首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.

Background

Phosphorus (P) is essential for plant growth and development. Phosphate (Pi) transporter genes in the Pht1 family play important roles in Pi uptake and translocation in plants. Although Pht1 family genes have been well studied in model plants, little is known about their functions in soybean, an important legume crop worldwide.

Principal Findings

We identified and isolated a complete set of 14 Pi transporter genes (GmPT1-14) in the soybean genome and categorized them into two subfamilies based on phylogenetic analysis. Then, an experiment to elucidate Pi transport activity of the GmPTs was carried out using a yeast mutant defective in high-affinity Pi transport. Results showed that 12 of the 14 GmPTs were able to complement Pi uptake of the yeast mutant with Km values ranging from 25.7 to 116.3 µM, demonstrating that most of the GmPTs are high-affinity Pi transporters. Further results from qRT-PCR showed that the expressions of the 14 GmPTs differed not only in response to P availability in different tissues, but also to other nutrient stresses, including N, K and Fe deficiency, suggesting that besides functioning in Pi uptake and translocation, GmPTs might be involved in synergistic regulation of mineral nutrient homeostasis in soybean.

Conclusions

The comprehensive analysis of Pi transporter function in yeast and expression responses to nutrition starvation of Pht1 family genes in soybean revealed their involvement in other nutrient homeostasis besides P, which could help to better understand the regulation network among ion homeostasis in plants.  相似文献   

3.
4.
5.
6.
Nodulated legumes receive their nitrogen via nitrogen-fixing rhizobia, which exist in a symbiotic relationship with the root system. In tropical legumes like French bean (Phaseolus vulgaris) or soybean (Glycine max), most of the fixed nitrogen is used for synthesis of the ureides allantoin and allantoic acid, the major long-distance transport forms of organic nitrogen in these species. The purpose of this investigation was to identify a ureide transporter that would allow us to further characterize the mechanisms regulating ureide partitioning in legume roots. A putative allantoin transporter (PvUPS1) was isolated from nodulated roots of French bean and was functionally characterized in an allantoin transport-deficient yeast mutant showing that PvUPS1 transports allantoin but also binds its precursors xanthine and uric acid. In beans, PvUPS1 was expressed throughout the plant body, with strongest expression in nodulated roots, source leaves, pods, and seed coats. In roots, PvUPS1 expression was dependent on the status of nodulation, with highest expression in nodules and roots of nodulated plants compared with non-nodulated roots supplied with ammonium nitrate or allantoin. In situ RNA hybridization localized PvUPS1 to the nodule endodermis and the endodermis and phloem of the nodule vasculature. These results strengthen our prediction that in bean nodules, PvUPS1 is involved in delivery of allantoin to the vascular bundle and loading into the nodule phloem.  相似文献   

7.
8.
Legume–rhizobia symbiosis enables biological nitrogen fixation to improve crop production for sustainable agriculture. Small heat shock proteins (sHSPs) are involved in multiple environmental stresses and plant development processes. However, the role of sHSPs in nodule development in soybean remains largely unknown. In the present study, we identified a nodule-localized sHSP, called GmHSP17.9, in soybean, which was markedly up-regulated during nodule development. GmHSP17.9 was specifically expressed in the infected regions of the nodules. GmHSP17.9 overexpression and RNAi in transgenic composite plants and loss of function in CRISPR-Cas9 gene-editing mutant plants in soybean resulted in remarkable alterations in nodule number, nodule fresh weight, nitrogenase activity, contents of poly β-hydroxybutyrate bodies (PHBs), ureide and total nitrogen content, which caused significant changes in plant growth and seed yield. GmHSP17.9 was also found to act as a chaperone for its interacting partner, GmNOD100, a sucrose synthase in soybean nodules which was also preferentially expressed in the infected zone of nodules, similar to GmHSP17.9. Functional analysis of GmNOD100 in composite transgenic plants revealed that GmNOD100 played an essential role in soybean nodulation. The hsp17.9 lines showed markedly more reduced sucrose synthase activity, lower contents of UDP-glucose and acetyl coenzyme A (acetyl-CoA), and decreased activity of succinic dehydrogenase (SDH) in the tricarboxylic acid (TCA) cycle in nodules due to the missing interaction with GmNOD100. Our findings reveal an important role and an unprecedented molecular mechanism of sHSPs in nodule development and nitrogen fixation in soybean.  相似文献   

9.
Trifolium repens L. was grown to test the following hypotheses: when P is deficient (i) N2 fixation decreases as a result of the plant's adaptation to the low N demand, regulated by an N feedback mechanism, and (ii) the decrease in the photosynthetic capacity of the leaves does not limit N2 fixation. Severe P deficiency prevented nodulation or stopped nodule growth when the P deficiency occurred after the plants had formed nodules. At low P, the proportion of whole-plant-N derived from symbiotic N2 fixation decreased, whereas specific N2 fixation increased and compensated partially for poor nodulation. Leaf photosynthesis was reduced under P deficiency due to low Vc,max and Jmax. Poor growth or poor performance of the nodules was not due to C limitation, because (i) the improved photosynthetic performance at elevated pCO2 had no effect on the growth and functioning of the nodules, (ii) starch accumulated in the leaves, particularly under elevated pCO2, and (iii) the concentration of WSC in the nodules was highest under P deficiency. Under severe P deficiency, the concentrations of whole-plant-N and leaf-N were the highest, indicating that the assimilation of N exceeded the amount of N required by the plant for growth. This was clearly demonstrated by a strong increase in asparagine concentrations in the roots and nodules under low P supply. This indicates that nodulation and the proportion of N derived from symbiotic N2 fixation are down-regulated by an N feedback mechanism.  相似文献   

10.
11.
12.
13.
The number of nodules formed in the roots of leguminous plants is systemically controlled by autoregulation of nodulation (AON). This study characterized two of the CLAVATA3/endosperm-surrounding region (CLE) genes involved in AON signal transduction. The GmRIC1 and GmRIC2 genes initiated expression solely in the roots at approximately 3 days after inoculation (DAI) with Nod factor-producing rhizobia, corresponding to the time point of AON, and the expression was up-regulated by cytokinins. Levels of GmRIC1 and GmRIC2 gene expression were much higher in the supernodulation mutant, SS2-2, than in wild-type (WT) soybeans during nodule development, even after initiation of nitrogen fixation. At 3 DAI, GmRIC2 was induced in the cells of the pericycle and the outer cortex, which undergo cell division to form nodule primordia and spreads from the central region to the whole nodule as it develops. Overexpression of GmRIC1 and GmRIC2 strongly suppressed the nodulation of WT roots as well as transgenic hairy roots in a GmNARK-dependent manner. This systemic suppression of nodulation was caused by the secretion of two CLE proteins into the extracellular space. Double grafting between WT and SS2-2 soybeans showed that signal Q is larger in SS2-2 than in WT roots during nodulation. The results of this study suggest that GmRIC1 and GmRIC2 are good candidates for root-derived signal Q in AON signal transduction.  相似文献   

14.
To understand carbon partitioning in roots and nodules of Datisca glomerata, activities of sucrose-degrading enzymes and sugar transporter expression patterns were analyzed in both organs, and plasmodesmal connections between nodule cortical cells were examined by transmission electron microscopy. The results indicate that in nodules, the contribution of symplastic transport processes is increased in comparison to roots, specifically in infected cells which develop many secondary plasmodesmata. Invertase activities are dramatically reduced in nodules as compared to roots, indicating that here the main enzyme responsible for the cleavage of sucrose is sucrose synthase. A high-affinity, low-specificity monosaccharide transporter whose expression is induced in infected cells prior to the onset of bacterial nitrogen fixation, and which has an unusually low pH optimum and may be involved in turgor control or hexose retrieval during infection thread growth.  相似文献   

15.
The symbiotic relationship between the soybean plant and rhizobium results in fixation of atmospheric nitrogen (N(2)) in the root nodules, with the result that nitrogenous fertilization of the soybean is unnecessary. The effectiveness of nodule formation and N(2) fixation with rhizobial strains is under genetic control with two general categories identified: (1) promiscuous, which produces functional nodules with cowpea-type rhizobial strains; and (2) nonpromiscuous, which forms no or nonfunctional nodules with these strains. The segregation pattern of this promiscuity trait was studied using nodule dry weight (NDW) and leaf color score (LCS) as indicators of N(2) fixation effectiveness. Individual plants in each of six populations [P(1) = nonpromiscuous, P(2) = promiscuous, F(1) = P(1) x P(2) (and the reciprocal cross), BC(1)(P(1)) = F(1) (female) x P(1), BC(1)(P(2)) = F(1) (female) x P(2), F(2)] were scored for these characters after inoculation with a rhizobial strain that would distinguish between both types. For NDW, nonpromiscuity was found to be partially dominant (h/d = 0.37), controlled by four loci. For LCS, nonpromiscuity was shown to be almost completely dominant (h/d = 0.74), controlled by two loci. LCS was a more meaningful estimate of N(2) fixation because it represented the total effectiveness of nodulation to provide nitrogen for the plant.  相似文献   

16.
Iron is an important nutrient in N2-fixing legume root nodules. Iron supplied to the nodule is used by the plant for the synthesis of leghemoglobin, while in the bacteroid fraction, it is used as an essential cofactor for the bacterial N2-fixing enzyme, nitrogenase, and iron-containing proteins of the electron transport chain. The supply of iron to the bacteroids requires initial transport across the plant-derived peribacteroid membrane, which physically separates bacteroids from the infected plant cell cytosol. In this study, we have identified Glycine max divalent metal transporter 1 (GmDmt1), a soybean homologue of the NRAMP/Dmt1 family of divalent metal ion transporters. GmDmt1 shows enhanced expression in soybean root nodules and is most highly expressed at the onset of nitrogen fixation in developing nodules. Antibodies raised against a partial fragment of GmDmt1 confirmed its presence on the peribacteroid membrane (PBM) of soybean root nodules. GmDmt1 was able to both rescue growth and enhance 55Fe(II) uptake in the ferrous iron transport deficient yeast strain (fet3fet4). The results indicate that GmDmt1 is a nodule-enhanced transporter capable of ferrous iron transport across the PBM of soybean root nodules. Its role in nodule iron homeostasis to support bacterial nitrogen fixation is discussed.  相似文献   

17.
Drought stress is one of the major factors affecting nitrogen fixation by legume-rhizobium symbiosis. Several mechanisms have been previously reported to be involved in the physiological response of symbiotic nitrogen fixation to drought stress, i.e. carbon shortage and nodule carbon metabolism, oxygen limitation, and feedback regulation by the accumulation of N fixation products. The carbon shortage hypothesis was previously investigated by studying the combined effects of CO2 enrichment and water deficits on nodulation and N2 fixation in soybean. Under drought, in a genotype with drought tolerant N2 fixation, approximately four times the amount of 14C was allocated to nodules compared to a drought sensitive genotype. It was found that an important effect of CO2 enrichment of soybean under drought was an enhancement of photo assimilation, an increased partitioning of carbon to nodules, whose main effect was to sustain nodule growth, which helped sustain N2 rates under soil water deficits. The interaction of nodule permeability to O2 and drought stress with N2 fixation was examined in soybean nodules and led to the overall conclusion that O2 limitation seems to be involved only in the initial stages of water deficit stresses in decreasing nodule activity. The involvement of ureides in the drought response of N2 fixation was initially suspected by an increased ureide concentration in shoots and nodules under drought leading to a negative feedback response between ureides and nodule activity. Direct evidence for inhibition of nitrogenase activity by its products, ureides and amides, supported this hypothesis. The overall conclusion was that all three physiological mechanisms are important in understanding the regulation of N2 fixation and its response of to soil drying.  相似文献   

18.
19.
《Journal of plant physiology》2014,171(18):1732-1739
Legumes have the unique ability to fix atmospheric nitrogen (N2) via symbiotic bacteria in their nodules but depend heavily on phosphorus (P), which affects nodulation, and the carbon costs and energy costs of N2 fixation. Consequently, legumes growing in nutrient-poor ecosystems (e.g., sandstone-derived soils) have to enhance P recycling and/or acquisition in order to maintain N2 fixation. In this study, we investigated the flexibility of P recycling and distribution within the nodules and their effect on N nutrition in Virgilia divaricata Adamson, Fabaceae, an indigenous legume in the Cape Floristic Region of South Africa. Specifically, we assessed tissue elemental localization using micro-particle-induced X-ray emission (PIXE), measured N fixation using nutrient concentrations derived from inductively coupled mass-spectrometry (ICP-MS), calculated nutrient costs, and determined P recycling from enzyme activity assays. Morphological and physiological features characteristic of adaptation to P deprivation were observed for V. divaricata. Decreased plant growth and nodule production with parallel increased root:shoot ratios are some of the plastic features exhibited in response to P deficiency. Plants resupplied with P resembled those supplied with optimal P levels in terms of growth and nutrient acquisition. Under low P conditions, plants maintained an increase in N2-fixing efficiency despite lower levels of orthophosphate (Pi) in the nodules. This can be attributed to two factors: (i) an increase in Fe concentration under low P, and (ii) greater APase activity in both the roots and nodules under low P. These findings suggest that V. divaricata is well adapted to acquire N under P deficiency, owing to the plasticity of its nodule physiology  相似文献   

20.
Root nodulation in actinorhizal plants, like Discaria trinervis and Alnus incana, is subject to feedback regulatory mechanisms that control infection by Frankia and nodule development. Nodule pattern in the root system is controlled by an autoregulatory process that is induced soon after inoculation with Frankia. The final number of nodules, as well as nodule biomass in relation to plant biomass, are both modulated by a second mechanism which seems to be related to the N status of the plant. Mature nodules are, in part, involved in the latter process, since nodule excision from the root system releases the inhibition of infection and nodule development. To study the effect of N(2) fixation in this process, nodulated D. trinervis and A. incana plants were incubated under a N(2)-free atmosphere. Discaria trinervis is an intercellularly infected species while A. incana is infected intracellularly, via root hairs. Both symbioses responded with an increment in nodule biomass, but with different strategies. Discaria trinervis increased the biomass of existing nodules without significant development of new nodules, while in A. incana nodule biomass increased due to the development of nodules from new infections, but also from the release of arrested infections. It appears that in D. trinervis nodules there is an additional source for inhibition of new infections and nodule development that is independent of N(2) fixation and nitrogen assimilation. It is proposed here that the intercellular Frankia filaments commonly present in the D. trinervis nodule apex, is the origin for the autoregulatory signals that sustain the blockage of initiated nodule primordia and prevent new roots from infections. When turning to A. incana plants, it seems likely that this signal is related to the early autoregulation of nodulation in A. incana seedlings and is no longer present in mature nodules. Thus, actinorhizal symbioses belonging to relatively distant phylogenetic groups and displaying different infection pathways, show different feedback regulatory processes that control root nodulation by Frankia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号