首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The bindings of biogenic polyamines spermine (spm), spermidine (spmd) and synthetic polyamines 3,7,11,15-tetrazaheptadecane·4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane·5HCl (BE-3333) with β-lactoglobulin (β-LG) were determined in aqueous solution. FTIR, UV-vis, CD and fluorescence spectroscopic methods as well as molecular modeling were used to determine the polyamine binding sites and the effect of polyamine complexation on protein stability and secondary structure. Structural analysis showed that polyamines bind β-LG via both hydrophilic and hydrophobic contacts. Stronger polyamine-protein complexes formed with synthetic polyamines than biogenic polyamines, with overall binding constants of Kspm-β-LG = 3.2(±0.6) × 104 M−1, Kspmd-β-LG = 1.8(±0.5) × 104 M−1, KBE-333-β-LG = 5.8(±0.3) × 104 M−1 and KBE-3333-β-LG = 6.2(±0.05) × 104 M−1. Molecular modeling showed the participation of several amino acids in the polyamine complexes with the following order of polyamine-protein binding affinity: BE-3333 > BE-333 > spermine > spermidine, which correlates with their positively charged amino group content. Alteration of protein conformation was observed with a reduction of β-sheet from 57% (free protein) to 55-51%, and a major increase of turn structure from 13% (free protein) to ∼21% in the polyamine-β-LG complexes, indicating a partial protein unfolding.  相似文献   

2.
β-cyclodextrin (βCD) and methyl-β-cyclodextrin (MβCD) complexes with sulfamethazine (SMT) were prepared and characterized by different experimental techniques, and the effects of βCD and MβCD on drug solubility were assessed via phase-solubility analysis. The phase-solubility diagram for the drug showed an increase in water solubility, with the following affinity constants calculated: 40.4 ± 0.4 (pH 2.0) and 29.4 ± 0.4 (pH 8.0) M−1 with βCD and 56 ± 1 (water), 39 ± 3 (pH 2.0) and 39 ± 5 (pH 8.0) M−1 with MβCD. According to 1H NMR and 2D NMR spectroscopy, the complexation mode involved the aromatic ring of SMT included in the MβCD cavity. The complexes obtained in solid state by freeze drying were characterized by Fourier transform infrared spectroscopy, scanning electron microscopy, and thermal analysis. The amorphous complexes obtained in this study may be useful in the preparation of pharmaceutical dosage forms of SMT.  相似文献   

3.
Beta adrenergic receptors (βARs) mediate physiologic responses to the catecholamines epinephrine and norepinephrine released by the sympathetic nervous system.W...  相似文献   

4.
The interaction of naringenin (Nar) and its neohesperidoside, naringin (Narn), with calf thymus deoxyribonucleic acid (ctDNA) in the absence and the presence of β-cyclodextrin (β-CD) was investigated. The interaction of Nar and Narn with β-CD/ctDNA was analyzed by using absorption, fluorescence, and molecular modeling techniques. Docking studies showed the existence of hydrogen bonding, electrostatic and phobic interaction of Nar and Narn with β-CD/DNA. 1:2 stoichiometric inclusion complexes were observed for Nar and Narn with β-CD. With the addition of ctDNA, Nar and Narn resulted into the fluorescence quenching phenomenon in the aqueous solution and β-CD solution. The binding constant K b and the number of binding sites were found to be different for Nar and Narn bindings with DNA in aqueous and β-CD solution. The difference is attributed to the structural difference between Nar and Narn with neohesperidoside moiety present in Narn.  相似文献   

5.
The effects of substrate binding on class A β-lactamase dynamics were studied using molecular dynamics simulations of two model enzymes; 40 100-ns trajectories of the free and substrate-bound forms of TEM-1 (with benzylpenicillin) and PSE-4 (with carbenicillin) were recorded (totaling 4.0 μs). Substrates were parameterized with the CHARMM General Force Field. In both enzymes, the Ω loop exhibits a marked flexibility increase upon substrate binding, supporting the hypothesis of substrate gating. However, specific interactions that are formed or broken in the Ω loop upon binding differ between the two enzymes: dynamics are conserved, but not specific interactions. Substrate binding also has a global structuring effect on TEM-1, but not on PSE-4. Changes in TEM-1’s normal modes show long-range effects of substrate binding on enzyme dynamics. Hydrogen bonds observed in the active site are mostly preserved upon substrate binding, and new, transient interactions are also formed. Agreement between NMR relaxation parameters and our theoretical results highlights the dynamic duality of class A β-lactamases: enzymes that are highly structured on the ps-ns timescale, with important flexibility on the μs-ms timescale in regions such as the Ω loop.  相似文献   

6.
The bovine milk lipocalin, β-Lactoglobulin (β-LG), has been associated with the binding and transport of small hydrophobic and amphiphilic compounds, whereby it is proposed to increase their bioavailability. We have studied the binding of the fluorescent phospholipid-derivative, NBD-didecanoylphosphatidylethanolamine (NBD-diC10PE) to β-LG by following the increase in amphiphile fluorescence upon binding to the protein using established methods. The equilibrium association constant, KB, was (1.2 ± 0.2) × 106 M− 1 at 25 °C, pH 7.4 and I = 0.15 M. Dependence of KB on pH and on the monomer-dimer equilibrium of β-LG gave insight on the nature of the binding site which is proposed to be the hydrophobic calyx formed by the β-barrel in the protein. The monomer-dimer equilibrium of β-LG was re-assessed using fluorescence anisotropy of Tryptophan. The equilibrium constant for dimerization, KD, was (7.0 ± 1.5) × 105 M− 1 at 25 °C, pH 7.4, and 0.15 M ionic strength. The exchange of NBD-diC10PE between β-LG and POPC lipid bilayers was followed by the change in NBD fluorescence. β-LG was shown to be a catalyst of phospholipid exchange between lipid bilayers, the mechanism possibly involving adsorption of the protein at the bilayer surface.  相似文献   

7.
A number of small organic molecules have been developed that bind to amyloid fibrils, a subset of which also inhibit fibrillization. Among these, the benzothiol dye Thioflavin-T (ThT) has been used for decades in the diagnosis of protein-misfolding diseases and in kinetic studies of self-assembly (fibrillization). Despite its importance, efforts to characterize the ThT-binding mechanism at the atomic level have been hampered by the inherent insolubility and heterogeneity of peptide self-assemblies. To overcome these challenges, we have developed a minimalist approach to designing a ThT-binding site in a "peptide self-assembly mimic” (PSAM) scaffold. PSAMs are engineered water-soluble proteins that mimic a segment of β-rich peptide self-assembly, and they are amenable to standard biophysical techniques and systematic mutagenesis. The PSAM β-sheet contains rows of repetitive amino acid patterns running perpendicular to the strands (cross-strand ladders) that represent a ubiquitous structural feature of fibril-like surfaces. We successfully designed a ThT-binding site that recapitulates the hallmarks of ThT-fibril interactions by constructing a cross-strand ladder consisting of contiguous tyrosines. The X-ray crystal structures suggest that ThT interacts with the β-sheet by docking onto surfaces formed by a single tyrosine ladder, rather than in the space between adjacent ladders. Systematic mutagenesis further demonstrated that tyrosine surfaces across four or more β-strands formed the minimal binding site for ThT. Our work thus provides structural insights into how this widely used dye recognizes a prominent subset of peptide self-assemblies, and proposes a strategy to elucidate the mechanisms of fibril-ligand interactions.  相似文献   

8.
Kindlins are essential for integrin activation in cell systems and do so by working in a cooperative fashion with talin via their direct interaction with integrin β cytoplasmic tails (CTs). Kindlins interact with the membrane-distal NxxY motif, which is distinct from the talin-binding site within the membrane-proximal NxxY motif. The Tyr residues in both motifs can be phosphorylated, and it has been suggested that this modification of the membrane-proximal NxxY motif negatively regulates interaction with the talin head domain. However, the influence of Tyr phosphorylation of the membrane-distal NxxY motif on kindlin binding is unknown. Using mutational analyses and phosphorylated peptides, we show that phosphorylation of the membrane-distal NITY759 motif in the β3 CT disrupts kindlin-2 recognition. Phosphorylation of this membrane-distal Tyr also disables the ability of kindlin-2 to coactivate the integrin. In direct binding studies, peptides corresponding to the non-phosphorylated β3 CT interacted well with kindlin-2, whereas the Tyr759-phosphorylated peptide failed to bind kindlin-2 with measurable affinity. These observations indicate that transitions between the phosphorylated and non-phosphorylated states of the integrin β3 CT determine reactivity with kindlin-2 and govern the role of kindlin-2 in regulating integrin activation.  相似文献   

9.
The effects of electrostatic interactions and obstruction by the microstructure on probe diffusion were determined in positively charged hydrogels. Probe diffusion in fine-stranded gels and solutions of β-lactoglobulin at pH 3.5 was determined using fluorescence recovery after photobleaching (FRAP) and binding, which is widely used in biophysics. The microstructures of the β-lactoglobulin gels were characterized using transmission electron microscopy. The effects of probe size and charge (negatively charged Na2-fluorescein (376Da) and weakly anionic 70kDa FITC-dextran), probe concentration (50 to 200 ppm), and β-lactoglobulin concentration (9% to 12% w/w) on the diffusion properties and the electrostatic interaction between the negatively charged probes and the positively charged gels or solutions were evaluated. The results show that the diffusion of negatively charged Na2-fluorescein is strongly influenced by electrostatic interactions in the positively charged β-lactoglobulin systems. A linear relationship between the pseudo-on binding rate constant and the β-lactoglobulin concentration for three different probe concentrations was found. This validates an important assumption of existing biophysical FRAP and binding models, namely that the pseudo-on binding rate constant equals the product of the molecular binding rate constant and the concentration of the free binding sites. Indicators were established to clarify whether FRAP data should be analyzed using a binding-diffusion model or an obstruction-diffusion model.  相似文献   

10.
It was recently shown that the shrimp high-density lipoprotein (HDL) and the β-1,3-glucan binding protein (BGBP) are identical, implying dual functions for the same protein: lipid transport and involvement in the defense system. Because this protein is present in plasma, and the hepatopancreas is a major lipid storage gland, we investigated the presence of the HDL/BGBP polypeptide and its messenger RNA in this tissue using a monospecific antibody against HDL/BGBP. Hepatopancreas crude protein extracts, as well as polypeptides produced by poly(A)+ RNA in vitro translation, were recognized by the anti-HDL/BGBP. Furthermore, a specific pattern was revealed in hepatopancreas thin sections by immunodetection. Strong recognition was seen in the epithelial cells of hepatopancreatic tubules, probably related to the secretion process of this protein. Received September 24, 1999; accepted April 5, 2000.  相似文献   

11.
Although the amyloid dye thioflavin-T (ThT) is among the most widely used tools in the study of amyloid fibrils, the mechanism by which ThT binds to fibrils and other β-rich peptide self-assemblies remains elusive. The development of the water-soluble peptide self-assembly mimic (PSAM) system has provided a set of ideal model proteins for experimentally exploring the properties and minimal dye-binding requirements of amyloid fibrils. PSAMs consist of a single-layer β-sheet (SLB) capped by two globular domains, which capture the flat, extended β-sheet features common among fibril-like surfaces. Recently, a PSAM that binds to ThT with amyloid-like affinity (low micromolar Kd) has been designed, and its crystal structure in the absence of bound ThT was determined. This PSAM thus provides a unique opportunity to examine the interactions of ThT with a β-rich structure. Here, we present molecular dynamics simulations of the binding of ThT to this PSAM β-sheet. We show that the primary binding site for ThT is along a shallow groove formed by adjacent Tyr and Leu residues on the β-sheet surface. These simulations provide an atomic-scale rationale for this PSAM's experimentally determined dye-binding properties. Together, our results suggest that an aromatic-hydrophobic groove spanning across four consecutive β-strands represents a minimal ThT binding site on amyloid fibrils. Grooves formed by aromatic-hydrophobic residues on amyloid fibril surfaces may therefore offer a generic mode of recognition for amyloid dyes.  相似文献   

12.
The β-subunit of the voltage-sensitive K+ channels shares 15–30% amino acid identity with the sequences of aldo–keto reductases (AKR) genes. However, the AKR properties of the protein remain unknown. To begin to understand its oxidoreductase properties, we examine the pyridine coenzyme binding activity of the protein in vitro. The cDNA of Kvβ2.1 from rat brain was subcloned into a prokaryotic expression vector and overexpressed in Escherichia coli. The purified protein was tetrameric in solution as determined by size exclusion chromatography. The protein displayed high affinity binding to NADPH as determined by fluorometric titration. The KD values for NADPH of the full-length wild-type protein and the N-terminus deleted protein were 0.1±0.007 and 0.05±0.006 M, respectively — indicating that the cofactor binding domain is restricted to the C-terminus, and is not drastically affected by the absence of the N-terminus amino acids, which form the ball and chain regulating voltage-dependent inactivation of the α-subunit. The protein displayed poor affinity for other coenzymes and the corresponding values of the KD for NADH and NAD were between 1–3 μM whereas the KD for FAD was >10 μM. However, relatively high affinity binding was observed with 3-acetyl pyridine NADP, indicating selective recognition of the 2′ phosphate at the binding site. The selectivity of Kvβ2.1 for NADPH over NADP may be significant in regulating the K+ channels as a function of the cellular redox state.  相似文献   

13.
The carbohydrate-binding site of galectin 1, a vertebrate β-galactoside-binding lectin, has a pronounced specificity for the βGal(1→3)- and βGal(1→4)GlcNAc sequences. The binding inhibition study reported herein was carried out to determine whether sulfation of saccharides would influence their binding by galectin 1. The presence of 6′-OSO3- on LacNAc greatly reduces the inhibitory potency relative to LacNAc. 3′-OSO3-LacNAc, 3′-OSO3-Galβ(1→3)GlcNAcβ1-OBzl and 3-OSO3-Galβ1-OMe are more potent inhibitors than the non-sulfated parent compounds. Surprisingly, 2′-OSO3-LacNAc showed over 40 fold less inhibitory potency relative to LacNAc. Ovarian carcinoma A121 cells were shown to synthesize sulfated macromolecules that bind to galectin 1. Modulation in vivo of saccharide sulfation may lead to modulation of galectin 1 interaction with glycoconjugates; hence, sulfation could play a role in modulating lectin functions.  相似文献   

14.
The tritium-labeled selective agonist of the nonopioid β-endorphin receptor the decapeptide immunorphin ([3H]SLTCLVKGFY) with a specific activity of 24 Ci/mmol was prepared. It was shown that [3H]immunorphin binds with a high affinity to the non-opioid β-endorphin receptor of mouse peritoneal macrophages (K d 2.4 ± 0.1 nM). The specific binding of [3H]immunorphin to macrophages was inhibited by unlabeled β-endorphin (K i of the [3H]immunorphin-receptor complex 2.9 ± 0.2 nM) and was not inhibited by unlabeled naloxone, α-endorphin, γ-endorphin, and [Met5]enkephalin (K i > 10 μM). Thirty fragments of β-endorphin were synthesized, and their ability to inhibit the specific binding of [3H]immunorphin to macrophages was studied. It was found that the shortest peptide having practically the same inhibitory activity as β-endorphin is its fragment 12–19 (K i 3.1 ± 0.3 nM).  相似文献   

15.
Benzylpenicillin and cephaloridine reacted with the exocellular dd-carboxypeptidase–transpeptidase from Streptomyces R39 to form equimolar and inactive antibiotic–enzyme complexes. At saturation, the molar ratio of chromogenic cephalosporin 87-312 to enzyme was 1.3:1, but this discrepancy might be due to a lack of accuracy in the measurement of the antibiotic. Spectrophotometric studies showed that binding of cephaloridine and cephalosporin 87-312 to the enzyme caused opening of their β-lactam rings. Benzylpenicillin and cephalosporin 87-312 competed for the same site on the free enzyme, suggesting that binding of benzylpenicillin also resulted in the opening of its β-lactam ring. In Tris–NaCl–MgCl2 buffer at pH7.7 and 37°C, the rate constants for the dissociation of the antibiotic–enzyme complexes were 2.8×10−6, 1.5×10−6 and 0.63×10−6s−1 (half-lives 70, 130 and 300h) for benzylpenicillin, cephalosporin 87-312 and cephaloridine respectively. During the process, the protein underwent reactivation. The enzyme that was regenerated from its complex with benzylpenicillin was as sensitive to fresh benzylpenicillin as the native enzyme. With [14C]benzylpenicillin, the released radioactive compound was neither benzylpenicillin nor benzylpenicilloic acid. The Streptomyces R39 enzyme thus behaved as a β-lactam-antibiotic-destroying enzyme but did not function as a β-lactamase. Incubation at 37°C in 0.01m-phosphate buffer, pH7.0, and in the same buffer supplemented with sodium dodecyl sulphate caused a more rapid reversion of the [14C]benzylpenicillin–enzyme complex. The rate constants were 1.6×10−5s−1 and 0.8×10−4s−1 respectively. Under these conditions, however, there was no concomitant reactivation of the enzyme and the released radioactive compound(s) appeared not to be the same as before. The Streptomyces R39 enzyme and the exocellular dd-carboxypeptidase–transpeptidase from Streptomyces R61 appeared to differ from each other with regard to the topography of their penicillin-binding site.  相似文献   

16.
17.
1. Affinities of agonists for porcine adipose tissue β-adrenergic receptors, determined by competitive ligand binding with 3H-dihydroalprenolol to crude adipose tissue membranes in vitro, varied from 50 times > to 25 times < than isoproterenol. Affinities for antagonists varied from 8 times > to 1000 times < propranolol.2. Receptor affinity was not related to the ability to stimulate or inhibit lipolysis, or to the agonist or antagonist purported receptor subtype specificity.3. Modeling of ligand-binding data indicated more than one binding site for several ligands. The assignment of β-adrenergic subtypes to the individual binding sites was unclear because this would depend on the individual ligands used to establish binding sites.  相似文献   

18.
We studied the molecular mechanism through which the fungal β-lactone, hymeglusin, potently and specifically inhibits 3-hydroxy-3-methylglutaryl-CoA (HMG-CoA) synthase. [14C]Hymeglusin covalently bound to purified rat liver and to recombinant hamster cytosolic HMG-CoA synthases. The enzyme activity was completely inhibited at a binding ratio of 1.6–2.0 mol [14C]hymeglusin/mol HMG-CoA synthase. Incubating the enzyme with 2 mM iodoacetamide (IAA) or 2 mM N-ethylmaleimide (NEM) but not with 1.0 mM diisopropyl fluorophosphates (DFP) completely inhibited the binding, suggesting that hymeglusin binds to a Cys residue of HMG-CoA synthase. Recombinant hamster HMG-CoA synthase labeled with [3H]hymeglusin was digested with V8 protease, and the [3H]peptide was purified by high performance liquid chromatography (HPLC). The sequence of the peptide was Ser-Gly-Asn-Thr-Asp-Ile-Glu-Gly-Ile-Asp-Thr-Thr-Asn-Ala-[3H]hymeglusyl Cys-Tyr-Gly-Gly-Thr-Ala-Ala-Val-Phe-Asn-Ala-Val-Asn-, which corresponds to the active site sequence (from Ser 115 to Asn 141) of hamster HMG-CoA synthase. These findings showed that hymeglusin inhibits hamster cytosolic HMG-CoA synthase by covalently modifying the active Cys 129 residue of the enzyme.  相似文献   

19.
《Molecular membrane biology》2013,30(3-4):367-391
The binding and phospholipase A2 activity of an 11,000-dalton β-bungarotoxin, isolated from Bungarus multicinctus venom, have been characterized using rat brain subcellular fractions as substrates. 1z51-labeled p-bungarotoxin binds rapidly (k = 0.14 min-l and 0.1 1 min-l), saturably (V max = 130.1 -+- 5.0 fmoles/mg and 128.2 ±7.1 fmoles/mg), and with high affinity (apparent KCI = 0.8 ± 0.1 nM and 0.7 ± 0.1 nM) to rat brain mitochondria and synaptosomal membranes, respectively, but not to myelin. The binding to synaptosomal membranes is inhibited by divalent cations and by pretreatment with trypsin. The binding results suggest that the toxin binds to specific protein receptor sites on presynaptic membranes. The 1 1,000-dalton toxin rapidly hydrolyzes synaptosomal membrane phospholipids to lysophosphatides and manifests relative substrate specificity in the order phosphatidyl ethanolamine > phosphatidyl choline > phosphatidyl serine. These results indicate that the 1 1,000-dalton p-bungarotoxin is a phospholipase A2 and can use presynaptic membrane phospholipids as substrates. The binding, phospholipase activity and other biological properties of the 1 1,000-dalton toxin are contrasted with those of the p-bungarotoxin found in highest concentration in the venom (the 22,000-dalton p-bungarotoxin), and the two toxins are shown to have qualitatively similar properties. Finally the results are shown to support the hypothesis that p-bungarotoxins act in a two-step fashion to inhibit transmitter release: first, by binding to a protein receptor site on the presynaptic membrane associated with Ca2+ entry, and second, by perturbing through enzymatic hydrolyses the phospholipid matrix of the membrane and thereby causing an increase in passive Ca2+ permeability.  相似文献   

20.
The cytoplasmic domain of the medicinal mushroom Cordyceps militaris β-1,3-glucan synthase catalytic subunit Fks1 was expressed as a fusion protein with an N-terminal hexahistidine tag and glutathione S-transferase in an Escherichia coli cell-free translation system, and was assayed for binding specificity. The recombinant cytoplasmic domain bound specifically to UDP-agarose and lichenan (β-glucan), but not to ADP-agarose, GDP-agarose, or other carbohydrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号