首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Apert syndrome is an autosomal dominant disease characterized by craniosynostosis and bony syndactyly associated with point mutations (S252W and P253R) in the fibroblast growth factor receptor (FGFR) 2 that cause FGFR2 activation. Here we investigated the role of the S252W mutation of FGFR2 on osteoblastic differentiation. Osteoblastic cells derived from digital bone in two Apert patients with the S252W mutation showed more prominent alkaline phosphatase activity, osteocalcin and osteopontin mRNA expression, and mineralized nodule formation compared with the control osteoblastic cells derived from two independent non-syndromic polydactyly patients. Stable clones of the human MG63 osteosarcoma cells (MG63-Ap and MG63-IIIc) overexpressing a splice variant form of FGFR2 with or without the S252W mutation (FGFR2IIIcS252W and FGFR2IIIc) showed a higher RUNX2 mRNA expression than parental MG63 cells. Furthermore MG63-Ap exhibited a higher osteopontin mRNA expression than did MG63-IIIc. The enhanced osteoblastic marker gene expression and mineralized nodule formation of the MG63-Ap was inhibited by the conditioned medium from the COS-1 cells overexpressing the soluble FGFR2IIIcS252W. Furthermore the FGF2-induced osteogenic response in the mouse calvarial organ culture system was blocked by the soluble FGFR2IIIcS252W. These results show that the S252W mutation in the FGFR2 gene enhances the osteoblast phenotype in human osteoblasts and that a soluble FGFR2 with the S252W mutation controls osteoblast differentiation induced by the S252W mutation through a dominant negative effect on FGFR2 signaling in Apert syndrome.  相似文献   

2.

Background

Apert syndrome is characterized by craniosynostosis and limb abnormalities and is primarily caused by FGFR2 +/P253R and +/S252W mutations. The former mutation is present in approximately one third whereas the latter mutation is present in two-thirds of the patients with this condition. We previously reported an inbred transgenic mouse model with the Fgfr2 +/S252W mutation on the C57BL/6J background for Apert syndrome. Here we present a mouse model for the Fgfr2+/P253R mutation.

Results

We generated inbred Fgfr2 +/P253R mice on the same C56BL/6J genetic background and analyzed their skeletal abnormalities. 3D micro-CT scans of the skulls of the Fgfr2 +/P253R mice revealed that the skull length was shortened with the length of the anterior cranial base significantly shorter than that of the Fgfr2 +/S252W mice at P0. The Fgfr2 +/P253R mice presented with synostosis of the coronal suture and proximate fronts with disorganized cellularity in sagittal and lambdoid sutures. Abnormal osteogenesis and proliferation were observed at the developing coronal suture and long bones of the Fgfr2 +/P253R mice as in the Fgfr2 +/S252W mice. Activation of mitogen-activated protein kinases (MAPK) was observed in the Fgfr2 +/P253R neurocranium with an increase in phosphorylated p38 as well as ERK1/2, whereas phosphorylated AKT and PKCα were not obviously changed as compared to those of wild-type controls. There were localized phenotypic and molecular variations among individual embryos with different mutations and among those with the same mutation.

Conclusions

Our in vivo studies demonstrated that the Fgfr2 +/P253R mutation resulted in mice with cranial features that resemble those of the Fgfr2 +/S252W mice and human Apert syndrome. Activated p38 in addition to the ERK1/2 signaling pathways may mediate the mutant neurocranial phenotype. Though Apert syndrome is traditionally thought to be a consistent phenotype, our results suggest localized and regional variations in the phenotypes that characterize Apert syndrome.  相似文献   

3.
Molecular diagnosis of bilateral coronal synostosis.   总被引:3,自引:0,他引:3  
The authors performed a prospective study evaluating molecular diagnosis in patients with bilateral coronal synostosis. The patients were divided into two groups: (1) those clinically classified as having Apert, Crouzon, or Pfeiffer syndrome and (2) those clinically unclassified and labeled as having brachycephaly. Blood samples were drawn for genomic DNA analysis from 57 patients from 1995 to 1997. Polymerase chain reactions were performed using primers flanking exons in FGFR 1, 2, and 3. Each exon was screened for mutations using single-strand confirmation polymorphism, and mutations were identified by DNA sequencing. Mutations in FGFR2 or FGFR3 were found in all patients (n = 38) assigned a phenotypic (eponymous) diagnosis. All Apert syndrome patients (n = 13) carried one of the two known point mutations in exon 7 of FGFR2 (Ser252Trp and Pro253Arg). Twenty-five patients were diagnosed as having either Crouzon or Pfeiffer syndrome. Five patients with Crouzon syndrome of variable severity had mutations in exon 7 of FGFR2. Fifteen patients (12 with Crouzon, 3 with Pfeiffer) had a mutation in exon 9 of FGFR2, many of which involved loss or gain of a cysteine residue. A wide phenotypic range was observed in patients with identical mutations, including those involving cysteine. Two patients labeled as having Crouzon syndrome had the Pro250Arg mutation in exon 7 of FGFR3. All three patients with the crouzonoid phenotype and acanthosis nigricans had the same mutation in exon 10 of FGFR3 (Ala391Glu). This is a distinct disorder, characterized by jugular foraminal stenosis, Chiari I anomaly, and intracranial venous hypertension. Mutations were found in 14 of 19 clinically unclassifiable patients. Three mutations were in exon 9, and one was in the donor splice site of intron 9 on FGFR2. The most common mutation discovered in this group was Pro250Arg in exon 7 of FGFR3. These patients (n = 10) had either bilateral or unilateral coronal synostosis, minimal midfacial hypoplasia with class I or class II occlusion, and minor brachysyndactyly. No mutations in FGFR 1, 2, or 3 were detected in five patients with nonspecific brachycephaly. In conclusion, a molecular diagnosis was possible in all patients (n = 38) given a phenotypic (eponymous) diagnosis. Different phenotypes observed with identical mutations probably resulted from modulation by their genetic background. A molecular diagnosis was made in 74 percent of the 19 unclassified patients in this series; all mutations were in FGFR2 or FGFR3. Our data and those of other investigators suggest that we should begin integrating molecular diagnosis with phenotypic diagnosis of craniosynostoses in studies of natural history and dysmorphology and in analyses of surgical results.  相似文献   

4.
The fibroblast growth factor and receptor system (FGF/FGFR) mediates cell communication and pattern formation in many tissue types (e.g., osseous, nervous, vascular). In those craniosynostosis syndromes caused by FGFR1-3 mutations, alteration of signaling in the FGF/FGFR system leads to dysmorphology of the skull, brain and limbs, among other organs. Since this molecular pathway is widely expressed throughout head development, we explore whether and how two specific mutations on Fgfr2 causing Apert syndrome in humans affect the pattern and level of integration between the facial skeleton and the neurocranium using inbred Apert syndrome mouse models Fgfr2(+/S252W) and Fgfr2(+/P253R) and their non-mutant littermates at P0. Skull morphological integration (MI), which can reflect developmental interactions among traits by measuring the intensity of statistical associations among them, was assessed using data from microCT images of the skull of Apert syndrome mouse models and 3D geometric morphometric methods. Our results show that mutant Apert syndrome mice share the general pattern of MI with their non-mutant littermates, but the magnitude of integration between and within the facial skeleton and the neurocranium is increased, especially in Fgfr2(+/S252W) mice. This indicates that although Fgfr2 mutations do not disrupt skull MI, FGF/FGFR signaling is a covariance-generating process in skull development that acts as a global factor modulating the intensity of MI. As this pathway evolved early in vertebrate evolution, it may have played a significant role in establishing the patterns of skull MI and coordinating proper skull development.  相似文献   

5.
Apert syndrome is characterized by craniosynostosis and syndactyly, and is predominantly caused by mutation of either S252W or P253W in the fibroblast growth factor receptor (FGFR) 2 gene. In this study, we characterized the effects of one of the mutations (S252W) using primary calvarial osteoblasts derived from transgenic mice, Ap-Tg and sAp-Tg, that expressed an Apert-type mutant FGFR2 (FGFR2IIIc-S252W; FGFR2IIIc-Ap), and the soluble form (extracellular domain only) of the mutant FGFR2 (sFGFR2IIIc-Ap), respectively. Compared to WT-derived osteoblasts, osteoblasts from Ap-Tg mouse showed a higher proliferative activity and enhanced differentiation, while those from sAp-Tg mouse exhibited reduced potential for proliferation and osteogenic differentiation. When transplanted with β-tricalcium phosphate (β-TCP) granules into immunodeficient mice, Ap-Tg-derived osteoblasts showed a higher bone forming capacity, whereas sAp-Tg-derived osteoblasts were completely deficient for this phenotype. Phosphorylation of extracellular signal-regulated kinase (ERK), MEK, PLCγ, and p38 was increased in Ap-Tg-derived osteoblasts, whereas phosphorylation of these signaling molecules was reduced in sAp-Tg-derived osteoblasts. Interestingly, when these experiments were carried out using osteoblasts from the mice generated by crossing Ap-Tg and sAp-Tg (Ap/sAp-Tg), which co-expressed FGFR2IIIc-Ap and sFGFR2IIIc-Ap, the results were comparable to those obtained from WT-derived osteoblasts. Taken together, these results indicate that osteoblasts expressing FGFR2IIIc-Ap proliferate and differentiate via highly activated MEK, ERK, and p38 pathways, while these pathways are suppressed in osteoblasts expressing sFGFR2IIIc-Ap. Our findings also suggest that altered FGFR2IIIc signaling in osteoblasts is mostly responsible for the phenotypes seen in Apert syndrome, therefore these osteoblast cell lines are useful tools for investigating the pathogenesis of Apert syndrome.  相似文献   

6.
Five autosomal dominant craniosynostosis syndromes (Apert, Crouzon, Pfeiffer, Jackson-Weiss and Crouzon syndrome with acanthosis nigricans) result from mutations in FGFR genes. Fourteen unrelated patients with FGFR2-related craniosynostosis syndromes were screened for mutations in exons IIIa and IIIc of FGFR2. Eight of the nine mutations found have been reported, but one patient with Pfeiffer syndrome was found to have a novel G-to-C splice site mutation at –1 relative to the start of exon IIIc. Of those mutations previously reported, the mutation C1205G was unusual in that it was found in two related patients, one with clinical features of Pfeiffer syndrome and the other having mild Crouzon syndrome. This degree of phenotypic variability shows that the clinical features associated with a specific mutation do not necessarily breed true. Received: 4 June 1996 / Revised: 3 September 1996  相似文献   

7.
Apert syndrome is a distinctive human malformation characterized by craniosynostosis and severe syndactyly of the hands and feet. It is caused by specific missense substitutions involving adjacent amino acids (Ser252Trp or Pro253Arg) in the linker between the second and third extracellular immunoglobulin domains of fibroblast growth factor receptor 2 (FGFR2). We have developed a simple PCR assay for these mutations in genomic DNA, based on the creation of novel (SfiI) and (BstUI) restriction sites. Analysis of DNA from 70 unrelated patients with Apert syndrome showed that 45 had the Ser252Trp mutation and 25 had the Pro253Arg mutation. Phenotypic differences between these two groups of patients were investigated. Significant differences were found for severity of syndactyly and presence of cleft palate. The syndactyly was more severe with the Pro253Arg mutation, for both the hands and the feet. In contrast, cleft palate was significantly more common in the Ser252Trp patients. No convincing differences were found in the prevalence of other malformations associated with Apert syndrome. We conclude that, although the phenotype attributable to the two mutations is very similar, there are subtle differences. The opposite trends for severity of syndactyly and cleft palate in relation to the two mutations may relate to the varying patterns of temporal and tissue-specific expression of different fibroblast growth factors, the ligands for FGFR2.  相似文献   

8.
Apert syndrome is an autosomal dominantly inherited disorder caused by missense mutations in fibroblast growth factor receptor 2 (FGFR2). Surgical procedures are frequently required to reduce morphological and functional defects in patients with Apert syndrome; therefore, the development of noninvasive procedures to treat Apert syndrome is critical. Here we aimed to clarify the etiological mechanisms of craniosynostosis in mouse models of Apert syndrome and verify the effects of purified soluble FGFR2 harboring the S252W mutation (sFGFR2IIIcS252W) on calvarial sutures in Apert syndrome mice in vitro. We observed increased expression of Fgf10, Esrp1, and Fgfr2IIIb, which are indispensable for epidermal development, in coronal sutures in Apert syndrome mice. Purified sFGFR2IIIcS252W exhibited binding affinity for fibroblast growth factor (Fgf) 2 but also formed heterodimers with FGFR2IIIc, FGFR2IIIcS252W, and FGFR2IIIbS252W. Administration of sFGFR2IIIcS252W also inhibited Fgf2-dependent proliferation, phosphorylation of intracellular signaling molecules, and mineralization of FGFR2S252W-overexpressing MC3T3-E1 osteoblasts. sFGFR2IIIcS252W complexed with nanogels maintained the patency of coronal sutures, whereas synostosis was observed where the nanogel without sFGFR2S252W was applied. Thus, based on our current data, we suggest that increased Fgf10 and Fgfr2IIIb expression may induce the onset of craniosynostosis in patients with Apert syndrome and that the appropriate delivery of purified sFGFR2IIIcS252W could be effective for treating this disorder.  相似文献   

9.
An understanding of cellular signalling from a systems-based approach has to be robust to assess the effects of point mutations in component proteins. Outcomes of these perturbations should be predictable in terms of downstream response, otherwise a holistic interpretation of biological processes or disease states cannot be obtained. Two single, proximal point mutations (S252W and P253R) in the extracellular region of FGFR2 (fibroblast growth factor receptor 2) prolong growth factor engagement resulting in dramatically different intracellular phenotypes. Following ligand stimulation, the wild-type receptor undergoes rapid endocytosis into lysosomes, whereas (SW)FGFR2 (the S252W FGFR2 point mutation) and (PR)FGFR2 (the P253R FGFR2 point mutation) remain on the cell membrane for an extended period of time, modifying protein recruitment and elevating downstream ERK (extracellular-signal-regulated kinase) phosphorylation. FLIM (fluorescent lifetime imaging microscopy) reveals that direct interaction of FRS2 (FGFR substrate 2) with wild-type receptor occurs primarily at the vesicular membrane, whereas the interaction with the P253R receptor occurs exclusively at the plasma membrane. These observations suggest that the altered FRS2 recruitment by the mutant receptors results in an abnormal cellular signalling mechanism. In the present study these profound intracellular phenotypes resulting from extracellular receptor modification reveal a new level of complexity which will challenge a systems biology interpretation.  相似文献   

10.
Most Apert syndrome patients harbor a single amino acid mutation (S252W) in fibroblast growth factor (FGF) receptor 2 (FGFR2), which leads to abnormal FGF/FGFR2 signaling. Here we show that specific combinations of FGFs and glycosaminoglycans activate both alternative splice forms of the mutant but not of the wild-type FGF receptors. More importantly, 2-O- and N-sulfated heparan sulfate, prepared by a combined chemical and enzymatic synthesis, antagonized the over-activated FGFR2b (S252W) to basal levels at nanomolar concentrations. These studies demonstrated that specific glycosaminoglycans could be useful in treating ligand-dependent FGFR signaling-related diseases, such as Apert syndrome and cancer.  相似文献   

11.
The Apert syndrome is characterized by craniosynostosis and syndactyly of hands and feet. Although most cases are sporadic, an autosomal dominant mode of inheritance is well documented. Two mutations in the FGFR2 gene (Ser252Trp and Pro253Arg) account for most of the cases. We report a patient with a rare form of Apert syndrome with polydactyly. The proposita has turribrachycephaly. complete syndactyly of 2nd to 5th digits ("mitten hands" and cutaneous fusion of all toes). The X-rays revealed craniosynostosis of the coronal suture and preaxial polydactyly of hands and feet with distal bony fusion. Molecular analysis found a C755G transversion (Ser252Trp) in the FGFR2 gene. Only eight patients with Apert syndrome and preaxial polydactyly have been reported and this is the first case in which molecular diagnosis is available. On the basis of the molecular findings in this patient, polydactyly should be considered part of the spectrum of abnormalities in the Apert syndrome. This assertion would establish the need for a new molecular classification of the acrocephalopolysyndactylies.  相似文献   

12.
13.
Apert syndrome, one of five craniosynostosis syndromes caused by allelic mutations of fibroblast growth-factor receptor 2 (FGFR2), is characterized by symmetrical bony syndactyly of the hands and feet. We have analyzed 260 unrelated patients, all but 2 of whom have missense mutations in exon 7, which affect a dipeptide in the linker region between the second and third immunoglobulin-like domains. Hence, the molecular mechanism of Apert syndrome is exquisitely specific. FGFR2 mutations in the remaining two patients are distinct in position and nature. Surprisingly, each patient harbors an Alu-element insertion of approximately 360 bp, in one case just upstream of exon 9 and in the other case within exon 9 itself. The insertions are likely to be pathological, because they have arisen de novo; in both cases this occurred on the paternal chromosome. FGFR2 is present in alternatively spliced isoforms characterized by either the IIIb (exon 8) or IIIc (exon 9) domains (keratinocyte growth-factor receptor [KGFR] and bacterially expressed kinase, respectively), which are differentially expressed in mouse limbs on embryonic day 13. Splicing of exon 9 was examined in RNA extracted from fibroblasts and keratinocytes from one patient with an Alu insertion and two patients with Pfeiffer syndrome who had nucleotide substitutions of the exon 9 acceptor splice site. Ectopic expression of KGFR in the fibroblast lines correlated with the severity of limb abnormalities. This provides the first genetic evidence that signaling through KGFR causes syndactyly in Apert syndrome.  相似文献   

14.
15.
A S252W mutation of fibroblast growth factor receptor 2 (FGFR2), which is responsible for nearly two-thirds of Apert syndrome (AS) cases, causes retarded development of the skeleton and skull malformation resulting from premature fusion of the craniofacial sutures. We utilized a Fgfr2+/S252W mouse (a knock-in mouse model mimicking human AS) to demonstrate decreased bone mass due to reduced trabecular bone volume, reduced bone mineral density, and shortened growth plates in the long bones. In vitro bone mesenchymal stem cells (BMSCs) culture studies revealed that the mutant mice showed reduced BMSC proliferation, a reduction in chondrogenic differentiation, and reduced mineralization. Our results suggest that these phenomena are caused by up-regulation of p38 and Erk1/2 phosphorylation. Treatment of cultured mutant bone rudiments with SB203580 or PD98059 resulted in partial rescue of the bone growth retardation. The p38 signaling pathway especially was found to be responsible for the retarded long bone development. Our data indicate that the S252W mutation in FGFR2 directly affects endochondral ossification, resulting in growth retardation of the long bone. We also show that the p38 and Erk1/2 signaling pathways partially mediate the effects of the S252W mutation of FGFR2 on long bone development.  相似文献   

16.
Coordinated growth of the skull and brain are vital to normal human development. Craniosynostosis, the premature fusion of the calvarial bones of the skull, is a relatively common pediatric disease, occurring in 1 in 2500 births, and requires significant surgical management, especially in syndromic cases. Syndromic craniosynostosis is caused by a variety of genetic lesions, most commonly by activating mutations of FGFRs 1-3, and inactivating mutations of TWIST1. In a mouse model of TWIST1 haploinsufficiency, cell mixing between the neural crest-derived frontal bone and mesoderm-derived parietal bone accompanies coronal suture fusion during embryonic development. However, the relevance of lineage mixing in craniosynostosis induced by activating FGFR mutations is unknown. Here, we demonstrate a novel mechanism of suture fusion in the Apert Fgfr2(S252W) mouse model. Using Cre/lox recombination we simultaneously induce expression of Fgfr2(S252W) and β-galactosidase in either the neural crest or mesoderm of the skull. We show that mutation of the mesoderm alone is necessary and sufficient to cause craniosynostosis, while mutation of the neural crest is neither. The lineage border is not disrupted by aberrant cell migration during fusion. Instead, the suture mesenchyme itself remains intact and is induced to undergo osteogenesis. We eliminate postulated roles for dura mater or skull base changes in craniosynostosis. The viability of conditionally mutant mice also allows post-natal assessment of other aspects of Apert syndrome.  相似文献   

17.
Apert syndrome is an autosomal dominant disorder characterized by malformations of the skull, limbs and viscera. Two-thirds of affected individuals have a S252W mutation in fibroblast growth factor receptor 2 (FGFR2). To study the pathogenesis of this condition, we generated a knock-in mouse model with this mutation. The Fgfr2(+/S252W) mutant mice have abnormalities of the skeleton, as well as of other organs including the brain, thymus, lungs, heart and intestines. In the mutant neurocranium, we found a midline sutural defect and craniosynostosis with abnormal osteoblastic proliferation and differentiation. We noted ectopic cartilage at the midline sagittal suture, and cartilage abnormalities in the basicranium, nasal turbinates and trachea. In addition, from the mutant long bones, in vitro cell cultures grown in osteogenic medium revealed chondrocytes, which were absent in the controls. Our results suggest that altered cartilage and bone development play a significant role in the pathogenesis of the Apert syndrome phenotype.  相似文献   

18.
Apert syndrome (AS) is a type of autosomal dominant disease characterized by premature fusion of the cranial sutures, severe syndactyly, and other abnormalities in internal organs. Approximately 70% of AS cases are caused by a single mutation, S252W, in fibroblast growth factor receptor 2 (FGFR2). Two groups have generated FGFR2 knock-in mice Fgfr2S252W/+ that exhibit features of AS. During the present study of AS using the Fgfr2S252W/+ mouse model, an age-related phenotype of bone homeostasis was discovered. The long bone mass was lower in 2 month old mutant mice than in age-matched controls but higher in 5 month old mutant mice. This unusual phenotype suggested that bone marrow-derived mesenchymal stem cells (BMSCs), which are vital to maintain bone homeostasis, might be involved. BMSCs were isolated from Fgfr2S252W/+ mice and found that S252W mutation could impair osteogenic differentiation BMSCs but enhance mineralization of more mature osteoblasts. A microarray analysis revealed that Wnt pathway inhibitors SRFP1/2/4 were up-regulated in mutant BMSCs. This work provides evidence to show that the Wnt/β-catenin pathway is inhibited in both mutant BMSCs and osteoblasts, and differentiation defects of these cells can be ameliorated by Wnt3a treatment. The present study suggested that the bone abnormalities caused by deregulation of Wnt pathway may underlie the symptoms of AS.  相似文献   

19.
20.
It has been known for several years that heterozygous mutations of three members of the fibroblast growth-factor-receptor family of signal-transduction molecules-namely, FGFR1, FGFR2, and FGFR3-contribute significantly to disorders of bone patterning and growth. FGFR3 mutations, which predominantly cause short-limbed bone dysplasia, occur in all three major regions (i.e., extracellular, transmembrane, and intracellular) of the protein. By contrast, most mutations described in FGFR2 localize to just two exons (IIIa and IIIc), encoding the IgIII domain in the extracellular region, resulting in syndromic craniosynostosis including Apert, Crouzon, or Pfeiffer syndromes. Interpretation of this apparent clustering of mutations in FGFR2 has been hampered by the absence of any complete FGFR2-mutation screen. We have now undertaken such a screen in 259 patients with craniosynostosis in whom mutations in other genes (e.g., FGFR1, FGFR3, and TWIST) had been excluded; part of this screen was a cohort-based study, enabling unbiased estimates of the mutation distribution to be obtained. Although the majority (61/62 in the cohort sample) of FGFR2 mutations localized to the IIIa and IIIc exons, we identified mutations in seven additional exons-including six distinct mutations of the tyrosine kinase region and a single mutation of the IgII domain. The majority of patients with atypical mutations had diagnoses of Pfeiffer syndrome or Crouzon syndrome. Overall, FGFR2 mutations were present in 9.8% of patients with craniosynostosis who were included in a prospectively ascertained sample, but no mutations were found in association with isolated fusion of the metopic or sagittal sutures. We conclude that the spectrum of FGFR2 mutations causing craniosynostosis is wider than previously recognized but that, nevertheless, the IgIIIa/IIIc region represents a genuine mutation hotspot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号