首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The TCR/CD3 complex is a multimeric protein complex composed of a minimum of seven transmembrane chains (TCR alpha beta-CD3 gamma delta epsilon zeta 2). Whereas earlier studies have demonstrated that both the TCR-alpha and -beta chains are required for the cell surface expression of the TCR/CD3 complex, the role of the CD3 chains for the TCR/CD3 expression have not been experimentally addressed in human T cells. In this study the function of the CD3-zeta chain for the assembly, intracellular processing, and expression of the TCR/CD3 complex in the human leukemic T cell line Jurkat was investigated. The results indicate that: 1) CD3-zeta is required for the cell surface expression of the TCR/CD3 complex; 2) the pentameric form (TCR alpha beta-CD3 gamma delta epsilon) of the TCR/CD3 complex and single TCR chains associated with CD3 (TCR alpha-CD3 gamma delta epsilon and TCR beta-CD3 gamma delta epsilon) are produced in the endoplasmic reticulum in the absence of CD3-zeta; 3) the CD3-zeta does not associate with TCR alpha-CD3 gamma delta epsilon or TCR beta-CD3 gamma delta epsilon complexes; 4) CD3-zeta associate with the pentameric form of the TCR/CD3 complex in the endoplasmic reticulum to form the heptameric complex (TCR alpha beta-CD3 gamma delta epsilon----TCR alpha beta-CD3 gamma delta epsilon 2); and 5) CD3-zeta is required for the export of the TCR/CD3 complex from the endoplasmic reticulum to the Golgi apparatus for subsequent processing.  相似文献   

2.
《Process Biochemistry》2010,45(2):239-246
The processes of protein refolding by artificial chaperones suffer from tedious steps of purifications which will finally affect the production costs. Replacement of the soluble stripping agent with immobilized beta-cyclodextrin or beta-cyclodextrin polymer beads might elevate some of these problems. Regarding this fact, we synthesized and evaluated various cyclodextrin-bonded silica particles to evaluate the refolding yields of denatured alkaline phosphatase and carbonic anhydrase. Our results indicated that refolding of denatured alkaline phosphatase raised from 30%, in the absence of chaperone, to about 65% in the presence of 70 mg/ml of the beta-cyclodextrin-bonded silica gel and to 74% in the concomitant presence of the new stripping agent and MgSO4, a yield near to stripping by soluble beta-cyclodextrin. The refolding yield of carbonic anhydrase in the presence of beta-CD-bounded silica gel resin was significantly lower than the value obtained in the presence of soluble beta-CD (76% vs 54%). These data indicate that refolding of proteins by the silica gel immobilized beta-CD resin can be achieved though with lower yields. Regarding the high cost of downstream purification steps associated with soluble beta-CD, application of insoluble stripping agent might provide an alternative approach to cut down the industrial costs.  相似文献   

3.
The main objective of this work was to study an inclusion complex between enalapril (ENA), and beta-cyclodextrin (beta-CD). From nuclear magnetic resonance (NMR) we determined that the complex showed a 1:1 stoichiometry, with an apparent formation constant (K(C)) of 439 and 290 M(-1) for the cis and trans isomers, respectively. The molecular modeling and NMR techniques demonstrated that the aromatic moiety of ENA was inserted into the hydrophobic cavity of beta-CD. When studying the chemical stability of ENA complexed to beta-CD, a clear stabilizing effect was observed in both the aqueous solution and solid state.  相似文献   

4.
Various solid dispersions of alpha-, beta- and gamma-cyclodextrin (CD) in PEG 6000 with and without the addition of 5% w/w indomethacin were prepared by the melting method using the original components. The samples were investigated by solid-state (13)C NMR, and the interactions between the drug and the cyclodextrins were evaluated. The indomethacin-gamma-CD phase with tetragonal symmetry found in a previous X-ray study gave chemical shifts which suggested that this phase is a complex between indomethacin and gamma-CD. Evidence of an indomethacin-beta-CD complex were found. A distribution of the chemical shifts for beta-CD was attributed to the possible formation of different types of complexes between indomethacin and beta-CD. No complex formation was found in the alpha-CD system. The degree of relative crystallinity of the samples in the gamma-CD system was measured by (1)H NMR, X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), and modulated-temperature DSC (MTDSC). The results obtained by the NMR, XRD, and DSC techniques showed that the dispersions were less crystalline than the pure polymer carrier, and the dispersion containing the indomethacin-gamma-CD complex had the lowest degree of crystallinity. By the MTDSC method a deviation was found for the PEG 6000/indomethacin dispersion. This emphasizes that the different techniques give specific information on the crystallinity.  相似文献   

5.
The structure of the complex of beta-cyclodextrin (cyclomaltoheptaose) with beta-naphthyloxyacetic acid was studied in solid state by X-ray diffraction and in aqueous solution by 1H NMR spectroscopy. The complex crystallizes in the channel mode, space group C2, with a stoichiometry of 2:1; two beta-cyclodextrin molecules related by a twofold crystal axis form dimers, in the cavity of which one guest molecule is found on average. The above stoichiometry indicates one guest per beta-CD dimer statistically oriented over two positions or two guest molecules in pi-pi interactions in half of the beta-CD dimers and the rest of the beta-CD dimers empty. In addition, occupancy of 0.5 for the guest per every beta-CD dimer is in accord with the occupancy of the two disordered primary hydroxyls. These two hydroxyl groups, to which the carboxylic oxygen atoms of the guest are hydrogen bonded, point towards the interior of the beta-CD cavity. In aqueous solution, the 1H NMR spectroscopic study indicated that there is a mixture of complexes with host-guest stoichiometries both 1:1 and 2:1.  相似文献   

6.
The synthesis and characterization of two beta-cyclodextrins (beta-CD) functionalized with two units of carnosine (beta-alanyl-L-histidine) through the amino group, 6A,6C-(beta-alanyl-L-histidine)-6A,6C-dideoxy-beta-cyclodextrin (ACCDAH) and 6A,6D-(beta-alanyl-L-histidine)-6A,6D-dideoxy-beta-cyclodextrin (ADCDAH), are reported. NMR and C.D. data of the ligands indicate a different interaction of dipeptide chains with upper rim and cavity of beta-CD. Analogously, spectroscopic and electrospray ionization mass spectrometry data show different copper(II) complex species formed by the two regioisomers. The ability of carnosine-cyclodextrin derivatives to bind copper ions in a head-to-tail fashion induces the formation of oligomeric species (up to hexamers) in the case of ACCDAH, where the two carnosine moieties are adjacent, while in the ADCDAH case the mutual interaction between the peptidic chains of two ADCDAH molecules allows the almost exclusive formation of a copper-assisted self-assembled dimeric species.  相似文献   

7.
The TCR consists of the Ti alpha beta heterodimer and the associated CD3 chains, CD3 gamma delta epsilon zeta 2 or zeta eta. The structural relationships between the subunits of the Ti/CD3 complex are still not fully understood. To explore the roles of the individual CD3 chains for the assembly, intracellular processing, and expression of the TCR, mutants of the T cell line Jurkat were isolated. One variant, JGN, was found to produce all the Ti/CD3 components with the exception of CD3-gamma. The results indicate that: 1) the tetrameric form (Ti alpha beta-CD3 delta epsilon) of the Ti/CD3 complex is produced in the endoplasmic reticulum in the absence of CD3-gamma; 2) CD3-zeta does not associate with the Ti alpha beta-CD3 delta epsilon complex; 3) the Ti alpha beta-CD3 delta epsilon complex is not exported from the endoplasmic reticulum to the Golgi apparatus; and 4) CD3-gamma is required for cell surface expression of the Ti/CD3 complex. Transfection of the wild-type CD3-gamma gene into JGN reconstituted expression of functional Ti/CD3 complexes, and analysis of T cell lines producing different amounts of CD3-gamma indicated that CD3-gamma and CD3-delta competed for the binding to CD3-epsilon.  相似文献   

8.
Maiti TK  Ghosh KS  Dasgupta S 《Proteins》2006,64(2):355-362
(-)-Epigallocatechin-3-gallate (EGCG), the major constituent of green tea has been reported to prevent many diseases by virtue of its antioxidant properties. The binding of EGCG with human serum albumin (HSA) has been investigated for the first time by using fluorescence, circular dichroism (CD), Fourier transform infrared (FTIR) spectroscopy, and protein-ligand docking. We observed a quenching of fluorescence of HSA in the presence of EGCG. The binding parameters were determined by a Scatchard plot and the results were found to be consistent with those obtained from a modified Stern-Volmer equation. From the thermodynamic parameters calculated according to the van't Hoff equation, the enthalpy change deltaH degrees and entropy change deltaS degrees were found to be -22.59 and 16.23 J/mol K, respectively. These values suggest that apart from an initial hydrophobic association, the complex is held together by van der Waals interactions and hydrogen bonding. Data obtained by fluorescence spectroscopy, CD, and FTIR experiments along with the docking studies suggest that EGCG binds to residues located in subdomains IIa and IIIa of HSA. Specific interactions are observed with residues Trp 214, Arg 218, Gln 221, Asn 295 and Asp 451. We have also looked at changes in the accessible surface area of the interacting residues on binding EGCG for a better understanding of the interaction.  相似文献   

9.
The TCR for Ag, on the majority of human T cells, is a disulfide-linked heterodimer composed of TCR-alpha and -beta chains noncovalently associated with the monomorphic CD3 complex composed of the CD3-gamma, -delta, -epsilon, and -zeta chains. The interactions involved in the assembly of the various components of this multimeric protein complex are not fully understood. In this report, a variant of the human leukemic T cell line Jurkat that synthesized all of the known components of the TCR/CD3 complex but fails to express the TCR/CD3 complex at the cell surface is further characterized. This variant, J79, has a mutated TCR-alpha chain that does not affect the assembly of the pentameric form (TCR-alpha beta-CD3-gamma delta epsilon) of the TCR/CD3 complex but inhibits the assembly of the CD3-zeta homodimer with the rest of the complex (TCR-alpha beta-CD3-gamma delta epsilon----TCR-alpha beta-CD3-gamma delta epsilon zeta 2). Transfecting a wild-type TCR-alpha gene into J79 reconstituted expression of a complete functionally competent TCR/CD3 complex at the cell surface. The results indicate that the TCR-alpha chain plays a crucial role in the assembly of the CD3-zeta homodimer with the pentameric form of the TCR/CD3 complex.  相似文献   

10.
Yang ZX  Chen Y  Liu Y 《Carbohydrate research》2008,343(14):2439-2442
The inclusion complexation behavior and the solubilization effects of Bisphenol A (BPA, an endocrine-disrupting chemical) by cyclomaltohexaose, -heptaose, and -octaose (alpha-, beta-, and gamma-cyclodextrins) were investigated by (1)H NMR spectroscopy and by elemental analysis. The results showed that beta- and gamma-cyclodextrins gave the satisfactory solubilization ability to BPA up to 7.2x10(3)mgL(-1) and 9.0x10(3)mgL(-1), respectively. X-ray crystallographic diffraction and ROESY spectroscopy were also employed to investigate the structure of the beta-CD/BPA inclusion complex in both aqueous solution and the solid state. The result showed that this complex adopted a 2:2 stoichiometry in the solid state, that is, a head-to-head beta-CD dimer accommodated two BPA molecules. The inclusion of BPA led to the desolvation of the beta-CD cavity and the destruction of the circularly closed hydrogen-bond network in the secondary side of beta-CD, which made the complex more soluble.  相似文献   

11.
The abundant surface glycolipid, promastigote lipophosphoglycan (LPG), of Leishmania promastigotes was isolated and reconstituted onto the surface of hydrophobic silica beads. These beads bound to both macrophages and monocytes, suggesting that phagocytes possess a receptor(s) capable of recognizing LPG. LPG beads were unable to bind to macrophages isolated from individuals with a genetic deficiency in the CD18 complex of leukocyte integrins (CR3, p150,95, and LFA-1), suggesting that one or more of these receptors were required for binding of LPG. Individual members of the CD18 complex were depleted from macrophages by plating cells on surfaces coated with anti-receptor mAb. These experiments indicated that CR3 and p150,95 from the CD18 complex, were the predominant mediators of attachment of LPG. The phagocyte receptor CR3 expresses two distinct binding sites, one that binds peptide ligands, such as C3bi, and a second site, that recognizes bacterial LPS. Antibody inhibition experiments and competition binding studies with synthetic peptides and soluble LPG indicated that LPG is recognized by the nonpeptide, or "LPS" binding site on CR3.  相似文献   

12.
Aree T  Chaichit N 《Carbohydrate research》2003,338(15):1581-1589
A new crystal form of beta-cyclodextrin (beta-CD)[bond]ethanol[bond]dodecahydrate inclusion complex [(C(6)H(10)O(5))(7).0.3C(2)H(5)OH.12H(2)O] belongs to monoclinic space group C2 (form II) with unit cell constants a=19.292(1), b=24.691(1), c=15.884(1) A, beta=109.35(1) degrees. The beta-CD macrocycle is more circular than that of the complex in space group P2(1) [form I: J. Am. Chem. Soc. 113 (1991) 5676]. In form II, a disordered ethanol molecule (occupancy 0.3) is placed in the upper part of beta-CD cavity (above the O-4 plane) and is sustained by hydrogen bonding to water site W-2. In form I, an ethanol molecule located below the O-4-plane is well ordered because it hydrogen bonds to surrounding O-3[bond]H, O-6[bond]H groups of the symmetry-related beta-CD molecules. In the crystal lattice of form I, beta-CD macrocycles are stacked in a typical herringbone cage structure. By contrast, the packing structure of form II is a head-to-head channel that is stabilized at both O-2/O-3 and O-6 sides of each beta-CD by direct O(CD)...O(CD) and indirect O(CD)...O(W)...(O(W))...O(CD) hydrogen bonds. The 12 water molecules are disordered in 18 positions both inside the channel-like cavity of beta-CD dimer (W-1[bond]W-6) and in the interstices between the beta-CD macrocycles (W-7[bond]W-18). The latter forms a cluster that is hydrogen bonded together and to the neighboring beta-CD O[bond]H groups.  相似文献   

13.
The diffusion of lipids in bilayers on curved supports of porous silica beads is studied by deuterium solid state NMR relaxation. We demonstrate that the combination of bilayers coated on curved silica substrates with NMR experiments and simulations which are sensitive to the diffusive motion of the fluid bilayer lipids can provide information about the substrate topology. This provides a new approach for the exploration of the complex internal surface topology of silica gels widely used in biomolecule chromatography. Received: 10 December 1997 / Revised version: 26 January 1998 / Accepted: 4 February 1998  相似文献   

14.
In the present work, we show a new approach for decompaction of DNA-cationic surfactant complexes, e.g., lipoplexes, by using beta-cyclodextrin (beta-CD). The DNA decompaction was achieved by dissolving the surfactant aggregates in the complex by making use of the high affinity between the beta-CD and the free surfactant in solution. The results from fluorescence microscopy and adiabatic compressibility measurements indicate that coils and globules do not coexist. The reported procedure using beta-CD is an efficient way to decompact DNA surfactant complexes because the association constant of surfactants with beta-CD is large. The surfactant's interaction with beta-CD is specific and the nonspecific interaction between beta-CD and biological interfaces is small.  相似文献   

15.
Inhibitory effect of green tea polyphenols viz., catechin and epigallocatechin gallate (EGCG) on the action of collagenase against collagen has been probed in this study. Catechin and EGCG treated collagen exhibited 56 and 95% resistance, respectively, against collagenolytic hydrolysis by collagenase. Whereas direct interaction of catechin and EGCG with collagenase exhibited 70 and 88% inhibition, respectively, to collagenolytic activity of collagenase against collagen and the inhibition was found to be concentration dependent. The kinetics of inhibition of collagenase by catechin and EGCG has been deduced from the extent of hydrolysis of (2-furanacryloyl-L-leucyl-glycyl-L-prolyl-L-alanine), FALGPA. Both catechin and EGCG exhibited competitive mode of inhibition against collagenase. The change in the secondary structure of collagenase on treatment with catechin and EGCG has been monitored using circular dichroism spectropolarimeter. CD spectral studies showed significant changes in the secondary structure of collagenase on treatment with higher concentration of catechin and EGCG. Higher inhibition of EGCG compared to catechin has been attributed to the ability of EGCG to exhibit better hydrogen bonding and hydrophobic interaction with collagenase.  相似文献   

16.
The aim of this paper is to describe the inclusion properties and the factors affecting the complexation selectivity and stabilization of catechin (CA) into beta-cyclodextrin (beta-CD) and two of its derivatives, namely Heptakis 2,6-di-O-methyl-beta-cyclodextrin (DM-beta-CD) and 2 hydroxypropyl-beta-cyclodextrin (HP-beta-CD). Analysis of the proton shift change using the continuous variation method confirm the formation of a 1:1 stoichiometric complex for catechin and the different CDs in aqueous medium. The formations constant obtained by diffusion-ordered spectroscopy (DOSY) techniques indicated the following trend upon complex formation: beta-CD>HP-beta-CD>DM-beta-CD. The detailed spatial configuration is proposed based on 2D NMR methods. These results are further interpreted using molecular modeling studies. The latter results are in good agreement with the experimental data. The models confirm that when CA-beta-CD is formed, the catechol moiety in the complex is oriented toward the primary rim; however when CD is derivatized to HP-beta-CD and DM-beta-CD this ring is oriented toward the secondary rim.  相似文献   

17.
A synthesis of beta-cyclodextrin (beta-CD) dimer, containing two beta-CD moieties that are linked through their sides by ethylenediamine, was presented. The dimer was characterized by means of IR, (1)H NMR, (13)C NMR, and elemental analysis. The inclusion complexation behavior of beta-cyclodextrin dimer with tranilast was studied in an aqueous KH(2)PO(4)-citric acid buffer solution of pH 2.00 at room temperature by spectrofluorimetry. Based on the significant enhancement of fluorescence intensity of tranilast, a spectrofluorimetric method with high sensitivity and selectivity was developed for the determination of tranilast in bulk aqueous solution in the presence of ethylenediamine beta-CD dimer. The apparent association constant of the complex was 8.39 x 10(3) L mol(-1), and the linear range was 10.8-1.40 x 10(4) ng mL(-1) with the detection limit 3.2 ng mL(-1). There was no interference from the excipients normally used in tablets and serum constituents. The proposed method was successfully applied to the determination of tranilast in serum.  相似文献   

18.
Calcitonin is a 32-residue peptide hormone known for its hypocalcemic effect and its inhibition of bone resorption. While calcitonin has been used in therapy for osteoporosis and Paget's disease for decades, human calcitonin (hCT) forms fibrils in aqueous solution that limit its therapeutic application. The molecular mechanism of fiber formation by calcitonin is not well understood. Here, high-resolution structures of hCT at concentrations of 0.3 mM and 1 mM have been investigated using NMR spectroscopy. Comparing the structures of hCT at different concentrations, we discovered that the peptide undergoes a conformational transition from an extended to a β-hairpin structure in the process of molecular association. This conformational transition locates the aromatic side chains of Tyr12 and Phe16 in a favorable way for intermolecular π-π stacking, which is proposed to be a crucial interaction for peptide association and fibrillation. One-dimensional (1)H NMR experiments confirm that oligomerization of hCT accompanies the conformational transition at 1 mM concentration. The effect of the polyphenol epigallocatechin 3-gallate (EGCG) on hCT fibrillation was also investigated by NMR and electron microscopy, which show that EGCG efficiently inhibits fibril formation of hCT by preventing the initial association of hCT before fiber formation. The NMR experiments also indicate that the interaction between aromatic rings of EGCG and the aromatic side chains of the peptide may play an important role in inhibiting fibril formation of hCT.  相似文献   

19.
Ground state absorption and steady-state and time-resolved fluorescence measurements have been carried out to understand the host-guest interactions of p-diethylaminobenzonitrile (DEABN) and p-dimethylaminobenzonitrile (DMABN) dyes with alpha-cyclodextrin (alpha-CD) and beta-cyclodextrin (beta-CD) hosts. DEABN and DMABN dyes show both locally excited (LE) state and intramolecular charge transfer (ICT) state emissions in solution. The LE and ICT emissions of the dyes are seen to get modulated in the presence of alpha-CD and beta-CD hosts. The results indicate that the dyes form 1 : 1 inclusion complexes with both the hosts. Comparing the binding constants and the fluorescence characteristics of different dye x CD systems it is inferred that DEABN adopts a completely different orientation on complexation with alpha-CD than in the other cases of dye.CD systems. It is indicated that while in all other cases of dye x CD systems the N,N-dialkyl group of the dyes enters the host cavity leaving the C[triple bond, length as m-dash]N group projected out into the water phase, the DEABN dye enters the alpha-CD cavity (smallest CD) with its C[triple bond, length as m-dash]N group entering the host cavity. The differences in the orientation of the dye in the host cavities is understood to be determined by the requirement of maximum van der Waals contact of the encapsulated dye with the host cavity for maximum stability of the complex and the relative sizes of the substituents of the dye compared to the host cavities. From the observation that the binding constants for the present dye x CD systems are not that significantly high, it is inferred that the hydrophobic interaction mainly govern the inclusion complex formation in the present systems.  相似文献   

20.
Adamantane-modified compounds are known to form stable complexes with beta-cyclodextrins (beta-CD) by host-guest interactions. In this study, the inclusion complex formed between beta-CD cavities and the adamantane group was evaluated for the elaboration of a cation-exchange support. The synthesis of the chromatographic supports involved three steps: (i) a polymer of beta-CD was grafted to diol-modified silica, (ii) a dextran polymer was modified by both adamantane groups and ionizable COOH functions, (iii) the dextran derivative (Ad-Dex-COOH) was bound to the chromatographic support by complexation between the adamantane groups of the dextran and beta-CD cavities of the support. The polymer immobilization on the beta-CD support was successful as the resulting support exhibited weak cation-exchange properties. The stationary phase was easy to prepare under mild conditions (aqueous media, room temperature) and was quite stable when using aqueous mobile phases. The chromatographic behaviour of model proteins was studied in isocratic elution by examining the effect of salt concentration in the buffer on retention. A mixed retention mode was found for lysozyme, revealing both electrostatic and hydrophobic interactions with the stationary phase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号