsions for applications within the food industry: higher stability to particle aggregation and gravitational separation; higher optical transparency; and, increased bioavailability of encapsulated components. On the other hand, there are also some risks associated with consumption of lipid nanoparticles that should be considered before they are widely utilized, such as their ability to alter the fate of bioactive components within the gastrointestinal tract and the potential toxicity of some of the components used in their fabrication (e.g., surfactants and organic solvents). This article provides an overview of the current status of the biological fate and potential toxicity of food-grade lipid nanoparticles suitable for utilization within the food and beverage industry.  相似文献   

14.
Human cerebral endothelial cells are a potential source for bioactive BDNF   总被引:2,自引:0,他引:2  
Inflammatory stimuli within the central nervous system may not only induce tissue damage but may also convey neuroprotection. It has been shown that brain derived neurotrophic factor (BDNF) is a neuroprotective candidate. Here we show that BDNF is constitutively expressed in cultured human cerebral endothelial cells (HCEC) and can further be upregulated under proinflammatory conditions. TNF-alpha treatment resulted in an increase in BDNF mRNA expression and protein levels were significantly elevated after 72 h (69+/-33%, P<0.01). Using functional assays it was demonstrated that BDNF produced by HCEC is bioactive and supports motoneuron survival. In contrast, BDNF expression was reduced by TNF-alpha in human umbilical vein endothelial cells (HUVEC). We conclude that HCEC likely to contribute to neuronal survival under physiological and inflammatory conditions.  相似文献   

15.
16.
Click reactions between alkynes and azides using the privileged scaffold of triterpenes have been of interest for biological chemistry. Many publications deal with the synthesis of novel bioactive molecules; these conjugates have also been used for bioanalytical and diagnostic purposes. As a result, conjugates of better physicochemical properties were obtained; even compounds of improved solubility in water and physiological fluids were made through the introduction of a triazol residue. “Hybrid-structures“, i.e. molecules consisting of two independently bioactive subunits linked by a triazole residue were higher bioactive than their parent compounds but not as active as expected, and with a few exceptions the ultimate breakthrough has not yet been achieved. Only in the synthesis of compounds with anti-leishmanial activity some new and promising lead structures were found. As a consequence, triazole modified triterpenes seem to hold their greatest future prospect rather as diagnostic reagents and molecular probes than as drugs.  相似文献   

17.
18.
Clinical imaging of primary and metastatic cancers with Fluoro deoxy-d-Glucose Positron Emission Tomography (FdG PET) has clearly demonstrated that increased glucose flux compared to normal tissue is a common trait of human malignancies (Gambhir, 2002) This is a consequence of a shift of glucose metabolism to less efficient glycolytic pathways in response to regional hypoxia and evolution of aerobic glycolysis in many cancer phenotypes. This distinctive metabolic profile presents an inviting target for cancer treatment and prevention. Here, we summarize the therapeutic strategies under investigation to exploit or interrupt tumor glycolytic metabolism. Although a number of approaches are under investigation, none has been sufficiently successful to warrant widespread clinical application. We point out that the environmental heterogeneity and evolutionary capacity of tumor cells that likely led to development of upregulated glycolysis could also promote adaptive strategies that confer resistance to therapies designed to inhibit glucose metabolism.  相似文献   

19.
20.
microRNAs are genomically encoded small non-coding RNAs that regulate genetic information by controlling stability or translation of mRNAs. Down-regulated expression of microRNA-101 (miRNA-101) has been found in a variety of cancers, and associated with the invasion and progression of malignancies. Recent advances in the understanding of miRNA-101 biogenesis, target recognition and participation in regulatory pathways demonstrate a role for miRNA-101 in tumorigenesis. miRNA-101 gene therapy is of great potentiality to be a new modality for treatment of cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号