首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this report we describe a mathematical model for the regulation of cAMP dynamics in pancreatic beta-cells. Incretin hormones such as glucagon-like peptide 1 (GLP-1) increase cAMP and augment insulin secretion in pancreatic beta-cells. Imaging experiments performed in MIN6 insulinoma cells expressing a genetically encoded cAMP biosensor and loaded with fura-2, a calcium indicator, showed that cAMP oscillations are differentially regulated by periodic changes in membrane potential and GLP-1. We modeled the interplay of intracellular calcium (Ca(2+)) and its interaction with calmodulin, G protein-coupled receptor activation, adenylyl cyclases (AC), and phosphodiesterases (PDE). Simulations with the model demonstrate that cAMP oscillations are coupled to cytoplasmic Ca(2+) oscillations in the beta-cell. Slow Ca(2+) oscillations (<1 min(-1)) produce low-frequency cAMP oscillations, and faster Ca(2+) oscillations (>3-4 min(-1)) entrain high-frequency, low-amplitude cAMP oscillations. The model predicts that GLP-1 receptor agonists induce cAMP oscillations in phase with cytoplasmic Ca(2+) oscillations. In contrast, observed antiphasic Ca(2+) and cAMP oscillations can be simulated following combined glucose and tetraethylammonium-induced changes in membrane potential. The model provides additional evidence for a pivotal role for Ca(2+)-dependent AC and PDE activation in coupling of Ca(2+) and cAMP signals. Our results reveal important differences in the effects of glucose/TEA and GLP-1 on cAMP dynamics in MIN6 beta-cells.  相似文献   

2.
In this report we describe a mathematical model for the regulation of cAMP dynamics in pancreatic β-cells. Incretin hormones such as glucagon-like peptide 1 (GLP-1) increase cAMP and augment insulin secretion in pancreatic β-cells. Imaging experiments performed in MIN6 insulinoma cells expressing a genetically encoded cAMP biosensor and loaded with fura-2, a calcium indicator, showed that cAMP oscillations are differentially regulated by periodic changes in membrane potential and GLP-1. We modeled the interplay of intracellular calcium (Ca2+) and its interaction with calmodulin, G protein-coupled receptor activation, adenylyl cyclases (AC), and phosphodiesterases (PDE). Simulations with the model demonstrate that cAMP oscillations are coupled to cytoplasmic Ca2+ oscillations in the β-cell. Slow Ca2+ oscillations (<1 min–1) produce low-frequency cAMP oscillations, and faster Ca2+ oscillations (>3–4 min–1) entrain high-frequency, low-amplitude cAMP oscillations. The model predicts that GLP-1 receptor agonists induce cAMP oscillations in phase with cytoplasmic Ca2+ oscillations. In contrast, observed antiphasic Ca2+ and cAMP oscillations can be simulated following combined glucose and tetraethylammonium-induced changes in membrane potential. The model provides additional evidence for a pivotal role for Ca2+-dependent AC and PDE activation in coupling of Ca2+ and cAMP signals. Our results reveal important differences in the effects of glucose/TEA and GLP-1 on cAMP dynamics in MIN6 β-cells. adenylyl cyclase; calcium ion; glucagon-like peptide 1; modeling; oscillations  相似文献   

3.
Cyclic AMP (cAMP) and Ca2+ are key regulators of exocytosis in many cells, including insulin-secreting β cells. Glucose-stimulated insulin secretion from β cells is pulsatile and involves oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i), but little is known about the detailed kinetics of cAMP signaling. Using evanescent-wave fluorescence imaging we found that glucose induces pronounced oscillations of cAMP in the submembrane space of single MIN6 cells and primary mouse β cells. These oscillations were preceded and enhanced by elevations of [Ca2+]i. However, conditions raising cytoplasmic ATP could trigger cAMP elevations without accompanying [Ca2+]i rise, indicating that adenylyl cyclase activity may be controlled also by the substrate concentration. The cAMP oscillations correlated with pulsatile insulin release. Whereas elevation of cAMP enhanced secretion, inhibition of adenylyl cyclases suppressed both cAMP oscillations and pulsatile insulin release. We conclude that cell metabolism directly controls cAMP and that glucose-induced cAMP oscillations regulate the magnitude and kinetics of insulin exocytosis.  相似文献   

4.
Nerve growth factor (NGF) and the ubiquitous second messenger cyclic AMP (cAMP) are both implicated in neuronal differentiation. Multiple studies indicate that NGF signals to at least a subset of its targets via cAMP, but the link between NGF and cAMP has remained elusive. Here, we have described the use of small molecule inhibitors to differentiate between the two known sources of cAMP in mammalian cells, bicarbonate- and calcium-responsive soluble adenylyl cyclase (sAC) and G protein-regulated transmembrane adenylyl cyclases. These inhibitors, along with sAC-specific small interfering RNA, reveal that sAC is uniquely responsible for the NGF-elicited rise in cAMP and is essential for the NGF-induced activation of the small G protein Rap1 in PC12 cells. In contrast and as expected, transmembrane adenylyl cyclase-generated cAMP is responsible for Rap1 activation by the G protein-coupled receptor ligand PACAP (pituitary adenylyl cyclase-activating peptide). These results identify sAC as a mediator of NGF signaling and reveal the existence of distinct pathways leading to cAMP-dependent signal transduction.  相似文献   

5.
The second messenger molecule cAMP is integral for many physiological processes. In mammalian cells, cAMP can be generated from hormone- and G protein-regulated transmembrane adenylyl cyclases or via the widely expressed and structurally and biochemically distinct enzyme soluble adenylyl cyclase (sAC). sAC activity is uniquely stimulated by bicarbonate ions, and in cells, sAC functions as a physiological carbon dioxide, bicarbonate, and pH sensor. sAC activity is also stimulated by calcium, and its affinity for its substrate ATP suggests that it may be sensitive to physiologically relevant fluctuations in intracellular ATP. We demonstrate here that sAC can function as a cellular ATP sensor. In cells, sAC-generated cAMP reflects alterations in intracellular ATP that do not affect transmembrane AC-generated cAMP. In β cells of the pancreas, glucose metabolism generates ATP, which corresponds to an increase in cAMP, and we show here that sAC is responsible for an ATP-dependent cAMP increase. Glucose metabolism also elicits insulin secretion, and we further show that sAC is necessary for normal glucose-stimulated insulin secretion in vitro and in vivo.  相似文献   

6.
Glucagon-like peptide-1 (GLP-1) is an insulinotropic hormone with powerful antidiabetogenic effects that are thought to be mediated by adenylyl cyclase (AC). Recently, we generated two GLP-1 receptor mutant isoforms (IC3-1 and DM-1) that displayed efficient ligand binding and the ability to promote Ca2+ mobilization from intracellular stores but lacked the ability to couple to AC. In the present study, the wild-type rat GLP-1 receptor (WT-GLP-1 R) or the IC3-1 and DM-1 mutant forms were expressed for the first time in the insulin-producing HIT-T15 cells. Only cells expressing WT-GLP-1 R displayed dramatically elevated GLP-1-induced cAMP responses and elevated insulin secretion. The increase in GLP-1-stimulated secretion in cells expressing WT-GLP-1 R, however, was not accompanied by differences in glucose-stimulated insulin release. Prolonged exposure to GLP-1 (10 nM, 17 h), not only led to an increase in insulin secretion but also increased insulin mRNA levels, but only in cells expressing the WT-GLP-1 R and not the mutant isoforms. Electrophysiological analyses revealed that GLP-1 application enhanced L-type voltage-dependent Ca2+ channel (VDCC) currents > 2-fold and caused a positive shift in VDCC voltage-dependent inactivation in WT-GLP-1R cells only, not control or mutant (DM-1) cells. This action on the Ca2+ current was further enhanced by the VDCC agonist, BAYK8644, suggesting GLP-1 acts via a distinct mechanism dependent on cAMP. These studies demonstrate that the GLP-1 receptor efficiently couples to AC to stimulate insulin secretion and that receptors lacking critical residues in the proximal region of the third intracellular loop can effectively uncouple the receptor from cAMP production, VDCC activity, insulin secretion, and insulin biosynthesis.  相似文献   

7.
"Soluble" adenylyl cyclase (sAC) is a widely expressed source of cAMP in mammalian cells that is evolutionarily, structurally, and biochemically distinct from the G protein-responsive transmembrane adenylyl cyclases. In contrast to transmembrane adenylyl cyclases, sAC is insensitive to heterotrimeric G protein regulation and forskolin stimulation and is uniquely modulated by bicarbonate ions. Here we present the first report detailing kinetic analysis and biochemical properties of purified recombinant sAC. We confirm that bicarbonate regulation is conserved among mammalian sAC orthologs and demonstrate that bicarbonate stimulation is consistent with an increase in the V(max) of the enzyme with little effect on the apparent K(m) for substrate, ATP-Mg(2+). Bicarbonate can further increase sAC activity by relieving substrate inhibition. We also identify calcium as a direct modulator of sAC activity. In contrast to bicarbonate, calcium stimulates sAC activity by decreasing its apparent K(m) for ATP-Mg(2+). Because of their different mechanisms, calcium and bicarbonate synergistically activate sAC; therefore, small changes of either calcium or bicarbonate will lead to significant changes in cellular cAMP levels.  相似文献   

8.
The second messenger cAMP has been extensively studied for half a century, but the plethora of regulatory mechanisms controlling cAMP synthesis in mammalian cells is just beginning to be revealed. In mammalian cells, cAMP is produced by two evolutionary related families of adenylyl cyclases, soluble adenylyl cyclases (sAC) and transmembrane adenylyl cyclases (tmAC). These two enzyme families serve distinct physiological functions. They share a conserved overall architecture in their catalytic domains and a common catalytic mechanism, but they differ in their sub-cellular localizations and responses to various regulators. The major regulators of tmACs are heterotrimeric G proteins, which transduce extracellular signals via G protein-coupled receptors. sAC enzymes, in contrast, are regulated by the intracellular signaling molecules bicarbonate and calcium. Here, we discuss and compare the biochemical, structural and regulatory characteristics of the two mammalian AC families. This comparison reveals the mechanisms underlying their different properties but also illustrates many unifying themes for these evolutionary related signaling enzymes.  相似文献   

9.
The glucagon-like peptide receptor (GLP-1R), which is a G-protein coupled receptor (GPCR), signals through both Gαs and Gαq coupled pathways and ERK phosphorylation to stimulate insulin secretion. The aim of this study was to determine molecular details of the effect of small molecule agonists, compounds 2 and B, on GLP-1R mediated cAMP production, intracellular Ca2+ accumulation, ERK phosphorylation and its internalisation. In human GLP-1R (hGLP-1R) expressing cells, compounds 2 and B induced cAMP production but caused no intracellular Ca2+ accumulation, ERK phosphorylation or hGLP-1R internalisation. GLP-1 antagonists Ex(9–39) and JANT-4 and the orthosteric binding site mutation (V36A) in hGLP-1R failed to inhibit compounds 2 and B induced cAMP production, confirming that their binding site distinct from the GLP-1 binding site on GLP-1R. However, K334A mutation of hGLP-1R, which affects Gαs coupling, inhibited GLP-1 as well as compounds 2 and B induced cAMP production, indicating that GLP-1, compounds 2 and B binding induce similar conformational changes in the GLP-1R for Gαs coupling. Additionally, compound 2 or B binding to the hGLP-1R had significantly reduced GLP-1 induced intracellular Ca2+ accumulation, ERK phosphorylation and hGLP-1R internalisation. This study illustrates pharmacology of differential activation of GLP-1R by GLP-1 and compounds 2 and B.  相似文献   

10.
胰高血糖素样肽-1在胰腺中作用机制的研究进展   总被引:1,自引:0,他引:1  
胰高血糖素样肽-1(GLP-1)是胰高血糖素原基因编码的一种激素,主要由肠道L细胞产生并分泌进入血液。GLP-1能激活胰腺、肾脏、肺、胃、心脏和脑等组织中存在的特异性G蛋白偶联受体(GPCR)。通过GLP-1受体(GLP-1R)的激活,活化腺苷酸环化酶,产生3',5'-环腺苷酸,随后通过cAMP依赖性第二信使途径激活蛋白激酶A和鸟苷酸交换因子。大量围绕胰岛素产生细胞——β细胞开展的研究证明,GLP-1短期作用能够加强葡萄糖依赖性的胰岛素分泌作用,持续的GLP-1R激活也能增加胰岛素的合成,促进β细胞的增殖和新生,抑制β细胞凋亡。GLP-1在胰岛素和胰高血糖素分泌方面的独特作用引发了大量针对GLP-1受体激动剂的研究。我们对胰腺中GLP-1R激活所产生作用的机制进行简要综述。  相似文献   

11.
Glucose-stimulated insulin secretion from pancreatic β cells is mediated by Ca2+ influx and amplified by stimulation of GLP-1-receptors through cAMP-based signaling pathways. Interestingly, it has been found that glucose-induced Ca2+ signals can induce concurrent adenylyl cyclase isoform 8 (AC8)-mediated cAMP signals and, conversely, that GLP-1-receptor-mediated cAMP signals are able to induce Ca2+ signals. In this review, we explore the signaling complexes revolving around AC8 in modulating insulin release, from the initial discovery of the importance of this AC isoform to recent investigations of its interacting molecular partners. We suggest that investigating the structural assembly of the proteins associated with AC8 in β cells might reveal how this particular protein complex could be targeted to modify insulin secretion. Specifically, we suggest that disrupting the protein-protein interaction between A-kinase anchoring protein 79 (AKAP79) and AC8 could lead to disinhibition of AC8 activity and increased insulin secretion. Potentially, AC8 protein interactions could become a future target in type 2 diabetic patients with dysfunction of insulin secretion.  相似文献   

12.
Glucagon-like Peptide-1 in Fishes: The Liver and Beyond   总被引:1,自引:0,他引:1  
The incretin hormone glucagon-like peptide-1 (GLP-1), coencodedand expressed in the proglucagon gene in intestine and endocrinepancreas of all vertebrates, is an important regulator of insulinsecretion in the postprandial state of mammals. Additionally,the hormone acts in concert with insulin to remove glucose fromthe plasma. In mammalian B cells, lung, intestine and brain,GLP-1 receptors activate the adenylyl cyclase/cAMP system ofmessage transduction, with ancillary involvement of calciumand inositoltrisphosphate. While the peptide is fairly conservedin vertebrates, the fishes show dramatic biochemical and physiologicaldifferences to the situation in mammals and an incretin functionin fishes is questionable. Fish GLP-1 acts preferentially onthe liver, and recently enterocytes and brain membranes havebeen shown to be potential targets. GLP-1 actions generallyoppose those of insulin and supplant or supplement those ofglucagon by activating glycogenolysis, gluconeogenesis and lipolysisin liver and by accelerating glucose transport and curtailingglucose oxidation in enterocytes. In brain and enterocytes,GLP-1 targets adenylyl cyclase, while in the liver adenylylcyclase and cAMP play subordinate roles only. Although phospholipaseC had been implicated in GLP-1 action, the prevalent route ofmessage transduction in fish liver needs to be elucidated. Theunique functional switch of GLP-1 from a hyperglycemic hormonein fish to a glucostatic incretin in mammals remains a matterof conjecture.  相似文献   

13.
14.
Prostaglandins exert their effects on target cells by coupling to specific G protein-coupled receptors (GPCRs) that are often co-expressed in the same cells and use alternate and in some cases opposing intracellular signaling pathways. This study investigated the cross-talk that influences intracellular signaling and gene expression profiling in response to co-activation of the EP2 and FP prostanoid receptors in Ishikawa cells stably expressing both receptors (FPEP2 cells). In this study we show that in FPEP2 cells, PGF alone does not alter adenosine 3′,5′-cyclic monophosphate (cAMP) production, but in combination with Butaprost enhances EP2 receptor mediated cAMP release compared to treatment with Butaprost alone. PGF-mediated potentiation of cAMP release was abolished by antagonism of the FP receptor, inhibition of phospholipase C (PLC) and inositol phosphate receptor (IP3R) whereas inhibition of protein kinase C (PKC) had no effect. Moreover, inhibition of calcium effectors using calmodulin antagonist (W7) or Ca2+/calmodulin-dependent kinase II (CaMK-II) inhibitor (KN-93) abolished PGF potentiation of Butaprost-mediated cAMP release. Using siRNA molecules targeted against the adenylyl cyclase 3 (AC3) isoform, we show that AC3 is responsible for the cross-talk between the FP and EP2 receptors. Using gene array studies we have identified a candidate gene, Spermidine/N1-acetyltransferase (SAT1), which is regulated by this cAMP mediated cross-talk. In conclusion, this study demonstrates that co-activation of the FP and EP2 receptors results in enhanced release of cAMP via FP receptor-Gαq-Ca2+-calmodulin pathway by activating calcium sensitive AC3 isoform.  相似文献   

15.
16.
Glucagon-like peptide 1 (GLP-1) activates receptors coupled to cAMP production and calcium influx in pancreatic cells, resulting in enhanced glucose sensitivity and insulin secretion. Despite evidence that the GLP-1 receptor is present and active in neurons, little is known of the roles of GLP-1 in neuronal physiology. As GLP-1 modulates calcium homeostasis in pancreatic beta cells, and because calcium plays important roles in neuronal plasticity and neurodegenerative processes, we examined the effects of GLP-1 on calcium regulation in cultured rat hippocampal neurons. When neurons were pre-treated with GLP-1, calcium responses to glutamate and membrane depolarization were attenuated. Whole-cell patch clamp analyses showed that glutamate-induced currents and currents through voltage-dependent calcium channels were significantly decreased in neurons pre-treated with GLP-1. Pre-treatment of neurons with GLP-1 significantly decreased their vulnerability to death induced by glutamate. Acute application of GLP-1 resulted in a transient elevation of intracellular calcium levels, consistent with the established effects of GLP-1 on cAMP production and activation of cAMP response element-binding protein. Collectively, our findings suggest that, by modulating calcium responses to glutamate and membrane depolarization, GLP-1 may play important roles in regulating neuronal plasticity and cell survival.  相似文献   

17.
18.
In Saccharomyces cerevisiae, adenylyl cyclase forms a complex with the 70-kDa cyclase-associated protein (CAP). By in vitro mutagenesis, we assigned a CAP-binding site of adenylyl cyclase to a small segment near its C terminus and created mutants which lost the ability to bind CAP. CAP binding was assessed first by observing the ability of the overproduced C-terminal 150 residues of adenylyl cyclase to sequester CAP, thereby suppressing the heat shock sensitivity of yeast cells bearing the activated RAS2 gene (RAS2Val-19), and then by immunoprecipitability of adenylyl cyclase activity with anti-CAP antibody and by direct measurement of the amount of CAP bound. Yeast cells whose chromosomal adenylyl cyclase genes were replaced by the CAP-nonbinding mutants possessed adenylyl cyclase activity fully responsive to RAS2 protein in vitro. However, they did not exhibit sensitivity to heat shock in the RAS2Val-19 background. When glucose-induced accumulation of cyclic AMP (cAMP) was measured in these mutants carrying RAS2Val-19, a rapid transient rise indistinguishable from that of wild-type cells was observed and a high peak level and following persistent elevation of the cAMP concentration characteristic of RAS2Val-19 were abolished. In contrast, in the wild-type RAS2 background, similar cyclase gene replacement did not affect the glucose-induced cAMP response. These results suggest that the association with CAP, although not involved in the in vivo response to the wild-type RAS2 protein, is somehow required for the exaggerated response of adenylyl cyclase to activated RAS2.  相似文献   

19.

Background

Glucagon like peptide-1 (GLP-1) and its analogue exendin-4 (Ex-4) enhance glucose stimulated insulin secretion (GSIS) and activate various signaling pathways in pancreatic β-cells, in particular cAMP, Ca2+ and protein kinase-B (PKB/Akt). In many cells these signals activate intermediary metabolism. However, it is not clear whether the acute amplification of GSIS by GLP-1 involves in part metabolic alterations and the production of metabolic coupling factors.

Methodology/Prinicipal Findings

GLP-1 or Ex-4 at high glucose caused release (∼20%) of the total rat islet insulin content over 1 h. While both GLP-1 and Ex-4 markedly potentiated GSIS in isolated rat and mouse islets, neither had an effect on β-cell fuel and energy metabolism over a 5 min to 3 h time period. GLP-1 activated PKB without changing glucose usage and oxidation, fatty acid oxidation, lipolysis or esterification into various lipids in rat islets. Ex-4 caused a rise in [Ca2+]i and cAMP but did not enhance energy utilization, as neither oxygen consumption nor mitochondrial ATP levels were altered.

Conclusions/Significance

The results indicate that GLP-1 barely affects β-cell intermediary metabolism and that metabolic signaling does not significantly contribute to GLP-1 potentiation of GSIS. The data also indicate that insulin secretion is a minor energy consuming process in the β-cell, and that the β-cell is different from most cell types in that its metabolic activation appears to be primarily governed by a “push” (fuel substrate driven) process, rather than a “pull” mechanism secondary to enhanced insulin release as well as to Ca2+, cAMP and PKB signaling.  相似文献   

20.
Under high glucose conditions, endothelial cells respond by acquiring fibroblast characteristics, that is, endothelial-to-mesenchymal transition (EndMT), contributing to diabetic cardiac fibrosis. Glucagon-like peptide-1 (GLP-1) has cardioprotective properties independent of its glucose-lowering effect. However, the potential mechanism has not been fully clarified. Here we investigated whether GLP-1 inhibits myocardial EndMT in diabetic mice and whether this is mediated by suppressing poly(ADP-ribose) polymerase 1 (PARP-1). Streptozotocin diabetic C57BL/6 mice were treated with or without GLP-1 analog (24 nmol/kg daily) for 24 wks. Transthoracic echocardiography was performed to assess cardiac function. Human aortic endothelial cells (HAECs) were cultured in normal glucose (NG) (5.5 mmol/L) or high glucose (HG) (30 mmol/L) medium with or without GLP-1analog. Immunofluorescent staining and Western blot were performed to evaluate EndMT and PARP-1 activity. Diabetes mellitus attenuated cardiac function and increased cardiac fibrosis. Treatment with the GLP-1 analog improved diabetes mellitus–related cardiac dysfunction and cardiac fibrosis. Immunofluorescence staining revealed that hyperglycemia markedly increased the percentage of von Willebrand factor (vWF)+/alpha smooth muscle actin (α-SMA)+ cells in total α-SMA+ cells in diabetic hearts compared with controls, which was attenuated by GLP-1 analog treatment. In cultured HAECs, immunofluorescent staining and Western blot also showed that both GLP-1 analog and PARP-1 gene silencing could inhibit the HG-induced EndMT. In addition, GLP-1 analog could attenuate PARP-1 activation by decreasing the level of reactive oxygen species (ROS). Therefore, GLP-1 treatment could protect against the hyperglycemia-induced EndMT and myocardial dysfunction. This effect is mediated, at least partially, by suppressing PARP-1 activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号