首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Receptor-like cytoplasmic kinases (RLCKs) belong to a large subgroup of kinases that play pivotal roles in plant development and in protecting plants from various stresses. Here, we report the isolation and characterization of rice OsRLCK102, from the OsRLCK VII subgroup. Silencing of OsRLCK102 compromised receptor kinase XA21-mediated resistance to Xanthomonas oryzae pv. oryzae (Xoo) but did not affect plant basal resistance to Xoo or Magnaporthe oryzae (M. oryzae). Plants with silenced OsRLCK102 exhibit architecture alterations, including reduced plant height, enlarged angle of the lamina joint, decreased rates of seed setting and enhanced sensitivity to hormone brassinolide (BR). Collectively, our study reveals that OsRLCK102 positively regulates XA21-mediated immunity and negatively regulates rice development through BR signaling in rice.  相似文献   

3.
植物类受体蛋白参与植物生长与发育的研究进展   总被引:1,自引:0,他引:1  
类受体蛋白(receptor-like protein,RLP)广泛存在于高等植物中,其家族在拟南芥中有57个成员。研究表明RLP蛋白参与了植物茎尖分生组织(shoot apical meristem,SAM)、根尖分生组织(root apical meristem,RAM)和维管分生组织等器官的生长与发育过程,例如CLV2(CLAVATA2)和FEA2(FASCINATED EAR2)参与了分生组织的维持与分化和其他器官的发育、TMM(TOO MANY MOUTHS)则介导了植物表皮细胞的分裂和气孔分布。另一方面,RLP蛋白在植物抗病中发挥着重要作用,包括番茄抗叶霉菌Cf类蛋白、番茄抗黑白轮枝菌Ve1和Ve2以及番茄应答非致病绿色木霉菌激发子的抗病蛋白LeEix等。同时,研究表明RLP蛋白在细胞间信号的接受与传递过程中起着极为重要的作用。本文综述了近年来对植物类受体蛋白参与植物生长与发育的功能、信号识别、传输与转导等方面的研究进展。  相似文献   

4.
LEA蛋白与植物的抗旱性   总被引:32,自引:1,他引:32  
文章对LEA蛋白的性质、功能与植物抗旱性的关系,以及lea基因表达与调控的研究进展作了简要述评。  相似文献   

5.
6.
Eukaryotic gene expression involves numerous biochemical steps that are dependent on RNA structure and ribonucleoprotein (RNP) complex formation. The DEAD-box class of RNA helicases plays fundamental roles in formation of RNA and RNP structure in every aspect of RNA metabolism. In an effort to explore the diversity of biological roles for DEAD-box proteins, our laboratory recently demonstrated that the DEAD-box protein Dbp2 associates with actively transcribing genes and is required for normal gene expression in Saccharomyces cerevisiae. We now provide evidence that Dbp2 interacts genetically and physically with the mRNA export factor Yra1. In addition, we find that Dbp2 is required for in vivo assembly of mRNA-binding proteins Yra1, Nab2, and Mex67 onto poly(A)+ RNA. Strikingly, we also show that Dbp2 is an efficient RNA helicase in vitro and that Yra1 decreases the efficiency of ATP-dependent duplex unwinding. We provide a model whereby messenger ribonucleoprotein (mRNP) assembly requires Dbp2 unwinding activity and once the mRNP is properly assembled, inhibition by Yra1 prevents further rearrangements. Both Yra1 and Dbp2 are conserved in multicellular eukaryotes, suggesting that this constitutes a broadly conserved mechanism for stepwise assembly of mature mRNPs in the nucleus.  相似文献   

7.
8.
Du  Ying-Chun  Kong  Ling-Jie  Ma  Chen-Yu  Zhang  Wei  Sun  Kai  Dai  Chuan-Chao 《Journal of Plant Growth Regulation》2023,42(3):1879-1892

Plant iron (Fe) deficiency is widely present in alkaline calcium soils worldwide, and endophytes show great potential for promoting plant nutrient absorption. However, the underlying mechanisms remain unclear. To clarify the mechanisms by which the endophytic fungus Phomopsis liquidambaris promotes peanut Fe absorption, we designed this study to detect the physiological changes in peanut with P. liquidambaris infection. We measured ethylene and auxin in peanuts under Fe deficiency and found that fungal colonization promoted their accumulation (50% and 20%, respectively, at the top point). Moreover, plant Fe absorption ability and transfer were enhanced according to qPCR and enzyme results; the Fe content in the leaf increased (29.52%) as the symptoms of leaf chlorosis were ameliorated. Finally, the chlorophyll content increased (29%), and plant growth was enhanced (13.3%). We also proved that during Fe insufficiency, auxin functions downstream of ethylene to induce the upregulation of Fe absorption-related gene and enzyme activity including that of AHA4, IRT1, H+-ATPase, and FCR. We conclude that the addition of P. liquidambaris activates the auxin signaling pathway downstream of ethylene and improves peanut Fe absorption by promoting rhizosphere acidification, increasing FCR and IRT1 expression in peanut roots, leading to plant Fe absorption and growth.

  相似文献   

9.
10.
《Cell host & microbe》2014,15(3):329-338
  1. Download : Download high-res image (164KB)
  2. Download : Download full-size image
  相似文献   

11.
12.
Alterations in microtubule-dependent trafficking and certain signaling pathways in neuronal cells represent critical pathogenesis in neurodegenerative diseases. Huntingtin (Htt)-associated protein-1 (Hap1) is a brain-enriched protein and plays a key role in the trafficking of neuronal surviving and differentiating cargos. Lack of Hap1 reduces signaling through tropomyosin-related kinases including extracellular signal regulated kinase (ERK), resulting in inhibition of neurite outgrowth, hypothalamic dysfunction and postnatal lethality in mice. To examine how Hap1 is involved in microtubule-dependent trafficking and neuronal differentiation, we performed a proteomic analysis using taxol-precipitated microtubules from Hap1-null and wild-type mouse brains. Breakpoint cluster region protein (Bcr), a Rho GTPase regulator, was identified as a Hap1-interacting partner. Bcr was co-immunoprecipitated with Hap1 from transfected neuro-2a cells and co-localized with Hap1A isoform more in the differentiated than in the nondifferentiated cells. The Bcr downstream effectors, namely ERK and p38, were significantly less activated in Hap1-null than in wild-type mouse hypothalamus. In conclusion, Hap1 interacts with Bcr on microtubules to regulate neuronal differentiation.  相似文献   

13.
14.
The importance of pathogen-associated molecular pattern-triggered immunity (PTI) against microbial pathogens has been recently demonstrated. However, it is currently unclear if this layer of immunity mediated by surface-localized pattern recognition receptors (PRRs) also plays a role in basal resistance to insects, such as aphids. Here, we show that PTI is an important component of plant innate immunity to insects. Extract of the green peach aphid (GPA; Myzus persicae) triggers responses characteristic of PTI in Arabidopsis (Arabidopsis thaliana). Two separate eliciting GPA-derived fractions trigger induced resistance to GPA that is dependent on the leucine-rich repeat receptor-like kinase BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1)/SOMATIC-EMBRYOGENESIS RECEPTOR-LIKE KINASE3, which is a key regulator of several leucine-rich repeat-containing PRRs. BAK1 is required for GPA elicitor-mediated induction of reactive oxygen species and callose deposition. Arabidopsis bak1 mutant plants are also compromised in immunity to the pea aphid (Acyrthosiphon pisum), for which Arabidopsis is normally a nonhost. Aphid-derived elicitors induce expression of PHYTOALEXIN DEFICIENT3 (PAD3), a key cytochrome P450 involved in the biosynthesis of camalexin, which is a major Arabidopsis phytoalexin that is toxic to GPA. PAD3 is also required for induced resistance to GPA, independently of BAK1 and reactive oxygen species production. Our results reveal that plant innate immunity to insects may involve early perception of elicitors by cell surface-localized PRRs, leading to subsequent downstream immune signaling.Close to a million insect species have so far been described, and nearly one-half of them feed on plants (Wu and Baldwin, 2010). Within these plant-feeding insects, most feed on a few related plant species, with only 10% feeding upon multiple plant families (Schoonhoven et al., 2005). Plant defense to insects include several layers (Bos and Hogenhout, 2011; Hogenhout and Bos, 2011). Physical barriers, volatile cues, and composition of secondary metabolites of plants are important components that determine insect host choice (Howe and Jander, 2008; Bruce and Pickett, 2011). In addition, plants induce a variety of plant defense responses upon perception of herbivore oral secretions (OS), saliva, and eggs (De Vos and Jander, 2009; Bruessow et al., 2010; Ma et al., 2010; Wu and Baldwin, 2010). These responses may provide full protection against the majority of insect herbivores, and insects that are able to colonize specific plant species likely produce effectors in their saliva or during egg laying that suppress these induced defense responses (Bos and Hogenhout, 2011; Hogenhout and Bos, 2011; Pitino and Hogenhout, 2013).Aphids are sap-feeding insects of the order Hemiptera and are among the most destructive pests in agriculture, particularly in temperate regions (Blackman and Eastop, 2000). More than 4,000 aphid species in 10 families are known (Dixon, 1998). Most aphid species are specialists and use one or a few closely related plant species within one family as host for feeding and reproduction. Examples are pea aphid (Acyrthosiphon pisum), cabbage aphid (Brevicoryne brassicae), and English grain aphid (Sitobion avenae) that colonize plant species within the legumes (family Fabaceae), brassicas (Brassicaceae), and grasses (Gramineae), respectively. The green peach aphid (GPA; Myzus persicae) is one of few aphid species with a broad host range and can colonize hundreds of plants species in over 40 plant families, including brassicas (Blackman and Eastop, 2000). Aphids possess mouthparts composed of stylets that navigate to the plant vascular system, predominantly the phloem, for long-term feeding. However, before establishing a long-term feeding site, these insects display a host selection behavior by probing the upper leaf cell layers with their stylets, a behavior seen on host and nonhost plants of the aphid (Nam and Hardie, 2012). When the plant is judged unsuitable, the aphid takes off to find an alternative plant host. It is not yet clear what happens in the initial stages of insect interactions with plants.Plants sense microbial organisms (including bacteria, fungi, and oomycetes) through perception of conserved molecules, named microbe-associated molecular patterns and pathogen-associated molecular patterns (PAMPs) via pattern recognition receptors (PRRs) to induce the first stage of plant immunity, termed PAMP-triggered immunity (PTI). PTI is effective against the majority of plant pathogens. Bacterial and fungal PAMPs characterized so far include bacterial flagellin (or its derived peptide flg22), bacterial elongation factor (EF)-Tu (or its derived peptide elf18), bacterial lipopolysaccharides and bacterial cold shock protein, chitin oligosaccharides, and the oomycete elicitin INF1 (Boller and Felix, 2009)Plant PRRs are either receptor-like kinases (RLKs) or receptor-like proteins. Most leucine-rich repeat (LRR)-type PRRs associate with and rely for their function on the small regulatory LRR-RLK BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1)/SOMATIC-EMBRYOGENESIS RECEPTOR-LIKE KINASE3 (SERK3; Monaghan and Zipfel, 2012). For example, in Arabidopsis (Arabidopsis thaliana), flg22 and elf18 bind to the LRR-RLKs FLAGELLIN SENSITIVE2 (FLS2) and EF-TU RECEPTOR (EFR), respectively, leading to a quasi-instant association with BAK1 (Gómez-Gómez and Boller, 2000; Zipfel et al., 2006; Chinchilla et al., 2007; Heese et al., 2007; Schulze et al., 2010; Roux et al., 2011; Sun et al., 2013). BAK1 is required for optimal downstream immune signaling events, such as mitogen-activated protein kinase (MAPK) activation, reactive oxygen species (ROS) bursts, callose depositions, induction of immune genes, and induced resistance. Similarly, BAK1 is a positive regulator of innate immune responses triggered by the Arabidopsis LRR-RLKs PLANT ELICITOR PEPTIDE1 RECEPTOR1 (PEPR1) and PEPR2 that bind the Arabidopsis-derived damage-associated molecular pattern A. thaliana Peptide1 (AtPep1; Krol et al., 2010; Postel et al., 2010; Roux et al., 2011) and by the tomato (Solanum lycopersicum) LRR receptor-like protein Ve1 that recognizes Ave1 derived from Verticillium spp. (Fradin et al., 2009; de Jonge et al., 2012). Consistent with the role of BAK1 downstream of numerous PRRs, BAK1 is required for full immunity to a number of bacterial, fungal, oomycete, and viral pathogens (Heese et al., 2007; Kemmerling et al., 2007; Fradin et al., 2009; Chaparro-Garcia et al., 2011; Roux et al., 2011; Kørner et al., 2013).Notably, it has been recently shown that the ortholog of BAK1 in Nicotiana attenuata regulates the induction of jasmonic acid (JA) accumulation upon herbivory (Yang et al., 2011a). However, immunity to insects was not affected when BAK1 was silenced, and the observed effect on JA accumulation may be due to an indirect effect on brassinosteroid (BR) responses, for which BAK1 is also an important positive regulator (Li et al., 2002; Nam and Li, 2002). Therefore, it is currently unclear if BAK1 is involved in the early recognition of insect-derived elicitors leading to immunity.We discovered that the key regulatory LRR-RLK BAK1 participates in plant defense to an insect herbivore. We found that extracts of GPA trigger plant defense responses in Arabidopsis that are characteristic of PTI. Arabidopsis bak1 mutant plants are compromised in defense to GPA, which colonizes Arabidopsis, and to pea aphid, for which Arabidopsis is a nonhost. BAK1 is required for ROS bursts, callose deposition, and induced resistance in Arabidopsis upon perception of aphid-derived elicitors. One of the defense genes induced by GPA-derived extracts encodes PHYTOALEXIN DEFICIENT3 (PAD3), a cytochrome P450 that catalyzes the conversion of dihydrocamalexic acid to camalexin, which is a major Arabidopsis phytoalexin that is toxic to GPA (Kettles et al., 2013). PAD3 expression is required for Arabidopsis-induced resistance to GPA, independently of BAK1 and ROS. Our results provide evidence that innate immunity to insect herbivores may rely on the early perception of elicitors by cell surface-localized PRR.  相似文献   

15.
Brachydactyly type A2 (BDA2, MIM 112600) is characterized by the deviation and shortening of the middle phalange of the index finger and the second toe. Using genome-wide linkage analysis in a Chinese BDA2 family, we mapped the maximum candidate interval of BDA2 to a ∼1.5 Mb region between D20S194 and D20S115 within chromosome 20p12.3 and found that the pairwise logarithm of the odds score was highest for marker D20S156 (Zmax = 6.09 at θ = 0). Based on functional and positional perspectives, the bone morphogenetic protein 2 (BMP2) gene was identified as the causal gene for BDA2 in this region, even though no point mutation was detected in BMP2. Through further investigation, we identified a 4,671 bp (Chr20: 6,809,218–6,813,888) genomic duplication downstream of BMP2. This duplication was located within the linked region, co-segregated with the BDA2 phenotype in this family, and was not found in the unaffected family members and the unrelated control individuals. Compared with the previously reported duplications, the duplication in this family has a different breakpoint flanked by the microhomologous sequence GATCA and a slightly different length. Some other microhomologous nucleotides were also found in the duplicated region. In summary, our findings support the conclusions that BMP2 is the causing gene for BDA2, that the genomic location corresponding to the duplication region is prone to structural changes associated with malformation of the digits, and that this tendency is probably caused by the abundance of microhomologous sequences in the region.  相似文献   

16.
Effective plant defense strategies rely in part on the perception of non-self determinants, so-called microbe-associated molecular patterns (MAMPs), by transmembrane pattern recognition receptors leading to MAMP-triggered immunity. Plant resistance against necrotrophic pathogens with a broad host range is complex and yet not well understood. Particularly, it is unclear if resistance to necrotrophs involves pattern recognition receptors. Here, we partially purified a novel proteinaceous elicitor called SCLEROTINIA CULTURE FILTRATE ELICITOR1 (SCFE1) from the necrotrophic fungal pathogen Sclerotinia sclerotiorum that induces typical MAMP-triggered immune responses in Arabidopsis thaliana. Analysis of natural genetic variation revealed five Arabidopsis accessions (Mt-0, Lov-1, Lov-5, Br-0, and Sq-1) that are fully insensitive to the SCFE1-containing fraction. We used a forward genetics approach and mapped the locus determining SCFE1 sensitivity to RECEPTOR-LIKE PROTEIN30 (RLP30). We also show that SCFE1-triggered immune responses engage a signaling pathway dependent on the regulatory receptor-like kinases BRASSINOSTEROID INSENSITIVE1-ASSOCIATED RECEPTOR KINASE1 (BAK1) and SUPPRESSOR OF BIR1-1/EVERSHED (SOBIR1/EVR). Mutants of RLP30, BAK1, and SOBIR1 are more susceptible to S. sclerotiorum and the related fungus Botrytis cinerea. The presence of an elicitor in S. sclerotiorum evoking MAMP-triggered immune responses and sensed by RLP30/SOBIR1/BAK1 demonstrates the relevance of MAMP-triggered immunity in resistance to necrotrophic fungi.  相似文献   

17.
18.
Polycomb repressive complex 1 (PRC1) plays an essential role in the epigenetic repression of gene expression during development and cellular differentiation via multiple effector mechanisms, including ubiquitination of H2A and chromatin compaction. However, whether it regulates the stepwise progression of adipogenesis is unknown. Here, we show that FBXL10/KDM2B is an anti-adipogenic factor that is up-regulated during the early phase of 3T3-L1 preadipocyte differentiation and in adipose tissue in a diet-induced model of obesity. Interestingly, inhibition of adipogenesis does not require the JmjC demethylase domain of FBXL10, but it does require the F-box and leucine-rich repeat domains, which we show recruit a noncanonical polycomb repressive complex 1 (PRC1) containing RING1B, SKP1, PCGF1, and BCOR. Knockdown of either RING1B or SKP1 prevented FBXL10-mediated repression of 3T3-L1 preadipocyte differentiation indicating that PRC1 formation mediates the inhibitory effect of FBXL10 on adipogenesis. Using ChIP-seq, we show that FBXL10 recruits RING1B to key specific genomic loci surrounding the key cell cycle and the adipogenic genes Cdk1, Uhrf1, Pparg1, and Pparg2 to repress adipogenesis. These results suggest that FBXL10 represses adipogenesis by targeting a noncanonical PRC1 complex to repress key genes (e.g. Pparg) that control conversion of pluripotent cells into the adipogenic lineage.  相似文献   

19.
M-type potassium channels, encoded by the KCNQ family genes (KCNQ2–5), require calmodulin as an essential co-factor. Calmodulin bound to the KCNQ2 subunit regulates channel trafficking and stabilizes channel activity. We demonstrate that phosphorylation of calmodulin by protein kinase CK2 (casein kinase 2) rapidly and reversibly modulated KCNQ2 current. CK2-mediated phosphorylation of calmodulin strengthened its binding to KCNQ2 channel, caused resistance to phosphatidylinositol 4,5-bisphosphate depletion, and increased KCNQ2 current amplitude. Accordingly, application of CK2-selective inhibitors suppressed KCNQ2 current. This suppression was prevented by co-expression of CK2 phosphomimetic calmodulin mutants or pretreatment with a protein phosphatase inhibitor, calyculin A. We also demonstrated that functional CK2 and protein phosphatase 1 (PP1) were selectively tethered to the KCNQ2 subunit. We identified a functional KVXF consensus site for PP1 binding in the N-terminal tail of KCNQ2 subunit: mutation of this site augmented current density. CK2 inhibitor treatment suppressed M-current in rat superior cervical ganglion neurons, an effect negated by overexpression of phosphomimetic calmodulin or pretreatment with calyculin A Furthermore, CK2 inhibition diminished the medium after hyperpolarization by suppressing the M-current. These findings suggest that CK2-mediated phosphorylation of calmodulin regulates the M-current, which is tonically regulated by CK2 and PP1 anchored to the KCNQ2 channel complex.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号