首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Tat protein export system translocates folded proteins across the bacterial cytoplasmic membrane and the plant thylakoid membrane. The Tat system in Escherichia coli is composed of TatA, TatB and TatC proteins. TatB and TatC form an oligomeric, multivalent receptor complex that binds Tat substrates, while multiple protomers of TatA assemble at substrate‐bound TatBC receptors to facilitate substrate transport. We have addressed whether oligomerisation of TatC is an absolute requirement for operation of the Tat pathway by screening for dominant negative alleles of tatC that inactivate Tat function in the presence of wild‐type tatC. Single substitutions that confer dominant negative TatC activity were localised to the periplasmic cap region. The variant TatC proteins retained the ability to interact with TatB and with a Tat substrate but were unable to support the in vivo assembly of TatA complexes. Blue‐native PAGE analysis showed that the variant TatC proteins produced smaller TatBC complexes than the wild‐type TatC protein. The substitutions did not alter disulphide crosslinking to neighbouring TatC molecules from positions in the periplasmic cap but abolished a substrate‐induced disulphide crosslink in transmembrane helix 5 of TatC. Our findings show that TatC functions as an obligate oligomer.  相似文献   

2.
The Tat (twin arginine translocation) system transports folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. The integral membrane proteins TatA, TatB, and TatC are essential components of the Tat pathway. TatA forms high order oligomers and is thought to constitute the protein-translocating unit of the Tat system. Cysteine scanning mutagenesis was used to systematically investigate the functional importance of residues in the essential N-terminal transmembrane and amphipathic helices of Escherichia coli TatA. Cysteine substitutions of most residues in the amphipathic helix, including all the residues on the hydrophobic face of the helix, severely compromise Tat function. Glutamine 8 was identified as the only residue in the transmembrane helix that is critical for TatA function. The cysteine variants in the transmembrane helix were used in disulfide mapping experiments to probe the oligomeric arrangement of TatA protomers within the larger TatA complex. Residues in the center of the transmembrane helix (including residues 10-16) show a distinct pattern of cross-linking indicating that this region of the protein forms well defined interactions with other protomers. At least two interacting faces were detected. The results of our TatA studies are compared with analogous data for the homologous, but functionally distinct, TatB protein. This comparison reveals that it is only in TatA that the amphipathic helix is sensitive to amino acid substitutions. The TatA amphipathic helix may play a role in forming and controlling the path of substrate movement across the membrane.  相似文献   

3.
The cytoplasmic membrane protein TatB is an essential component of the Escherichia coli twin-arginine (Tat) protein translocation pathway. Together with the TatC component it forms a complex that functions as a membrane receptor for substrate proteins. Structural predictions suggest that TatB is anchored to the membrane via an N-terminal transmembrane alpha-helix that precedes an amphipathic alpha-helical section of the protein. From truncation analysis it is known that both these regions of the protein are essential for function. Here we construct 31 unique cysteine substitutions in the first 42 residues of TatB. Each of the substitutions results in a TatB protein that is competent to support Tat-dependent protein translocation. Oxidant-induced disulfide cross-linking shows that both the N-terminal and amphipathic helices form contacts with at least one other TatB protomer. For the transmembrane helix these contacts are localized to one face of the helix. Molecular modeling and molecular dynamics simulations provide insight into the possible structural basis of the transmembrane helix interactions. Using variants with double cysteine substitutions in the transmembrane helix, we were able to detect cross-links between up to five TatB molecules. Protein purification showed that species containing at least four cross-linked TatB molecules are found in correctly assembled TatBC complexes. Our results suggest that the transmembrane helices of TatB protomers are in the center rather than the periphery of the TatBC complex.  相似文献   

4.
The twin arginine protein transport (Tat) system translocates folded proteins across the cytoplasmic membrane of prokaryotes and the thylakoid membrane of chloroplasts. In Escherichia coli, TatA, TatB, and TatC are essential components of the machinery. A complex of TatB and TatC acts as the substrate receptor, whereas TatA is proposed to form the Tat transport channel. TatA and TatB are related proteins that comprise an N-terminal transmembrane helix and an adjacent amphipathic helix. Previous studies addressing the topological organization of TatA have given conflicting results. In this study, we have addressed the topological arrangement of TatA and TatB in intact cells by labeling of engineered cysteine residues with the membrane-impermeable thiol reagent methoxypolyethylene glycol maleimide. Our results show that TatA and TatB share an N-out, C-in topology, with no evidence that the amphipathic helices of either protein are exposed at the periplasmic side of the membrane. We further show that the N-out, C-in topology of TatA is fixed and is not affected by the absence of other Tat components or by the overproduction of a Tat substrate. These data indicate that topological reorganization of TatA is unlikely to accompany Tat-dependent protein transport.  相似文献   

5.
The Tat system functions to transport folded proteins across the bacterial cytoplasmic membrane and the thylakoid membrane of plant chloroplasts. Tat transport involves a high molecular weight TatBC-containing complex that transiently associates with TatA during protein translocation. Sedimentation equilibrium experiments were used to determine a protein-only molecular mass for the TatBC complex of 630+/-30kDa, suggesting that it contains approximately 13 copies of the TatB and TatC protomers. Point mutations that inactivate Tat transport have previously been identified in each of TatA, TatB, and TatC. Analysis of the TatBC complexes formed by these inactive variants demonstrates that the amino acid substitutions neither affect the composition of the TatBC complex nor cause accumulation of the assembled TatABC translocation site. In addition, the TatA protein is shown not to be required for the assembly or stability of the TatBC complex.  相似文献   

6.
Twin-arginine-containing signal sequences mediate the transmembrane transport of folded proteins. The cognate twin-arginine translocation (Tat) machinery of Escherichia coli consists of the membrane proteins TatA, TatB, and TatC. Whereas Tat signal peptides are recognized by TatB and TatC, little is known about molecular contacts of the mature, folded part of Tat precursor proteins. We have placed a photo-cross-linker into Tat substrates at sites predicted to be either surface-exposed or hidden in the core of the folded proteins. On targeting of these variants to the Tat machinery of membrane vesicles, all surface-exposed sites were found in close proximity to TatB. Correspondingly, incorporation of the cross-linker into TatB revealed multiple precursor-binding sites in the predicted transmembrane and amphipathic helices of TatB. Large adducts indicative of TatB oligomers contacting one precursor molecule were also obtained. Cross-linking of Tat substrates to TatB required an intact twin-arginine signal peptide and disappeared upon transmembrane translocation. Our collective data are consistent with TatB forming an oligomeric binding site that transiently accommodates folded Tat precursors.  相似文献   

7.
Twin-arginine translocation (Tat) is a unique protein transport pathway in bacteria, archaea, and plastids. It mediates the transmembrane transport of fully folded proteins, which harbor a consensus twin-arginine motif in their signal sequences. In Gram-negative bacteria and plant chloroplasts, three membrane proteins, named TatA, TatB, and TatC, are required to enable Tat translocation. Available data suggest that TatA assembles into oligomeric pore-like structures that might function as the protein conduit across the lipid bilayer. Using site-specific photo-cross-linking, we have investigated the molecular environment of TatA under resting and translocating conditions. We find that monomeric TatA is an early interacting partner of functionally targeted Tat substrates. This interaction with TatA likely precedes translocation of Tat substrates and is influenced by the proton-motive force. It strictly depends on the presence of TatB and TatC, the latter of which is shown to make contacts with the transmembrane helix of TatA.  相似文献   

8.
The Escherichia coli Tat system mediates Sec-independent export of protein precursors bearing twin-arginine signal peptides. The essential Tat pathway components TatA, TatB and TatC are shown to be integral membrane proteins. Upon removal of the predicted N-terminal transmembrane helix TatA becomes a water-soluble protein. In contrast the homologous TatB protein retains weak peripheral interactions with the cytoplasmic membrane when the analogous helix is deleted. Chemical crosslinking studies indicate that TatA forms at least homotrimers, and TatB minimally homodimers, in the native membrane environment. The presence of such homo-oligomeric interactions is supported by size exclusion chromatography.  相似文献   

9.
The twin-arginine translocation (Tat) machinery of the Escherichia coli inner membrane is dedicated to the export of proteins harboring a conserved SRRxFLK motif in their signal sequence. TatA, TatB, and TatC are the functionally essential constituents of the Tat machinery, but their precise function is unknown. Using site-specific crosslinking, we have analyzed interactions of the twin-arginine precursor preSufI with the Tat proteins upon targeting to inner membrane vesicles. TatA association is observed only in the presence of a transmembrane H(+) gradient. TatB is found in contact with the entire signal sequence and adjacent parts of mature SufI. Interaction of TatC with preSufI is, however, restricted to a discrete area around the consensus motif. The results reveal a hierarchy in targeting of a Tat substrate such that for the primary interaction, TatC is both necessary and sufficient while a subsequent association with TatB likely mediates transfer from TatC to the actual Tat pore.  相似文献   

10.
Translocation of twin-arginine precursor proteins across the cytoplasmic membrane of Escherichia coli requires the three membrane proteins TatA, TatB, and TatC. TatC and TatB were shown to be involved in precursor binding. We have analyzed in vitro a number of single alanine substitutions in tatC that were previously shown to compromise in vivo the function of the Tat translocase. All tatC mutants that were defective in precursor translocation into cytoplasmic membrane vesicles concomitantly interfered with precursor binding not only to TatC but also to TatB. Hence structural changes of TatC that affect precursor targeting simultaneously abolish engagement of the twin-arginine signal sequence with TatB and block the formation of a functional Tat translocase. Since these phenotypes were observed for tatC mutations spread over the first half of TatC, this entire part of the molecule must globally be involved in precursor binding.  相似文献   

11.
The TatC protein is an essential component of the Escherichia coli twin-arginine (Tat) protein translocation pathway. It is a polytopic membrane protein that forms a complex with TatB, together acting as the receptor for Tat substrates. In this study we have constructed 57 individual cysteine substitutions throughout the protein. Each of the substitutions resulted in a TatC protein that was competent to support Tat-dependent protein translocation. Accessibility studies with membrane-permeant and -impermeant thiol-reactive reagents demonstrated that TatC has six transmembrane helices, rather than the four suggested by a previous study (K. Gouffi, C.-L. Santini, and L.-F. Wu, FEBS Lett. 525:65-70, 2002). Disulfide cross-linking experiments with TatC proteins containing single cysteine residues showed that each transmembrane domain of TatC was able to interact with the same domain from a neighboring TatC protein. Surprisingly, only three of these cysteine variants retained the ability to cross-link at low temperatures. These results are consistent with the likelihood that most of the disulfide cross-links are between TatC proteins in separate TatBC complexes, suggesting that TatC is located on the periphery of the complex.  相似文献   

12.
Both in prokaryotic organisms and in chloroplasts, a specialized protein transport pathway exists which is capable of translocating proteins in a fully folded conformation. Transport is mediated in both instances by signal peptides harbouring a twin-arginine consensus motif (twin-arginine translocation (Tat) pathway). The Tat translocase comprises the three functionally different membrane proteins TatA, TatB, and TatC. While TatB and TatC are involved in the specific recognition of the substrate, TatA might be the major pore-forming component. Current evidence suggests that a functional Tat translocase is assembled from separate TatBC and TatA assemblies only on demand, i.e., in the presence of transport substrate and a transmembrane H+-motive force.  相似文献   

13.
Both in prokaryotic organisms and in chloroplasts, a specialized protein transport pathway exists which is capable of translocating proteins in a fully folded conformation. Transport is mediated in both instances by signal peptides harbouring a twin-arginine consensus motif (twin-arginine translocation (Tat) pathway). The Tat translocase comprises the three functionally different membrane proteins TatA, TatB, and TatC. While TatB and TatC are involved in the specific recognition of the substrate, TatA might be the major pore-forming component. Current evidence suggests that a functional Tat translocase is assembled from separate TatBC and TatA assemblies only on demand, i.e., in the presence of transport substrate and a transmembrane H+-motive force.  相似文献   

14.
Many proteins are transported across lipid membranes by protein translocation systems in living cells. The twin-arginine transport (Tat) system identified in bacteria and plant chloroplasts is a unique system that transports proteins across membranes in their fully-folded states. Up to date, the detailed molecular mechanism of this process remains largely unclear. The Escherichia coli Tat system consists of three essential transmembrane proteins: TatA, TatB and TatC. Among them, TatB and TatC form a tight complex and function in substrate recognition. The major component TatA contains a single transmembrane helix followed by an amphipathic helix, and is suggested to form the translocation pore via self-oligomerization. Since the TatA oligomer has to accommodate substrate proteins of various sizes and shapes, the process of its assembly stands essential for understanding the translocation mechanism. A structure model of TatA oligomer was recently proposed based on NMR and EPR observations, revealing contacts between the transmembrane helices from adjacent subunits. Herein we report the construction and stabilization of a dimeric TatA, as well as the structure determination by solution NMR spectroscopy. In addition to more extensive inter-subunit contacts between the transmembrane helices, we were also able to observe interactions between neighbouring amphipathic helices. The side-by-side packing of the amphipathic helices extends the solvent-exposed hydrophilic surface of the protein, which might be favourable for interactions with substrate proteins. The dimeric TatA structure offers more detailed information of TatA oligomeric interface and provides new insights on Tat translocation mechanism.  相似文献   

15.
Bacterial twin arginine translocation (Tat) pathways have evolved to facilitate transport of folded proteins across membranes. Gram-negative bacteria contain a TatABC translocase composed of three subunits named TatA, TatB, and TatC. In contrast, the Tat translocases of most Gram-positive bacteria consist of only TatA and TatC subunits. In these minimal TatAC translocases, a bifunctional TatA subunit fulfils the roles of both TatA and TatB. Here we have probed the importance of conserved residues in the bifunctional TatAy subunit of Bacillus subtilis by site-specific mutagenesis. A set of engineered TatAy proteins with mutations in the cytoplasmic hinge and amphipathic helix regions were found to be inactive in protein translocation under standard growth conditions for B. subtilis or when heterologously expressed in Escherichia coli. Nevertheless, these mutated TatAy proteins did assemble into TatAy and TatAyCy complexes, and they facilitated membrane association of twin arginine precursor proteins in E. coli. Interestingly, most of the mutated TatAyCy translocases were salt-sensitive in B. subtilis. Similarly, the TatAC translocases of Bacillus cereus and Staphylococcus aureus were salt-sensitive when expressed in B. subtilis. Taken together, our present observations imply that salt-sensitive electrostatic interactions have critical roles in the preprotein translocation activity of certain TatAC type translocases from Gram-positive bacteria.  相似文献   

16.
The twin arginine translocation (Tat) pathway transports folded proteins across the cytoplasmic membrane of bacteria. Tat signal peptides contain a consensus motif (S/T-R-R-X-F-L-K) that is thought to play a crucial role in substrate recognition by the Tat translocase. Replacement of the phenylalanine at the +2 consensus position in the signal peptide of a Tat-specific reporter protein (TorA-MalE) by aspartate blocked export of the corresponding TorA(D(+2))-MalE precursor, indicating that this mutation prevents a productive binding of the TorA(D(+2)) signal peptide to the Tat translocase. Mutations were identified in the extreme amino-terminal regions of TatB and TatC that synergistically suppressed the export defect of TorA(D(+2))-MalE when present in pairwise or triple combinations. The observed synergistic suppression activities were even more pronounced in the restoration of membrane translocation of another export-defective precursor, TorA(KQ)-MalE, in which the conserved twin arginine residues had been replaced by lysine-glutamine. Collectively, these findings indicate that the extreme amino-terminal regions of TatB and TatC cooperate tightly during recognition and productive binding of Tat-dependent precursor proteins and, furthermore, that TatB and TatC are both involved in the formation of a specific signal peptide binding site that reaches out as far as the end of the TatB transmembrane segment.  相似文献   

17.
The Escherichia coli Tat system serves to export folded proteins harbouring an N-terminal twin-arginine signal peptide across the cytoplasmic membrane. In this report we have studied the functions of conserved residues within the structurally related TatA and TatB proteins. Our results demonstrate that there are two regions within each protein of high sequence conservation that are critical for efficient Tat translocase function. The first region is the interdomain hinge between the transmembrane and the amphipathic alpha-helices of TatA and TatB proteins. The second region is within the amphipathic helices of TatA and TatB. In particular an invariant phenylalanine residue within TatA proteins is essential for activity, whereas a string of glutamic acid residues on the same face of the amphipathic helix of TatB is important for function.  相似文献   

18.
A number of secreted precursor proteins of bacteria, archaea, and plant chloroplasts stand out by a conserved twin arginine-containing sequence motif in their signal peptides. Many of these precursor proteins are secreted in a completely folded conformation by specific twin arginine translocation (Tat) machineries. Tat machineries are high molecular mass complexes consisting of two types of membrane proteins, a hexahelical TatC protein, and usually one or two single-spanning membrane proteins, called TatA and TatB. TatC has previously been shown to be involved in the recognition of twin arginine signal peptides. We have performed an extensive site-specific cross-linking analysis of the Escherichia coli TatC protein under resting and translocating conditions. This strategy allowed us to map the recognition site for twin arginine signal peptides to the cytosolic N-terminal region and first cytosolic loop of TatC. In addition, discrete contact sites between TatC, TatB, and TatA were revealed. We discuss a tentative model of how a twin arginine signal sequence might be accommodated in the Tat translocase.  相似文献   

19.
The twin arginine translocation (Tat) machinery which is capable of transporting folded proteins across lipid bilayers operates in the thylakoid membrane of plant chloroplasts as well as in the cytoplasmic membrane of bacteria. It is composed of three integral membrane proteins (TatA, TatB, and TatC) which form heteromeric complexes of high molecular weight that accomplish binding and transport of substrates carrying Tat pathway-specific signal peptides. Western analyses using affinity purified antibodies showed in both, juvenile and adult tissue from Arabidopsis thaliana, an approximately equimolar ratio of the TatB and TatC components, whereas TatA was detectable only in minor amounts. Upon Blue Native-PAGE, TatB and TatC were found in four heteromeric TatB/C complexes possessing molecular weights of approximately 310, 370, 560 and 620 kDa, respectively, while TatA was detected only in a molecular weight range below 200 kDa. The implications of these findings on the currently existing models explaining the mechanism of Tat transport are discussed.  相似文献   

20.
Orriss GL  Tarry MJ  Ize B  Sargent F  Lea SM  Palmer T  Berks BC 《FEBS letters》2007,581(21):4091-4097
The Tat (twin arginine translocation) system transports folded proteins across bacterial and thylakoid membranes. The integral membrane proteins TatA, TatB, and TatC are the essential components of the Tat pathway in Escherichia coli. We demonstrate that formation of a stable complex between TatB and TatC does not require TatA or other Tat components. We show that the TatB and TatC proteins are each able to a form stable, defined, homomultimeric complexes. These we suggest correspond to structural subcomplexes within the parental TatBC complex. We infer that TatC forms a core to the TatBC complex on to which TatB assembles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号