首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Island foxes (Urocyon littoralis) are endemic to six of the eight California Channel Islands (USA). The island fox is classified as a threatened species by the State of California, and recently three of the six subspecies have experienced abrupt population declines. As part of a continuing effort to determine the cause of the declines, we tested island fox serum samples collected in 1988 (n = 176) and 1997-98 (n = 156) over the entire geographic range of the species for seroprevalence of canine heartworm (Dirofilaria immitis) antigen. Using a commercially available enzyme-linked immunosorbent assay (PetChek, Idexx Laboratories, Westbrook, Maine, USA) we detected heartworm antigen in four of the six populations of island foxes. On San Miguel and Santa Rosa Islands, seroprevalence in adult foxes was >85% (n = 62) in 1988 and increased to 100% (n = 24) in 1997-98. On Santa Cruz Island, seroprevalence in adult foxes decreased from 83% (n = 30) to 58% (n = 26), whereas on San Nicolas Island, seroprevalence increased from 25% (n = 32) to 77% (n = 30) during the same period. All of the pups assayed (n = 33) were seronegative. The seroprevalences of heartworm reported herein for the four populations of island foxes are the highest yet reported for a fox species. However, additional demographic data reported elsewhere suggests that heartworm has not been a major factor in the recent declines of island fox populations.  相似文献   

2.
An ability to mount rapid evolutionary responses to environmental change may be necessary for species persistence in a human-dominated world. We present evidence of the possibility of such contemporary evolution in the anti-predator behaviour of the critically endangered Santa Cruz Island fox Urocyon littoralis . In 1994, golden eagles colonized Santa Cruz Island, CA and devastated the predator-naïve, endemic island fox population by 95% within 10 years. In 1992, just before the arrival of golden eagles, foxes showed substantial diurnal activity, but diurnal activity was 37.0% lower in 2003–2007, after golden eagle colonization; concurrently, overall activity declined and nocturnal activity increased. Moreover, on nearby Santa Catalina Island, where golden eagles were absent but where the fox population recently crashed due to a disease epidemic, remaining foxes were significantly more diurnally active than were those on Santa Cruz Island. The weight of evidence suggests that the change in activity pattern was a response to predation, not to low population density, and that this was probably a heritable rather than a learned behavioural trait. This behavioural change may allow for prolonged island fox persistence, but also potentially represents a loss of behavioural diversity in fox populations.  相似文献   

3.
Serum and hematologic biochemistry values for island foxes (Urocyon littoralis) on Santa Cruz Island (California, USA) in April (wet season) and September (dry season) 1998 were evaluated. Serum chemistry of island foxes generally varied seasonally; 10 (40%) of the 25 serum characteristics were higher in the wet season, and three (12%) of the 25 serum characteristics were higher in the dry season. No hematologic parameters varied between seasons, although some measures varied between sexes. Blood analytes also varied with age; fox pups had higher values than adults for one hematologic and four serum parameters, whereas adult foxes had higher values for five hematologic characteristics. The information on blood chemistry provides baseline data useful in the monitoring of this threatened insular endemic carnivore.  相似文献   

4.
Island endemics are typically differentiated from their mainland progenitors in behavior, morphology, and genetics, often resulting from long-term evolutionary change. To examine mechanisms for the origins of island endemism, we present a phylogeographic analysis of whole mitochondrial genomes from the endangered island fox (Urocyon littoralis), endemic to California’s Channel Islands, and mainland gray foxes (U. cinereoargenteus). Previous genetic studies suggested that foxes first appeared on the islands >16,000 years ago, before human arrival (~13,000 cal BP), while archaeological and paleontological data supported a colonization >7000 cal BP. Our results are consistent with initial fox colonization of the northern islands probably by rafting or human introduction ~9200–7100 years ago, followed quickly by human translocation of foxes from the northern to southern Channel Islands. Mitogenomes indicate that island foxes are monophyletic and most closely related to gray foxes from northern California that likely experienced a Holocene climate-induced range shift. Our data document rapid morphological evolution of island foxes (in ~2000 years or less). Despite evidence for bottlenecks, island foxes have generated and maintained multiple mitochondrial haplotypes. This study highlights the intertwined evolutionary history of island foxes and humans, and illustrates a new approach for investigating the evolutionary histories of other island endemics.  相似文献   

5.
Anti‐predator behavior can alter the dynamics of prey populations, but little is known about the rate at which anti‐predator behavior is lost from prey populations following predator removal. The Channel Islands differ in whether they have historically contained a top predator, the Island Fox (Urocyon littoralis), in evolutionary time (approximately 6200–10 000 yr). On a historically fox‐containing island and two historically fox‐free islands in 2007, I deployed live traps that contained olfactory cues of fox predators (fox feces), olfactory cues of an herbivore (horse feces) or a no‐feces control. Due to a captive breeding program, foxes on the historically fox‐containing island were effectively removed from 1998 to 2004. Rodents from one of the historically fox‐free islands did not respond to fox cues, whereas rodents on the historically fox‐containing island were more likely to be captured in a control trap and less likely to be captured in a fox‐cue trap. Results from the other historically fox‐free island that experienced a recent population bottleneck and period of captive rearing exhibited a preference for horse‐scented traps. These results suggest that, on islands where foxes are the primary predators, anti‐predator behavior in response to olfactory cues is not likely to be rapidly lost by short‐term removals of foxes, although the nature of anti‐predator behavior may depend upon founder events and recent population dynamics (e.g. population bottlenecks or several generations in captivity).  相似文献   

6.
We compared resource utilization of two insular endemic mammalian carnivores, the island spotted skunk and island fox, along niche dimensions of space, food, and time on Santa Cruz Island. We predicted that resource use by foxes and skunks would differ along one or more niche dimensions, and that both species would have broader niches or higher densities compared with mainland relatives. Island foxes and island spotted skunks differed to some extent in habitat use, diets, and circadian activity, which may account for their long-term coexistence. Nonetheless, substantial overlap between skunks and foxes in spatial, dietary, and temporal dimensions suggests that competition between the two species does occur. Moreover, competition may be asymmetric, affecting skunks more than foxes. Compared with mainland foxes, island foxes have smaller body size, smaller home range, increased population density, increased diurnal activity, and behavior that is more highly inquisitive and less flightprone all common features of insular faunas. Island skunks, however, apparently have not developed these changes, perhaps due to asymmetric competition with foxes in conjunction with severe ecosystem disturbances caused by feral sheep.  相似文献   

7.
The Island Fox, Urocyon littoralis, is a dwarf form found on six of the Channel Islands located 30–98 km off the coast of southern California. The island populations differ in two variables that affect genetic variation: effective population size and duration of isolation. We estimate that the effective population size of foxes on the islands varies from approximately 150 to 1,000 individuals. Archeological and geological evidence suggests that foxes likely arrived on the three northern islands minimally 10,400–16,000 years ago and dispersed to the three southern islands 2,200–4,300 years ago. We use morphometrics, allozyme electrophoresis, mitochondrial DNA (mtDNA) restriction-site analysis, and analysis of hypervariable minisatellite DNA to measure variability within and distances among island fox populations. The amount of within-population variation is lowest for the smallest island populations and highest for the mainland population. However, the larger populations are sometimes less variable, with respect to some genetic measures, than expected. No distinct trends of variability with founding time are observed. Genetic distances among the island populations, as estimated by the four techniques, are not well correlated. The apparent lack of correspondence among techniques may reflect the effects of mutation rate and colonization history on the values of each genetic measure.  相似文献   

8.
The study of mobile animals such as flying foxes in insular habitats involves clarifying the population status on each island and determining the factors affecting movement patterns among the islands in their distributional range. We visited 25 of the Okinawa Islands and documented the number of Orii’s flying foxes Pteropus dasymallus inopinatus from August 2005 to May 2006. We also conducted a monthly road census on the main island (Okinawa-jima Island) and six adjacent islands from June 2006 to January 2007 and counted the number of fruit-bearing trees of the bats’ four main food plants. The results of classification and regression tree analysis suggested that distance from the main island was a primary factor in determining the distribution pattern and population size of this flying fox, whereas island area, number of plant species, and food availability did not directly affect population size. The number of flying foxes on each island tended to decrease with an increase in distance from the main island; no flying foxes existed on islands >30 km away from the main island. On the other hand, the results of the monthly census showed that the population size on each island fluctuated seasonally. Individuals may move between islands in response to seasonal changes in food availability. In conclusion, the distribution and abundance of Orii’s flying foxes in the Okinawa Islands may be determined by the rate of immigration/emigration, depending on each island’s distance from the main island. Seasonal changes in food availability may act as a trigger for interisland movement, but that movement may be restricted by island connectivity.  相似文献   

9.
Based on limited research, the island loggerhead shrike, Lanius ludovicianus anthonyi has been considered a distinct subspecies endemic to the northern California Channel Islands. We used mtDNA control region sequences and microsatellite genotyping to compare loggerhead shrikes from the southern California mainland (L. l. gambeli), San Clemente Island (L. l. mearnsi), and the northern islands (L. l. anthonyi). Habitats on the islands are recovering due to the removal of non-native ungulates on the islands, but may be transitioning to habitats less supportive of loggerhead shrikes, so this evaluation comes at a critical time. We utilized 96 museum specimens that were collected over a century to evaluate both spatial and temporal genetic patterns. Analysis of multilocus microsatellite genotypes indicated that historical specimens of loggerhead shrikes (collected between 1897 and 1986) from the two northern islands of Santa Rosa and Santa Cruz are genetically distinct from adjacent mainland and island shrikes. Birds from Santa Catalina Island showed mixed ancestry and did not cluster with the northern island birds. Historical specimens of L. l. mearnsi from San Clemente Island also showed mixed ancestry. Our study provides evidence that a genetically distinct form of loggerhead shrikes, L. l. anthonyi, occurred on the islands of Santa Rosa and Santa Cruz.  相似文献   

10.
Invasive predators are globally significant drivers of threatened fauna population decline and extinction, and the early detection of new incursions is critical to the chances of successful predator eradication and fauna conservation. Here, we provide evidence of the recent invasion of European red foxes (Vulpes vulpes) on to two large and internationally significant islands off the southeast coast of Queensland, Australia – Fraser Island (K'gari) and South Stradbroke Island. From camera trap footage collected on Fraser Island since 2009, foxes have now been observed on seven different occasions between 2012 and 2016. Two scats collected on South Stradbroke Island in 2013 and 2014 tested positive for fox DNA (and negative for Canis spp. DNA), with fox presence confirmed by subsequent camera trap footage in 2016. These data confirm the recent incursion of foxes on to these islands and suggest that small populations now exist there. Fraser Island and South Stradbroke Island represent key RAMSAR wetland areas of refuge for populations of multiple threatened fauna that have never been previously been exposed to foxes. Fox impacts on these fauna can only be expected to increase without management intervention to eradicate them before they become widespread.  相似文献   

11.
The island fox (Urocyon littoralis) is native to 6 of the 8 Channel Islands of California, USA. The species experienced a population decline in the 1990s but recovered after predatory golden eagles (Aquila chrysaetos) were relocated and feral pigs (Sus scrofa), a main food source for the eagles, were removed. As part of an ongoing conservation program, the National Park Service conducts yearly health surveys on foxes residing on Santa Rosa and San Miguel islands. In this study, we document non-invasive measures of stress and nutritional status from fecal samples collected during surveys from 2009 to 2015. We collected samples defecated in traps overnight or during handling and measured concentrations of glucocorticoid (GC) and triiodothyronine (T3) metabolites using validated assays. We used generalized linear mixed models to assess the relationships between hormones, season, island, age class, sex, body condition, reproductive status, and ectoparasite presence. Overall, males had marginally lower fecal T3 concentrations than females. Concentrations of both hormones positively correlated with body condition. Fecal GC production varied seasonally; concentrations were highest from December to February and declined through the summer and fall. During summer, younger females and those with signs of recent reproduction had higher fecal GC concentrations than older females or those without evidence of reproduction. Fecal T3 concentrations did not vary in relation to season, age, or reproductive status, but on San Miguel Island were positively correlated with ectoparasite presence. There were no other significant differences between islands. Our results provide hormone data for island foxes and demonstrate that production varies in relation to seasonal and biological factors. These reference data will serve as a comparison for future health surveys and allow managers to identify factors associated with increased stress or reduced nutritional state. © 2019 The Wildlife Society.  相似文献   

12.
In this study, we examined the prevalence, pathology, and epidemiology of tumors in free-ranging island foxes occurring on three islands in the California Channel Islands, USA. We found a remarkably high prevalence of ceruminous gland tumors in endangered foxes (Urocyon littoralis catalinae) occurring on Santa Catalina Island (SCA)—48.9% of the dead foxes examined from 2001–2008 had tumors in their ears, and tumors were found in 52.2% of randomly-selected mature (≥ 4 years) foxes captured in 2007–2008, representing one of the highest prevalences of tumors ever documented in a wildlife population. In contrast, no tumors were detected in foxes from San Nicolas Island or San Clemente Island, although ear mites (Otodectes cynotis), a predisposing factor for ceruminous gland tumors in dogs and cats, were highly prevalent on all three islands. On SCA, otitis externa secondary to ear mite infection was highly correlated with ceruminous gland hyperplasia (CGH), and tumors were significantly associated with the severity of CGH, ceruminous gland dysplasia, and age group (older foxes). We propose a conceptual model for the formation of ceruminous gland tumors in foxes on SCA that is based on persistent, ubiquitous infection with ear mites, and an innate, over exuberant inflammatory and hyperplastic response of SCA foxes to these mites. Foxes on SCA are now opportunistically treated with acaricides in an attempt to reduce mite infections and the morbidity and mortality associated with this highly prevalent tumor.  相似文献   

13.
Total mercury concentrations were determined in the kidney (K), liver (L), and pectoral muscle (M) of 19 individuals representing wild carnivorous mammals from NW Poland: 10 red foxes Vulpes vulpes (Linnaeus, 1758), 3 raccoon dogs Nyctereutes procyonoides Gray, 1834, 2 badgers Meles meles Linnaeus, 1758, 3 pine martens Martes martes Linnaeus, 1758, and 1 polecat Mustela putorius Linnaeus, 1758. The sample of red fox included 3 immature specimens found on Mielin Island; the island supports a black cormorant colony, and the foxes found there had fed mostly on cormorant nestlings as well as on fish and their remains. In addition to the Mielin Island foxes, the group of foxes included 3 other immature and 4 adult individuals. The highest mean of mercury concentrations were revealed in the Mielin red fox juveniles: 5.11, 4.52, and 1.56 mg/kg d.w. being recorded in K, L, and M. No significant differences in mercury concentrations in the respective tissues were found between the remaining immature and adult red foxes; their mercury concentrations were several times lower than those of the Mielin individuals. In all the animals except the Mielin foxes, mercury concentrations in K, L, and M did not exceed 1.3, 1.0 and 0.5 mg/kg d.w., respectively, the highest values being in badgers (which feed mostly on soil invertebrates), followed by pine martens and then the canids (red fox and raccoon dog). Studies on common and widely distributed terrestrial animals, particularly red fox and badger, may provide numerous valuable comparative data on mercury contamination of different areas of the northern hemisphere.  相似文献   

14.
Introduced species can cause major disruptions to ecosystems, particularly on islands. On Christmas Island, the invasive yellow crazy ant (Anoplolepis gracilipes) has detrimental impacts on many animals ranging from the iconic red crabs (Gecarcoidea natalis) to the Christmas Island Thrush (Turdus poliocephalus erythropleurus). However, the full extent of its effects on the island's fauna is not yet known. In this study, we investigated the impact of the yellow crazy ants on the island's last native mammal: the Christmas Island flying‐fox (Pteropus natalis). This species has been described as a keystone species, but has recently experienced substantial population decline to the extent that it is now listed as Critically Endangered. We examined the impacts of the yellow crazy ants on the roosting behavior of the Christmas Island flying‐fox, and on its local and island‐wide distribution patterns. We showed that the crazy ants increased behaviors in the flying‐foxes that were associated with avoidance of noxious stimuli and decreased behaviors associated with resting. Roost tree selection and roost site location were not related to variation in the abundance of crazy ants on the island. Our results indicate that the crazy ants interfere with the activity budgets of the flying‐foxes. However, the flying‐foxes failed to relocate to ant‐free roost trees or roost sites when confronted with the noxious ant, suggesting that the flying‐foxes are either not sufficiently disturbed to override strong cultural attachment to roosts, or, are behaving maladaptively due to ecological naïveté.  相似文献   

15.
The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction‐site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1–89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome‐wide divergence. Nonetheless, outlier tests identified 3.6–6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential.  相似文献   

16.
The genetic structure of black abalone populations in the southern California Islands and central California coast was investigated by protein electrophoresis. Detailed sampling of San Nicolas Island (SN) permitted investigation of microgeographic genetic differentiation among local geomorphological features. In addition, temporal genetic differentiation was assessed by comparing juveniles and adults at three islands, San Miguel (SM), Santa Cruz (SC) and San Nicolas (SN). Mainland and island locations were genetically differentiated based on allele frequency differences and the presence of private alleles in some island populations. Although microgeographic genetic structure among sites on SN was weak and not statistically significant, heterozygosity varied among sites, with diversity decreasing from west to east. In addition, investigation among cohorts showed that adults were genetically differentiated among island locations, whereas no differences among juveniles were detected. Genetic differentiation between adult and juvenile abalones was detected at SC but not SM or SN. These data are generally consistent with local recruitment augmented by relatively more gene flow among island populations than among island and mainland populations, and possible selection acting on immigrant recruits.  相似文献   

17.
Although flying foxes (fruit bats in the genus Pteropus ) in continental forests often fly between scattered resources, little is known about their ranging behavior among islands. The inhospitable water matrix that surrounds the food patches (islands) in archipelagos may prevent flying foxes from tracking resources as efficiently as their counterparts on larger landmasses do. Our aim in this study was to determine whether the abundance of foraging flying foxes ( Pteropus tonganus ) reflected food availability on islands in the Vava'u archipelago of Tonga, regardless of island size and isolation. Overall, food availability was the strongest determinant of flying fox abundance, and spatial aspects of the islands (land area within 10 km) had only a small influence. Food availability appears to regulate flying fox abundance only when food resources are low, but when food sources are plentiful, flying fox abundance may be high or low. These results provide indirect evidence that flying foxes are able to track food resources efficiently in an archipelago, and the water matrix that surrounds the food patches (islands) is not a strong deterrent for foraging animals.  相似文献   

18.
Small rodents with multi-annual population cycles strongly influence the dynamics of food webs, and in particular predator-prey interactions, across most of the tundra biome. Rodents are however absent from some arctic islands, and studies on performance of arctic predators under such circumstances may be very instructive since rodent cycles have been predicted to collapse in a warming Arctic. Here we document for the first time how three normally rodent-dependent predator species—rough-legged buzzard, arctic fox and red fox – perform in a low-arctic ecosystem with no rodents. During six years (in 2006-2008 and 2011-2013) we studied diet and breeding performance of these predators in the rodent-free Kolguev Island in Arctic Russia. The rough-legged buzzards, previously known to be a small rodent specialist, have only during the last two decades become established on Kolguev Island. The buzzards successfully breed on the island at stable low density, but with high productivity based on goslings and willow ptarmigan as their main prey – altogether representing a novel ecological situation for this species. Breeding density of arctic fox varied from year to year, but with stable productivity based on mainly geese as prey. The density dynamic of the arctic fox appeared to be correlated with the date of spring arrival of the geese. Red foxes breed regularly on the island but in very low numbers that appear to have been unchanged over a long period – a situation that resemble what has been recently documented from Arctic America. Our study suggests that the three predators found breeding on Kolguev Island possess capacities for shifting to changing circumstances in low-arctic ecosystem as long as other small - medium sized terrestrial herbivores are present in good numbers.  相似文献   

19.
Hematological and blood biochemical parameters are of great importance in medical and veterinary practice. Unfortunately, normal reference range intervals for hematological and serum biochemical values in the tufted capuchin monkey (Cebus apella) have seldom been reported. The study reported here is based on data from blood samples collected from 44 monkeys over an 8-year period. Male and female data are displayed separately within two age categories: juveniles and adults, and effects for sex and age are examined. Significant differences between males and females are found for erythrocytes, hemoglobin, hematocrit, and α(1) globulin. Significant differences between juveniles and adults are found for neutrophils, calcium, aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase, inorganic phosphorus, glucose, total protein, serum iron, and some serum protein parameters and albumin/globulin ratio. These values are compared with values we previously reported, and their importance in care and well-being of captive tufted capuchin monkeys is discussed.  相似文献   

20.
Abstract: Range expansion and population increase by coyotes (Canis latrans), reduced hunting and trapping, and intensified agricultural practices in the Midwest have altered red fox (Vulpes vulpes) mortality, although relative impacts of these factors are unknown. We examined mortality causes and survival of red foxes in urban and rural agricultural areas of Illinois, using radio telemetry data from 335 foxes (Nov 1996 to May 2002). We used Akaike's Information Criterion to evaluate six survival models for foxes reflecting 1) environmental effects, 2) intrinsic effects, 3) temporal effects, 4) behavioral effects, 5) social effects, and 6) a global model. Environmental and intrinsic models of survival were optimal for adult foxes. Adult foxes with low (0-20%) and high (80-100%) percentages of row crops in their home ranges had higher survival than adults with moderate percentages (40-70%). Heavier adults at capture also survived better. A global model (all covariates) was optimal for juvenile foxes. Higher juvenile survival associated with larger litters, lower body fat, and reduced dispersal time. Yearly survival ranged from 0.18 for rural male juveniles to 0.44 for rural female adults. Adult survival rates (0.35) were 11% higher than juvenile survival rates (0.24). Yearly survival varied for urban foxes due to cyclic outbreaks of sarcoptic mange (Sarcoptes scabei). Thus, summer survival (May-Sep) of urban juveniles ranged from 0.10 (mange present) to 0.83 (no mange recorded). Mange was the most common (45% of all fatalities) source of mortality for urban foxes, followed by road kill (31%). We recorded only 4 mange fatalities (2%) for rural foxes. Rural foxes experienced low hunting mortality (7%) and equivalent road kill and coyote predation fatalities (40% each). Sources of mortality for midwestern foxes have dramatically changed since the 1970s when hunting was the major cause of mortality. Coyote predation has effectively replaced hunting mortality, and cyclic patterns of mange outbreaks in urban fox populations might indicate a dynamic source or sink relationship to surrounding rural fox populations. Absent mange, urban areas might provide refugia for red foxes where coyote populations persist at high densities in rural areas. Managers of sympatric urban and rural wildlife populations must understand survival dynamics influencing the population at the landscape level.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号