首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new system for lineage ablation is based on transgenic expression of a diphtheria toxin receptor (DTR) in mouse cells and application of diphtheria toxin (DT). To streamline this approach, we generated Cre-inducible DTR transgenic mice (iDTR) in which Cre-mediated excision of a STOP cassette renders cells sensitive to DT. We tested the iDTR strain by crossing to the T cell- and B cell-specific CD4-Cre and CD19-Cre strains, respectively, and observed efficient ablation of T and B cells after exposure to DT. In MOGi-Cre/iDTR double transgenic mice expressing Cre recombinase in oligodendrocytes, we observed myelin loss after intraperitoneal DT injections. Thus, DT crosses the blood-brain barrier and promotes cell ablation in the central nervous system. Notably, we show that the developing DT-specific antibody response is weak and not neutralizing, and thus does not impede the efficacy of DT. Our results validate the use of iDTR mice as a tool for cell ablation in vivo.  相似文献   

2.
Whereas diphtheria and the mechanism of action of diphtheria toxin, the bacterial molecule that induces the disease, have been studied and understood for some time, the receptor that allows animal cells to bind the toxin escaped identification until recently. The receptor was identified by its ability to confer toxin-sensitivity to mouse cells, which are normally toxin-resistant. Although mice are also naturally resistant, we now demonstrate that transgenic mice expressing the diphtheria toxin receptor are as sensitive to the toxin as are humans and other toxin-sensitive animals. These transgenic mice provide a suitable model for studying modern antidotes for diphtheria.  相似文献   

3.
Autophagy is an evolutionarily conserved machinery for bulk degradation of cytoplasmic components. Here, we report upregulation of autophagosome formation in pancreatic beta cells in diabetic db/db and in nondiabetic high-fat-fed C57BL/6 mice. Free fatty acids (FFAs), which can cause peripheral insulin resistance associated with diabetes, induced autophagy in beta cells. Genetic ablation of atg7 in beta cells resulted in degeneration of islets and impaired glucose tolerance with reduced insulin secretion. While high-fat diet stimulated beta cell autophagy in control mice, it induced profound deterioration of glucose tolerance in autophagy-deficient mutants, partly because of the lack of compensatory increase in beta cell mass. These findings suggest that basal autophagy is important for maintenance of normal islet architecture and function. The results also identified a unique role for inductive autophagy as an adaptive response of beta cells in the presence of insulin resistance induced by high-fat diet.  相似文献   

4.
Specific cell ablation is a useful method for analyzing the in vivo function of cells. We have developed a simple and sensitive method for conditional cell ablation in transgenic mice, called "toxin receptor-mediated cell knockout." We expressed the diphtheria toxin (DT) receptor in transgenic mice using a hepatocyte-specific promoter and found that injection of DT caused fulminant hepatitis. Three independently established transgenic lines demonstrated a good correlation between the sensitivity of hepatocytes to DT and the expression level of the DT receptors. Moreover, the degree of hepatocyte damage was easily controlled over a wide range of doses of injected DT without any obvious abnormalities in other cells or tissues. This system is useful for generating mouse models of disease and for studying the recovery or regeneration of tissues from cell damage or loss. As DT is a potent inhibitor of protein synthesis in both growing and non-growing cells, the method is applicable to a wide range of cells and tissues in mice or in other DT-insensitive animals.  相似文献   

5.
The stimulation of gastric acid secretion from parietal cells involves both intracellular calcium and cAMP signaling. To understand the effect of increased cAMP on parietal cell function, we engineered transgenic mice expressing cholera toxin (Ctox), an irreversible stimulator of adenylate cyclase. The parietal cell-specific H(+),K(+)-ATPase beta-subunit promoter was used to drive expression of the cholera toxin A1 subunit (CtoxA1). Transgenic lines were established and tested for Ctox expression, acid content, plasma gastrin, tissue morphology, and cellular composition of the gastric mucosa. Four lines were generated, with Ctox-7 expressing approximately 50-fold higher Ctox than the other lines. Enhanced cAMP signaling in parietal cells was confirmed by observation of hyperphosphorylation of the protein kinase A-regulated proteins LASP-1 and CREB. Basal acid content was elevated and circulating gastrin was reduced in Ctox transgenic lines. Analysis of gastric morphology revealed a progressive cellular transformation in Ctox-7. Expanded patches of mucous neck cells were observed as early as 3 mo of age, and by 15 mo, extensive mucous cell metaplasia was observed in parallel with almost complete loss of parietal and chief cells. Detection of anti-parietal cell antibodies, inflammatory cell infiltrates, and increased expression of the Th1 cytokine IFN-gamma in Ctox-7 mice suggested that autoimmune destruction of the tissue caused atrophic gastritis. Thus constitutively high parietal cell cAMP results in high acid secretion and a compensatory reduction in circulating gastrin. High Ctox in parietal cells can also induce progressive changes in the cellular architecture of the gastric glands, corresponding to the development of anti-parietal cell antibodies and autoimmune gastritis.  相似文献   

6.
We have established a transgenic mouse line in which floxed neomycin resistant cassette was inserted between the CAG promoter and EGFP. When these transgenic mice were mated with Cre-expressing transgenic animals, the offspring obtained were fluorescent green. We then established a transgenic mouse line in which EGFP in the above construct was replaced by diphtheria toxin A chain (DT). When the latter transgenic mice were mated with mice expressing Cre restricted to germ cells, we obtained healthy but sterile offspring due to a disruption of germ line cells by DT expression. We predict that this strategy will be useful for the construction of new animal models for human diseases, featuring a variety of missing cell lineages produced by disruption with DT.  相似文献   

7.
It is well known, that mechanism of diphtheria toxin (DT) action triggers only if toxin penetrates into acid endosome after binding with specific receptor--heparin-binding epidermal grows factor like grows factor (HB-EGF) on the cell surface. We have suggested that DT is capable to penetrate either into B-lymphocytes, which have specific immunoglobulin receptors for DT or into phagocytes, which are able to phagocytosis of DT, because in both of these cases toxin get in endosome with conditions suitable for its activation. To check this hypothesis the comparative studies with insensitive to DT mice lacking specific receptor for DT, and with sensitive to DT guinea pigs were performed. Influence of DT on vitality of phagocytes and B-cells with different specificity from mice and guinea pigs was studied. B-cells were obtained from animals immunized by control antigen--ovalbumine and recombinant diphtheria toxoid--DT without N-terminal 28 aminoacid residues responsible for toxic effect. The results obtained have showed that DT can penetrate into phagocytes and B-cells specific to DT and kill these cells even if they lack classic receptor for DT. This fact evidences that DT is potentially able to inhibit self-directed antibody response and keep from participation of phagocytes in the protection of organism from infection.  相似文献   

8.
beta(2)-Adrenergic receptors (beta(2)AR) act to relax airway smooth muscle and can serve to counteract hyperresponsiveness, although the effect may not be ablative even in the presence of exogenous agonist. Within this signaling cascade that ultimately transduces smooth muscle relaxation, a significant "spare receptor" pool has been hypothesized to be present in the airway. In order to modify the relationship between beta(2)AR and downstream effectors, transgenic mice (TG) were created overexpressing beta(2)AR approximately 75-fold in airway smooth muscle using a mouse smooth muscle alpha-actin promoter. While >90% of these receptors were expressed on the smooth muscle cell surface, the percentage of receptors able to form the agonist-promoted high affinity complex was less than that found with nontransgenic (NTG) cells (R(H) = 18 versus 36%). Nevertheless, beta(2)AR signaling was found to be enhanced. Intact airway smooth muscle cells from TG had basal cAMP levels that were greater than NTG cells. A marked increase in agonist-stimulated cAMP levels was found in the TG ( approximately 200% stimulation over basal) compared with NTG ( approximately 50% over basal) cells. Adenylyl cyclase studies gave similar results and also showed a 10-fold lower EC(50) for TG cells. Tracheal rings from TG mice that were precontracted with acetylcholine had an enhanced responsiveness (relaxation) to beta-agonist, with a 60-fold decrease in the ED(50), indicating that the enhanced signaling imposed by overexpression results in an increase in the coordinated function of the intact airway cells. In vivo studies showed a significantly blunted airway resistance response to the inhaled bronchoconstrictor methacholine in the TG mice. Indeed, with beta-agonist pretreatment, the TG mice displayed no response whatsoever to methacholine. These results are consistent with beta(2)AR being the limiting factor in the transduction system. Increases in the initial component of this transduction system (the beta(2)AR) are sufficient to markedly alter signaling and airway smooth muscle function to the extent that bronchial hyperresponsiveness is ablated, consistent with an anti-asthma phenotype.  相似文献   

9.
10.
We previously reported that transgenic ablation of gonadotrophs results in impaired development of cells immunostainable for prolactin (PRL) but not of cells immunostainable for growth hormone (GH) or proopiomelanocortin (POMC) in pituitary of newborn mice. The question remained whether this reduction in PRL protein is a reflection of reduced PRL mRNA expression, or whether this regulation is only situated at the translational level. We therefore generated a new series of transgenic mice in which gonadotrophs were ablated by diphtheria toxin A targeting, and analyzed hormone mRNA levels instead of hormone protein around the day of birth. Pituitary mRNA expression levels of luteinizing hormone- (LH), PRL and GH were quantified using real-time TaqMan RT-PCR. Of the 13 transgenic mice obtained, 8 showed a clear-cut reduction (ranging from 62 to 98%) in LH mRNA levels. PRL mRNA values were significantly reduced in the transgenic mice (p=0.0034), while GH mRNA expression was unaffected (p=0.93). An additional observation was that female newborn mice produce 5 times more LH mRNA than male mice whereas no sex difference was observed for expression levels of PRL and GH mRNA. Moreover, in the wild-type mice, LH mRNA expression was 20-fold higher than GH mRNA expression which in turn was 500- to 1,000-fold higher than PRL mRNA expression, suggesting a low expression level of the PRL gene at birth. In conclusion, the present data support the hypothesis that embryonic development of PRL gene expression is stimulated by gonadotrophs.  相似文献   

11.
Hepatocyte growth factor (HGF) is produced in pancreatic mesenchyme-derived cells and in islet cells. In vitro, HGF increases the insulin content and proliferation of islets. To study the role of HGF in the islet in vivo, we have developed three lines of transgenic mice overexpressing mHGF using the rat insulin II promoter (RIP). Each RIP-HGF transgenic line displays clear expression of HGF mRNA and protein in the islet. RIP-mHGF mice are relatively hypoglycemic in post-prandial and fasting states compared with their normal littermates. They display inappropriate insulin production, striking overexpression of insulin mRNA in the islet, and a 2-fold increase in the insulin content in islet extracts. Importantly, beta cell replication rates in vivo are two to three times higher in RIP-HGF mice. This increase in proliferation results in a 2-3-fold increase in islet mass. Moreover, the islet number per pancreatic area was also increased by approximately 50%. Finally, RIP-mHGF mice show a dramatically attenuated response to the diabetogenic effects of streptozotocin. We conclude that the overexpression of HGF in the islet increases beta cell proliferation, islet number, beta cell mass, and total insulin production in vivo. These combined effects result in mild hypoglycemia and resistance to the diabetogenic effects of streptozotocin.  相似文献   

12.
The biochemical characteristics of specific receptor molecules for diphtheria toxin on the surface of two toxin-sensitive cell lines (Vero and BS-C-1) were examined. Diphtheria toxin was found to bind to a number of different proteins in Nonidet P-40 solubilized extracts of 125I-labeled cells. In contrast, permitting diphtheria toxin to bind first to labeled intact cells, which were subsequently solubilized and subjected to immunoprecipitation with anti-diphtheria toxin, resulted in a far more restricted profile of diphtheria toxin-binding proteins that possessed Mrs in the range of 10,000-20,000. Direct chemical cross-linking of radioiodinated diphtheria toxin to cell surface proteins resulted in the appearance of several predominant bands possessing Mrs of approximately 80,000. The Mr approximately 80,000 complexes were shown to be composed of radiolabeled diphtheria toxin (Mr 60,000) and unlabeled Mr approximately 20,000 cellular proteins. These complexes were judged to be a result of specific binding in that their appearance could be preferentially inhibited by the addition of a 100-fold excess of unlabeled diphtheria toxin. The formation of the Mr approximately 80,000 complexes was sensitive to prior trypsin treatment of the cells and to known inhibitors of diphtheria toxin binding. Furthermore, prior incubation of the cells with diphtheria toxin at 37 degrees C ("down regulation") markedly and specifically reduced the subsequent formation of the Mr approximately 80,000 cross-linked complexes, and these down-regulated cells were less sensitive to diphtheria toxin in cytotoxicity assays. Further incubation of down-regulated cells at 37 degrees C restored their ability to form Mr approximately 80,000 complexes; this regeneration requires protein synthesis and restores the cells' sensitivity to diphtheria toxin-mediated cytotoxicity. These results strongly suggest that a Mr 10,000-20,000 cell surface protein is, or constitutes a portion of, the functional diphtheria toxin receptor.  相似文献   

13.
A monoclonal antibody that blocks the binding of diphtheria toxin to Vero cells was isolated by immunizing mice with Vero cell membrane. The antibody inhibits the binding of diphtheria toxin and also CRM197, a mutant form of diphtheria toxin, to Vero cells, and consequently inhibits the cytotoxicity of diphtheria toxin. This antibody does not directly react with the receptor molecule of diphtheria toxin (DTR14.5). Immunoprecipitation and immunoblotting studies revealed that this antibody binds to a novel membrane protein of 27 kDa (DRAP27). When diphtheria toxin receptor was passed through an affinity column made with this antibody, the receptor was trapped only in the presence of DRAP27. These results indicate that DRAP27 and DTR14.5 closely associate in Vero cell membrane and that the inhibition of the binding of diphtheria toxin to the receptor is due to the binding of the antibody to the DRAP27 molecule. Binding studies using 125I-labeled antibody showed that there are many more molecules of DRAP27 on the cell surface than diphtheria toxin-binding sites. However, there is a correlation between the sensitivity of a cell line to diphtheria toxin and the number of DRAP27 molecules on the cell surface, suggesting that DRAP27 is involved in the entry of diphtheria toxin into the target cell.  相似文献   

14.
15.
16.
Targeted cell ablation in animals is a powerful method for analyzing the physiological function of cell populations and generating various animal models of organ dysfunction. To achieve more specific and conditional ablation of target cells, we have developed a method termed Toxin Receptor mediated Cell Knockout (TRECK). A potential shortcoming of this method, however, is that overexpression of human heparin-binding epidermal growth factor-like growth factor (hHB-EGF) as a diphtheria toxin (DT) receptor in target cells or tissues may cause abnormalities in transgenic mice, since hHB-EGF is a member of the EGF growth factor family. To create novel DT receptors that are defective in growth factor activity and resistant to metalloprotease-cleavage, we mutated five amino acids in the extracellular EGF-like domain of hHB-EGF, which contains both DT-binding and protease-cleavage sites. Two of the resultant hHB-EGF mutants, I117A/L148V and I117V/L148V, possessed little growth factor activity but retained DT receptor activity. Furthermore, these mutants were resistant to metalloprotease-cleavage by 12-O-tetradecanoylphorbol-13-acetate stimulation, which is expected to enhance DT receptor activity. These novel DT receptors should be useful for the generation of transgenic mice by TRECK.  相似文献   

17.
Glial dysfunction has been implicated in a number of neurodegenerative diseases. In this study we investigated the consequences of glial and oligodendrocyte ablation on neuronal integrity and survival in Drosophila and adult mice, respectively. Targeted genetic ablation of glia was achieved in the adult Drosophila nervous system using the GAL80-GAL4 system. In mice, oligodendrocytes were depleted by the injection of diphtheria toxin in MOGi-Cre/iDTR double transgenic animals. Acute depletion of oligodendrocytes induced axonal injury, but did not cause neuronal cell death in mice. Ablation of glia in adult flies triggered neuronal apoptosis and resulted in a marked reduction in motor performance and lifespan. Our study shows that the targeted depletion of glia triggers secondary neurotoxicity and underscores the central contribution of glia to neuronal homeostasis. The models used in this study provide valuable systems for the investigation of therapeutic strategies to prevent axonal or neuronal damage.  相似文献   

18.
《The Journal of cell biology》1995,129(6):1691-1705
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is a member of the EGF family of growth factors, which interact with EGF receptor to exert mitogenic activity. The membrane-anchored form of HB- EGF, proHB-EGF, is biologically active, providing mitogenic stimulation to neighboring cells in a juxtacrine mode. ProHB-EGF forms a complex with diphtheria toxin receptor-associated protein (DRAP27)/CD9, a tetra membrane-spanning protein that upregulates the juxtacrine mitogenic activity of proHB-EGF. We explored whether other proteins associate with DRAP27/CD9 and proHB-EGF. Immunoprecipitation with anti-DRAP27/CD9 resulted in preferential coprecipitation of integrin alpha 3 beta 1 from Vero cell, A431 cell and MG63 cell lysates. Anti-integrin alpha 3 or anti-integrin beta 1 coprecipitated DRAP27/CD9 from the same cell lysates. Chemical cross-linking confirmed the physical association of DRAP27/CD9 and integrin alpha 3 beta 1. Using Vero-H cells, which overexpress HB-EGF, we also demonstrated the association of proHB-EGF with DRAP27/CD9 and integrin alpha 3 beta 1. Moreover, colocalization of proHB-EGF, DRAP27/CD9, and integrin alpha 3 beta 1 at cell-cell contact sites was observed by double-immunofluorescence staining. At cell-cell contact sites, DRAP27/CD9 was highly coincident with alpha- catenin and vinculin, suggesting that DRAP27/CD9, proHB-EGF, and integrin alpha 3 beta 1 are colocalized with adherence junction- locating proteins. These results indicate that direct interaction of growth factors and cell adhesion molecules may control cell proliferation during the cell-cell adhesion process.  相似文献   

19.
Although dendritic cells (DC) are potent APC that prime T cells against many pathogens, there is no direct evidence that DC are required for immunity to Mycobacterium tuberculosis (Mtb) infection. The requirement for DC to prime the CD4+ T cell response following Mtb infection was investigated using pCD11c-diptheria toxin receptor/GFP transgenic mice, in which DC can be transiently ablated in vivo. We show a critical role for DC in initiation of the CD4+ T cell response to the mycobacterial Ag early secretory Ag of tuberculosis 6. The delay in initiating the Ag-specific T cell response led to impaired control of Mtb replication. Interestingly, DC were not required for the secondary CD4+ T cell response following Mtb infection in peptide-vaccinated mice. Thus, this study shows that DC are essential for the initiation of the adaptive T cell response to the human pathogen Mtb.  相似文献   

20.
Current models for lectin-induced T cell proliferation suggest that activation of protein kinase C (PK-C) and elevation of cytoplasmic Ca2+ may both play important roles in the earliest phases of signal transduction. To learn more about the relative inability of T cells from old mice to proliferate in response to mitogenic stimuli, we attempted to stimulate T cells by the synergistic effects of a PK-C activator, phorbol myristate acetate (PMA), and the calcium ionophore ionomycin. T cells from young mice respond as well to optimal combinations of these agents as they do to the strong polyclonal activator Con A, but T cells from old mice respond much better to PMA plus ionomycin than they do to Con A. This result suggests that an inability to transduce the signal supplied by extracellular ligands into the intracellular signals represented by Ca2+ and PK-C activators may underlie the age-associated loss of T cell reactivity. We also found evidence for a second defect in old T cells related to their response to elevated intracellular Ca2+: old T cells, compared with young, required higher levels of ionomycin for maximal proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号