首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pollen tubes show active cytoplasmic streaming. We isolated organelles from pollen tubes and tested their ability to slide along actin bundles in characean cell models. Here, we show that sliding of organelles was ATP-dependent and that motility was lost after N-ethylmaleimide or heat treatment of organelles. On the other hand, cytoplasmic streaming in pollen tube was inhibited by either N-ethylmaleimide or heat treatment. These results strongly indicate that cytoplasmic streaming in pollen tubes is supported by the "actomyosin"-ATP system. The velocity of organelle movement along characean actin bundles was much higher than that of the native streaming in pollen tubes. We suggested that pollen tube "myosin" has a capacity to move at a velocity of the same order of magnitude as that of characean myosin. Moreover, the motility was high at Ca2+ concentrations lower than 0.18 microM (pCa 6.8) but was inhibited at concentration higher than 4.5 microM (pCa 5.4). In conclusion, cytoplasmic streaming in pollen tubes is suggested to be regulated by Ca2+ through "myosin" inactivation.  相似文献   

2.
It is well known that the cytoplasmic streaming of characean cells is readily inhibited by Ca(2+). However, neither the actin-activated MgATPase nor the in vitro motile activity of purified characean myosin were inhibited by Ca(2+). Recently, amino acid sequence of characean myosin was determined in our laboratory and the sequence revealed that characean myosin contains six calmodulin binding sites in the neck region. We also detected calmodulin in quickly prepared characean myosin fraction. It is, therefore, possible that the insensitivity of characean myosin to Ca(2+) is due to the dissociation of some calmodulin molecules from the neck region during the course of protein purification. To determine strictly the Ca(2+) sensitivity of characean myosin, we intentionally used crude preparation of characean myosin to reduce the possibility of calmodulin dissociation and examined the motile activity of characean myosin in vitro in the presence of excess characean calmodulin. We could not observe any drastic inhibition of characean myosin activity by Ca(2+). The results suggest that the brief cessation of cytoplasmic streaming is not caused by the direct inhibition of myosin activity by Ca(2+).  相似文献   

3.
We succeeded in expressing the recombinant full-length myosin Va (M5Full) and studied its regulation mechanism. The actin-activated ATPase activity of M5Full was significantly activated by Ca(2+), whereas the truncated myosin Va without C-terminal globular domain is not regulated by Ca(2+) and constitutively active. Sedimentation analysis showed that the sedimentation coefficient of M5Full undergoes a Ca(2+)-induced conformational transition from 14S to 11S. Electron microscopy revealed that at low ionic strength, M5Full showed an extended conformation in high Ca(2+) while it formed a folded shape in the presence of EGTA, in which the tail domain was folded back towards the head-neck region. Furthermore, we found that the motor domain of myosin Va folds back to the neck domain in Ca(2+) while the head-neck domain is more extended in EGTA. It is thought that the association of the motor domain to the neck inhibits the binding of the tail to the neck thus destabilizing a folded conformation in Ca(2+). This conformational transition is closely correlated to the actin-activated ATPase activity. These results suggest that the tail and neck domain play a role in the Ca(2+) dependent regulation of myosin Va.  相似文献   

4.
Myosin X is a member of the diverse myosin superfamily that is ubiquitously expressed in various mammalian tissues. Although its association with actin in cells has been shown, little is known about its biochemical and mechanoenzymatic function at the molecular level. We expressed bovine myosin X containing the entire head, neck, and coiled-coil domain and purified bovine myosin X in Sf9 cells. The Mg(2+)-ATPase activity of myosin X was significantly activated by actin with low K(ATP). The actin-activated ATPase activity was reduced at Ca(2+) concentrations above pCa 5 in which 1 mol of calmodulin light chain dissociates from the heavy chain. Myosin X translocates F-actin filaments with the velocity of 0.3 microm/s with the direction toward the barbed end. The actin translocating activity was inhibited at concentrations of Ca(2+) at pCa 6 in which no calmodulin dissociation takes place, suggesting that the calmodulin dissociation is not required for the inhibition of the motility. Unlike class V myosin, which shows a high affinity for F-actin in the presence of ATP, the K(actin) of the myosin X ATPase was much higher than that of myosin V. Consistently nearly all actin dissociated from myosin X in the presence of ATP. ADP did not significantly inhibit the actin-activated ATPase activity of myosin X, suggesting that the ADP release step is not rate-limiting. These results suggest that myosin X is a nonprocessive motor. Consistently myosin X failed to support the actin translocation at low density in an in vitro motility assay where myosin V, a processive motor, supports the actin filament movement.  相似文献   

5.
We studied the effects of 2,3-butanedione monoxime (BDM) on the cytoplasmic streaming of Chara corallina and on the motility of myosin prepared from the same plant to examine whether this reagent really affects the plant class XI myosin. It was found that BDM inhibited both cytoplasmic streaming and the motility of myosin at a very similar concentration range (10-100 mM). BDM introduced directly into tonoplast-free cells also inhibited cytoplasmic streaming. These results suggested that effect of BDM on cytoplasmic streaming was exerted through myosin and not through ion channels at least in Chara corallina, though a very high concentration of BDM was required.  相似文献   

6.

Background

Cytoplasmic class XI myosins are the fastest processive motors known. This class functions in high-velocity cytoplasmic streaming in various plant cells from algae to angiosperms. The velocities at which they process are ten times faster than its closest class V homologues.

Results

To provide sequence determinants and structural rationale for the molecular mechanism of this fast pace myosin, we have compared the sequences from myosin class V and XI through Evolutionary Trace (ET) analysis. The current study identifies class-specific residues of myosin XI spread over the actin binding site, ATP binding site and light chain binding neck region. Sequences for ET analysis were accumulated from six plant genomes, using literature based text search and sequence searches, followed by triple validation viz. CDD search, string-based searches and phylogenetic clustering. We have identified nine myosin XI genes in sorghum and seven in grape by sequence searches. Both the plants possess one gene product each belonging to myosin type VIII as well. During this process, we have re-defined the gene boundaries for three sorghum myosin XI genes using fgenesh program.

Conclusion

Molecular modelling and subsequent analysis of putative interactions involving these class-specific residues suggest a structural basis for the molecular mechanism behind high velocity of plant myosin XI. We propose a model of a more flexible switch I region that contributes to faster ADP release leading to high velocity movement of the algal myosin XI.  相似文献   

7.
In characean algae, very rapid cytoplasmic streaming is generated by sliding movement of an unconventional myosin on fixed actin cables. The speed of this sliding movement is the fastest among many molecular motors known so far. We have cloned a set of overlapping cDNAs encoding the heavy chain of this myosin by immunoscreening with antibody raised against characean myosin. The molecular mass of this heavy chain is 248 kDa, and the protein has a conserved motor domain, six IQ motifs, an extensive alpha-helical coiled-coil domain, and a C-terminal globular domain. Phylogenetic analysis suggested that this myosin belongs to class XI.  相似文献   

8.
One of the low molecular weight components of myosin, g2, was isolated by alkali treatment of myosin and was chemically modified with a spin label reagent, 4-maleimido-2,2,6,6-tetramethylpiperidinooxyl. The label on g2 showed a rather weakly immobilized ESR spectrum and it was clearly affected by Ca2+; the half-maximal change was at around pCa 4. The spin-labeled g2 was incorporated into myosin by exchange with the intrinsic g2 of myosin in 0.6 M KSCN or 4 M LiC1. The label on g2 became strongly immobilized on association with myosin. Under the conditions used, ESR spectral change due to Ca2+ occurred at two different concentration ranges, which were as low as pCa 8 and at around pCa 4. Phosphorylated g2 was isolated from myosin after the protein kinase [EC 2.1.1.37]-catalyzed phosphorylation of myosin and it was also modified with the maleimide label. Dephosphorylation of the phosphorylated g2 was performed using E. coli alkaline phosphatase [EC 3.1.3.1]. The effects of Ca2+ on the ESR spectra of phosphorylated and dephosphorylated g2 were investigated on the state associated with myosin. A change in the ESR spectrum from strongly immobilized to weakly immobilized states was observed with both g2 chains on the addition of Ca2+. However, the effective concentration ranges of Ca2+ were quite different; around pCa 4 for the phosphorylated g2 and around pCa 8 for the dephosphorylated g2. The results indicate that g2 undergoes a conformational change at physiological levels of Ca2+ sufficient to saturate troponin, but it does not do so after phosphorylation.  相似文献   

9.
The effects of C-protein on actin-activated myosin ATPase depending on Ca(2+)-level and LC2-phosphorylation were studied. Column-purified myosin and non-regulated actin were used. At ionic strength of 0.06 C-protein inhibits actomyosin ATPase activity both in the presence and in the absence of calcium, more effective in the case of dephosphorylated myosin. For this myosin, at mu = 0.12 C-protein activates actomyosin ATPase at pCa4, but slightly inhibits at pCa8. No such effects have been observed in the case of phosphorylated myosin. The possibility of coordinative action of LC2-chains and C-protein in regulatory mechanism of skeletal muscle contraction is discussed.  相似文献   

10.
Striated muscles are relaxed under low Ca(2+) concentration conditions due to actions of the thin filament protein troponin. To investigate this regulatory mechanism, an 11-residue segment of cardiac troponin I previously termed the inhibitory peptide region was studied by mutagenesis. Several mutant troponin complexes were characterized in which specific effects of the inhibitory peptide region were abrogated by replacements of 4-10 residues with Gly-Ala linkers. The mutations greatly impaired two of troponin's actions under low Ca(2+) concentration conditions: inhibition of myosin subfragment 1 (S1)-thin filament MgATPase activity and cooperative suppression of myosin S1-ADP binding to thin filaments with low myosin saturation. Inhibitory peptide replacement diminished but did not abolish the Ca(2+) dependence of the ATPase rate; ATPase rates were at least 2-fold greater when Ca(2+) rather than EGTA was present. This residual regulation was highly cooperative as a function of Ca(2+) concentration, similar to the degree of cooperativity observed with WT troponin present. Other effects of the mutations included 2-fold or less increases in the apparent affinity of the thin filament regulatory Ca(2+) sites, similar decreases in the affinity of troponin for actin-tropomyosin regardless of Ca(2+), and increases in myosin S1-thin filament ATPase rates in the presence of saturating Ca(2+). The overall results indicate that cooperative myosin binding to Ca(2+)-free thin filaments depends upon the inhibitory peptide region but that a cooperatively activating effect of Ca(2+) binding does not. The findings suggest that these two processes are separable and involve different conformational changes in the thin filament.  相似文献   

11.
High velocity cytoplasmic streaming is found in various plant cells from algae to angiosperms. We characterized mechanical and enzymatic properties of a higher plant myosin purified from tobacco bright yellow-2 cells, responsible for cytoplasmic streaming, having a 175 kDa heavy chain and calmodulin light chains. Sequence analysis shows it to be a class XI myosin and a dimer with six IQ motifs in the light chain-binding domains of each heavy chain. Electron microscopy confirmed these predictions. We measured its ATPase characteristics, in vitro motility and, using optical trap nanometry, forces and movement developed by individual myosin XI molecules. Single myosin XI molecules move processively along actin with 35 nm steps at 7 micro m/s, the fastest known processive motion. Processivity was confirmed by actin landing rate assays. Mean maximal force was approximately 0.5 pN, smaller than for myosin IIs. Dwell time analysis of beads carrying single myosin XI molecules fitted the ATPase kinetics, with ADP release being rate limiting. These results indicate that myosin XI is highly specialized for generation of fast processive movement with concomitantly low forces.  相似文献   

12.
The purpose of this study was to examine the role of myosin heavy chain (MHC) in determining loaded shortening velocities and power output in cardiac myocytes. Cardiac myocytes were obtained from euthyroid rats that expressed alpha-MHC or from thyroidectomized rats that expressed beta-MHC. Skinned myocytes were attached to a force transducer and a position motor, and isotonic shortening velocities were measured at several loads during steady-state maximal Ca(2+) activation (P(pCa4.5)). MHC expression was determined after mechanical measurements using SDS-PAGE. Both alpha-MHC and beta-MHC myocytes generated similar maximal Ca(2+)-activated force, but alpha-MHC myocytes shortened faster at all loads and generated approximately 170% greater peak normalized power output. Additionally, the curvature of force-velocity relationships was less, and therefore the relative load optimal for power output (F(opt)) was greater in alpha-MHC myocytes. F(opt) was 0.31 +/- 0.03 P(pCa4.5) and 0.20 +/- 0.06 P(pCa4.5) for alpha-MHC and beta-MHC myocytes, respectively. These results indicate that MHC expression is a primary determinant of the shape of force-velocity relationships, velocity of loaded shortening, and overall power output-generating capacity of individual cardiac myocytes.  相似文献   

13.
The sliding theory of cytoplasmic streaming: fifty years of progress   总被引:3,自引:0,他引:3  
Fifty years ago, an important paper appeared in Botanical Magazine Tokyo. Kamiya and Kuroda proposed a sliding theory for the mechanism of cytoplasmic streaming. This pioneering study laid the basis for elucidation of the molecular mechanism of cytoplasmic streaming—the motive force is generated by the sliding of myosin XI associated with organelles along actin filaments, using the hydrolysis energy of ATP. The role of the actin–myosin system in various plant cell functions is becoming evident. The present article reviews progress in studies on cytoplasmic streaming over the past 50 years.  相似文献   

14.
In response to stimulation at the plasma membrane, hepatocellular Ca(2+) signals are fast and precise and lead to rapid local changes in cytoplasmic free Ca(2+) concentration. These changes result from the opening of the inositol 1,4,5-trisphosphate receptor (InsP(3)R), which is a four-subunit intracellular InsP(3)-gated channel that releases Ca(2+) from the stores. To investigate the molecular mechanism underlying interactions between the InsP(3)R subunits, we cloned the predominant hepatocellular isoform, InsP(3)R isoform 2 (InsP(3)R2), and screened for interactions using the yeast two-hybrid assay. We found that the C-terminal domain of rat InsP(3)R2 interacts with itself, and that the cytoplasmic part preceding the first transmembrane domain, a region near a Ca(2+)-binding site, also interacts with itself. These interactions were confirmed by pull-down experiments. The C-terminal domain of InsP(3)R2 is also able to interact with the C-termini of rat InsP(3)R1 and InsP(3)R3. These results advance our understanding of the molecular mechanisms that underlie the oligomerization and interactions of the InsP(3)R subunits during the opening/closing of the Ca(2+) channel.  相似文献   

15.
Authors demonstrate the presence of actin and myosin in pollens from Luffa cylindricaand Zea mays in this report. The molecular weight of the heavy chain of pollen myosinis about 165000 daltons as analyzed by 4–30% SDS gradient polyacrylamide gel electrophoresis. The ATPase activity of pollen myosin is identical with the characteristics of rabbit ske-letal muscle myosin. In 0.5 mol/l KCl, the K+-EDTA activity is the highest and Mg2+ activitythe lowest. The Ca2+ activity is higher than Mg2+ activity and lower than K+-EDTA activity.Pollen actin from Zea mays was prepared by preparative SDS polyacrylamide gel electrophoresis Its molecular weight is 43,000 daltons which is the same as rabbit skeletal muscle actin. The effect of drugs on cytoplasmic streaming of pollen tubes were observed under opticalmicroscope Cytochalasin B (CB), chloropromazine (CPZ) and chlorotetracycline (CTC)inhibit cytoplasmic streaming obviously. But colchicine has no effect on the cytoplasmic streamrog. It is suggested that the motive force of cytoplasmic streaming may be the interaction ofmyosin and actin in the pollen tubes.  相似文献   

16.
The Ca(2+)/Mg(2+) sites (III and IV) located in the C-terminal domain of cardiac troponin C (cTnC) have been generally considered to play a purely structural role in keeping the cTnC bound to the thin filament. However, several lines of evidence, including the discovery of cardiomyopathy-associated mutations in the C-domain, have raised the possibility that these sites may have a more complex role in contractile regulation. To explore this possibility, the ATPase activity of rat cardiac myofibrils was assayed under conditions in which no Ca(2+) was bound to the N-terminal regulatory Ca(2+)-binding site (site II). Myosin-S1 was treated with N-ethylmaleimide to create strong-binding myosin heads (NEM-S1), which could activate the cardiac thin filament in the absence of Ca(2+). NEM-S1 activation was assayed at pCa 8.0 to 6.5 and in the presence of either 1mM or 30 μM free Mg(2+). ATPase activity was maximal when sites III and IV were occupied by Mg(2+) and it steadily declined as Ca(2+) displaced Mg(2+). The data suggest that in the absence of Ca(2+) at site II strong-binding myosin crossbridges cause the opening of more active sites on the thin filament if the C-domain is occupied by Mg(2+) rather than Ca(2+). This finding could be relevant to the contraction-relaxation kinetics of cardiac muscle. As Ca(2+) dissociates from site II of cTnC during the early relaxing phase of the cardiac cycle, residual Ca(2+) bound at sites III and IV might facilitate the switching off of the thin filament and the detachment of crossbridges from actin.  相似文献   

17.
Thin filament-mediated regulation of striated muscle contraction involves conformational switching among a few quaternary structures, with transitions induced by binding of Ca(2+) and myosin. We establish and exploit Saccharomyces cerevisiae actin as a model system to investigate this process. Ca(2+)-sensitive troponin-tropomyosin binding affinities for wild type yeast actin are seen to closely resemble those for muscle actin, and these hybrid thin filaments produce Ca(2+)-sensitive regulation of the myosin S-1 MgATPase rate. Yeast actin filament inner domain mutant K315A/E316A depresses Ca(2+) activation of the MgATPase rate, producing a 4-fold weakening of the apparent Ca(2+) affinity and a 50% decrease in the MgATPase rate at saturating Ca(2+) concentration. Observed destabilization of troponin-tropomyosin binding to actin in the presence of Ca(2+), a 1.4-fold effect, provides a partial explanation. Despite the decrease in apparent MgATPase Ca(2+) affinity, there was no detectable change in the true Ca(2+) affinity of the thin filament, measured using fluorophore-labeled troponin. Another inner domain mutant, E311A/R312A, decreased the MgATPase rate but did not change the apparent Ca(2+) affinity. These results suggest that charged residues on the surface of the actin inner domain are important in Ca(2+)- and myosin-induced thin filament activation.  相似文献   

18.
The mechanism whereby rat liver mitochondria regulate the extramitochondrial concentration of free Ca(2+) was investigated. At 30 degrees C and pH7.0, mitochondria can maintain a steady-state pCa(2+) (0) (the negative logarithm of the free extramitochondrial Ca(2+) concentration) of 6.1 (0.8mum). This represents a true steady state, as slight displacements in pCa(2+) (0) away from 6.1 result in net Ca(2+) uptake or efflux in order to restore pCa(2+) (0) to its original value. In the absence of added permeant weak acid, the steady-state pCa(2+) (0) is virtually independent of the Ca(2+) accumulated in the matrix until 60nmol of Ca(2+)/mg of protein has been taken up. The steady-state pCa(2+) (0) is also independent of the membrane potential, as long as the latter parameter is above a critical value. When the membrane potential is below this value, pCa(2+) (0) is variable and appears to be governed by thermodynamic equilibration of Ca(2+) across a Ca(2+) uniport. Permeant weak acids increase, and N-ethylmaleimide decreases, the capacity of mitochondria to buffer pCa(2+) (0) in the region of 6 (1mum-free Ca(2+)) while accumulating Ca(2+). Permeant acids delay the build-up of the transmembrane pH gradient as Ca(2+) is accumulated, and consequently delay the fall in membrane potential to values insufficient to maintain a pCa(2+) (0) of 6. The steady-state pCa(2+) (0) is affected by temperature, incubation pH and Mg(2+). The activity of the Ca(2+) uniport, rather than that of the respiratory chain, is rate-limiting when pCa(2+) (0) is greater than 5.3 (free Ca(2+) less than 5mum). When the Ca(2+) electrochemical gradient is in excess, the activity of the uniport decreases by 2-fold for every 0.12 increase in pCa(2+) (0) (fall in free Ca(2+)). At pCa(2+) (0) 6.1, the activity of the Ca(2+) uniport is kinetically limited to 5nmol of Ca(2+)/min per mg of protein, even when the Ca(2+) electrochemical gradient is large. A steady-state cycling of Ca(2+) through independent influx and efflux pathways provides a model which is kinetically and thermodynamically consistent with the present observations, and which predicts an extremely precise regulation of pCa(2+) (0) by liver mitochondria in vivo.  相似文献   

19.
本文报导了牛胃肌球蛋白B(天然肌动球蛋白)的超沉淀性质。当钙离子、钙调蛋白和ATP存在时,肌球蛋白B出现超沉淀,在pH6.8和7.5处,有两个峰值。Ca~(2+)(PCa值8-4)对超沉淀影响的浓度-反应曲线呈典型的S形,表明当Ca~(2+)浓度处于微摩尔水平时产生超沉淀。伴随超沉淀发生了肌球蛋白调节轻链磷酸化。这说明肌球蛋白轻链的Ca~(2+)-CaM依赖性磷酸化可能包含在脊椎动物平滑肌收缩活动的调节机制中。  相似文献   

20.
The present study examined the effects of Ca(2+) and strongly bound cross-bridges on tension development induced by changes in the concentration of MgADP. Addition of MgADP to the bath increased isometric tension over a wide range of [Ca(2+)] in skinned fibers from rabbit psoas muscle. Tension-pCa (pCa is -log [Ca(2+)]) relationships and stiffness measurements indicated that MgADP increased mean force per cross-bridge at maximal Ca(2+) and increased recruitment of cross-bridges at submaximal Ca(2+). Photolysis of caged ADP to cause a 0.5 mM MgADP jump initiated an increase in isometric tension under all conditions examined, even at pCa 6.4 where there was no active tension before ADP release. Tension increased monophasically with an observed rate constant, k(ADP), which was similar in rate and Ca(2+) sensitivity to the rate constant of tension re-development, k(tr), measured in the same fibers by a release-re-stretch protocol. The amplitude of the caged ADP tension transient had a bell-shaped dependence on Ca(2+), reaching a maximum at intermediate Ca(2+) (pCa 6). The role of strong binding cross-bridges in the ADP response was tested by treatment of fibers with a strong binding derivative of myosin subfragment 1 (NEM-S1). In the presence of NEM-S1, the rate and amplitude of the caged ADP response were no longer sensitive to variations in the level of activator Ca(2+). The results are consistent with a model in which ADP-bound cross-bridges cooperatively activate the thin filament regulatory system at submaximal Ca(2+). This cooperative interaction influences both the magnitude and kinetics of force generation in skeletal muscle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号