首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
T cell responses to myelin basic protein (MBP) are potentially involved in the pathogenesis of multiple sclerosis (MS). Immunization with irradiated MBP-reactive T cells (T cell vaccination) induces anti-idiotypic T cell responses that suppress circulating MBP-reactive T cells. This T cell-T cell interaction is thought to involve the recognition of TCR expressed on target T cells. The study was undertaken to define the idiotypic determinants responsible for triggering CD8+ cytotoxic anti-idiotypic T cell responses by T cell vaccination in patients with MS. A panel of 9-mer synthetic TCR peptides corresponding to complementarity-determining region 2 (CDR2) and CDR3 of the immunizing MBP-reactive T cell clones were used to isolate anti-idiotypic T cell lines from immunized MS patients. The resulting TCR-specific T cell lines expressed exclusively the CD8 phenotype and recognized preferentially the CDR3 peptides. CDR3-specific T cell lines were found to lyze specifically autologous immunizing MBP-reactive T cell clones. The findings suggest that CDR3-specific T cells represented anti-idiotypic T cell population induced by T cell vaccination. In contrast, the CDR2 peptides were less immunogenic and contained cryptic determinants as the CDR2-specific T cell lines did not recognize autologous immunizing T cell clones from which the peptide sequence was derived. The study has important implications in our understanding of in vivo idiotypic regulation of autoimmune T cells and the regulatory mechanism underlying T cell vaccination.  相似文献   

2.
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the CNS. The numbers of autoimmune T cells and Abs specific for proteins of CNS myelin are increased in the blood in some patients with MS. The aim of this study was to investigate whether there are correlations between the specificity of the autoimmune responses in the blood, the HLA molecules carried by the patient, and the clinical features of MS, because studies on experimental autoimmune encephalomyelitis, an animal model of MS, indicate that autoimmune responses targeting particular myelin proteins and the genetic background of the animal play a role in determining the pattern of lesion distribution. We tested blood T cell immunoreactivity to myelin proteins in 100 MS patients, 70 healthy controls, and 48 patients with other neurological disorders. Forty MS patients had strongly increased T cell reactivity to one or more myelin Ags. In these 40 patients, the most robust correlation was between CD4(+) T cell reactivity to myelin proteolipid protein residues 184-209 (PLP(184-209)) and development of lesions in the brainstem and cerebellum. Furthermore, carriage of HLA-DR4, -DR7, or -DR13 molecules by MS patients correlated with increased blood T cell immunoreactivity to PLP(184-209), as well as the development of lesions in the brainstem and cerebellum. Levels of PLP(190-209)-specific Abs in the blood also correlated with the presence of cerebellar lesions. These findings show that circulating T cells and Abs reactive against specific myelin Ags can correlate with lesion distribution in MS and suggest that they are of pathogenic relevance.  相似文献   

3.
Experimental allergic encephalomyelitis (EAE) is an animal model of T cell-mediated, central nervous system neuropathology that may be a relevant animal model for multiple sclerosis. EAE is usually induced by sensitization of animals with a xenogeneic myelin basic protein (MBP). Recently, MBP-reactive T cell lines and clones derived from lymphoid tissue of animals with EAE have proved very useful in elucidating certain aspects of the pathogenesis in EAE. However, questions relating to how T cells actually mediate the pathologic changes seen in EAE remain unresolved. We now report for the first time the derivation of long-term, interleukin 2-dependent T cell lines and sublines from a site of pathology in murine EAE--the spinal cord. All of the spinal cord-derived T cell lines and sublines were found to be "autoreactive" in that they responded to self (murine) MBP as well as to the xenogeneic immunogen, porcine MBP. The ability to derive T cell lines and sublines from the spinal cords of mice with EAE should now aid in the elucidation of pathogenetic mechanisms in EAE by allowing for a characterization of those T cells found at the site of pathology.  相似文献   

4.
Multiple sclerosis (MS) is an inflammatory disease of the central nervous system (CNS) characterized by multi-focal demyelination, axonal loss, and immune cell infiltration. Numerous immune mediators are detected within MS lesions, including CD4+ and CD8+ T lymphocytes suggesting that they participate in the related pathogenesis. Although CD4+ T lymphocytes are traditionally considered the main actors in MS immunopathology, multiple lines of evidence suggest that CD8+ T lymphocytes are also implicated in the pathogenesis. In this review, we outline the recent literature pertaining to the potential roles of CD8+ T lymphocytes both in MS and its animal models. The CD8+ T lymphocytes detected in MS lesions demonstrate characteristics of activated and clonally expanded cells supporting the notion that these cells actively contribute to the observed injury. Moreover, several experimental in vivo models mediated by CD8+ T lymphocytes recapitulate important features of the human disease. Whether the CD8+ T cells can induce or aggravate tissue destruction in the CNS needs to be fully explored. Strengthening our understanding of the pathogenic potential of CD8+ T cells in MS should provide promising new avenues for the treatment of this disabling inflammatory disease.  相似文献   

5.
Multiple sclerosis (MS) is an autoimmune disease of the central nervous system (CNS), with focal T lymphocytic infiltration and damage of myelin and axons. The underlying mechanism of pathogenesis remains unclear and there are currently no effective treatments. The development of neural stem cell (NSC) transplantation provides a promising strategy to treat neurodegenerative disease. However, the limited availability of NSCs prevents their application in neural disease therapy. In this study, we generated NSCs from induced pluripotent stem cells (iPSCs) and transplanted these cells into mice with experimental autoimmune encephalomyelitis (EAE), a model of MS. The results showed that transplantation of iPSC-derived NSCs dramatically reduced T cell infiltration and ameliorated white matter damage in the treated EAE mice. Correspondingly, the disease symptom score was greatly decreased, and motor ability was dramatically rescued in the iPSC-NSC-treated EAE mice, indicating the effectiveness of using iPSC-NSCs to treat MS. Our study provides pre-clinical evidence to support the feasibility of treating MS by transplantation of iPSC-derived NSCs.  相似文献   

6.
Multiple sclerosis (MS) is a debilitating T cell mediated autoimmune disease of the central nervous system (CNS). Animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) and Theiler's murine encephalomyelitis virus-induced demyelinating disease (TMEV-IDD) have given light to cellular mechanisms involved in the initiation and progression of this organ-specific autoimmune disease. Within the CNS, antigen presenting cells (APC) such as microglia and astrocytes participate as first line defenders against infections or inflammation. However, during chronic inflammation they can participate in perpetuating the self-destructive environment by secretion of inflammatory factors and/or presentation of myelin epitopes to autoreactive T cells. Dendritic cells (DC) are also participants in the presentation of antigen to T cells, even within the CNS. While the APCs alone are not solely responsible for mediating the destruction to the myelin sheath, they are critical players in perpetuating the inflammatory milieu. This review will highlight relevant studies which have provided insight to the roles played by microglia, DCs and astrocytes in the context of CNS autoimmunity.  相似文献   

7.
TCR Peptide Therapy in Human Autoimmune Diseases   总被引:10,自引:0,他引:10  
Inflammatory Th1 cells reacting to tissue/myelin derived antigens likely contribute to the pathogenesis of diseases such as multiple sclerosis (MS), rheumatoid arthritis (RA), and psoriasis. One regulatory mechanism that may be useful for treating autoimmune diseases involves an innate second set of Th2 cells specific for portions of the T cell receptor of clonally expanded pathogenic Th1 cells. These Th2 cells are programmed to respond to internally modified V region peptides from the T cell receptor (TCR) that are expressed on the Th1 cell surface in association with major histocompatibility molecules. Once the regulatory Th2 cells are specifically activated, they may inhibit inflammatory Th1 cells through a non-specific bystander mechanism. A variety of strategies have been used by us to identify candidate disease-associated TCR V genes present on pathogenic Th1 cells, including BV5S2, BV6S5, and BV13S1 in MS, BV3, BV14, and BV17 in RA, and BV3 and BV13S1 in psoriasis. TCR peptides corresponding to the mid region of these BV genes were found to be consistently immunogenic in vivo when administered either i.d. in saline or i.m. in incomplete Freund's adjuvant (IFA). In MS patients, repeated injection of low doses of peptides (100-300 g) significantly boosted the number of TCR-reactive Th2 cells. These activated cells secreted cytokines, including IL-10, that are known to inhibit inflammatory Th1 cells. Cytokine release could also be induced in TCR-reactive Th2 cells by direct cell-cell contact with Th1 cells expressing the target V gene. These findings indicate the potential of regulatory Th2 cells to inhibit not only the target Th1 cells, but also bystander Th1 cells expressing different V genes specific for other autoantigens. TCR peptide vaccines have been used in our studies to treat a total of 171 MS patients (6 trials), 484 RA patients (7 trials), and 177 psoriasis patients (2 trials). Based on this experience in 824 patients with autoimmune diseases, TCR peptide vaccination is safe and well tolerated, and can produce significant clinical improvement in a subset of patients that respond to immunization. TCR peptide vaccination represents a promising approach that is well-suited for treating complex autoimmune diseases.  相似文献   

8.
9.
动脉粥样硬化(atherosclerosis,AS)是导致心血管疾病的主要病理生理基础,现在被认为是一种慢性炎症性疾病.实验和临床证据表明适应性免疫应答可加速或抑制AS.适应性免疫细胞包括T细胞和B细胞,其通过分泌不同的细胞因子或抗体发挥促炎或抗炎作用,某些T细胞和B细胞亚型在AS进程中的作用仍存在争议,Th17和Treg细胞可根据微环境改变表型,提示T细胞可能具有可塑性.此外,脂质代谢和适应性免疫系统之间也存在复杂的相互作用.最近卡那单抗抗炎血栓形成结果研究为治疗AS的抗炎症策略提供了关键支持,针对免疫系统的免疫调节或疫苗接种也是治疗AS有希望的途径.本文就近年来适应性免疫应答在AS中的研究进展作一综述,并展望其作为诊断和防治心血管疾病靶点的未来前景.  相似文献   

10.
B cells, plasma cells, and antibodies are commonly found in active central nervous system (CNS) lesions in patients with multiple sclerosis (MS). B cells isolated from CNS lesions as well as from the cerebrospinal fluid (CSF) show signs of clonal expansion and hypermutation, suggesting their local activation. Plasma blasts and plasma cells maturating from these B cells were recently identified to contribute to the development of oligoclonal antibodies produced within the CSF, which remain a diagnostic hallmark finding in MS. Within the CNS, antibody deposition is associated with complement activation and demyelination, indicating antigen recognition-associated effector function. While some studies indeed implied a disease-intrinsic and possibly pathogenic role of antibodies directed against components of the myelin sheath, no unequivocal results on a decisive target antigen within the CNS persisted to date. The notion of a pathogenic role for antibodies in MS is nevertheless empirically supported by the clinical benefit of plasma exchange in patients with histologic signs of antibody deposition within the CNS. Further, such evidence derives from the animal model of MS, experimental autoimmune encephalomyelitis (EAE). In transgenic mice endogenously producing myelin-specific antibodies, EAE severity was substantially increased accompanied by enhanced CNS demyelination. Further, genetic engineering in mice adding T cells that recognize the same myelin antigen resulted in spontaneous EAE development, indicating that the coexistence of myelin-specific B cells, T cells, and antibodies was sufficient to trigger CNS autoimmune disease. In conclusion, various pathological, clinical, immunological, and experimental findings collectively indicate a pathogenic role of antibodies in MS, whereas several conceptual challenges, above all uncovering potential target antigens of the antibody response within the CNS, remain to be overcome.  相似文献   

11.
To determine if retinoids might be beneficial in the treatment of multiple sclerosis (MS), all-trans-retinoic acid (tRA) was tested for its effects on proliferation and cytokine expression in human autoreactive T cells. tRA decreased human lymphocyte proliferation in vitro in a dose-dependent manner. In addition, tRA induced IL-4 gene expression in myelin basic protein (MBP)-specific T cell lines which had previously expressed a Th1-like phenotype. MBP-specific T cell lines generated in the presence of tRA had a Th2-like phenotype. Retinoids have previously been shown to have a similar effect on encephalitogenic T cells in experimental allergic encephalomyelitis (EAE; an animal model for MS) and treatment of EAE with retinoids stabilizes the disease. Since several oral retinoids have been shown to be safe in humans, retinoids may be beneficial in the treatment of MS.  相似文献   

12.
After thymic emigration CD4‐T‐cells continue to differentiate into multiple effector and suppressor sublineages in peripheral lymphoid organs. In vivo analysis of peripheral CD4‐T‐cell differentiation has relied on animal models with targeted gene mutations. These are expressed either constitutively or conditionally after Cre mediated recombination. Available Cre transgenic strains to specifically target T‐cells act at stages of thymocyte development that precede thymic selection. Tracing gene functions in CD4‐T‐cell development after thymic exit becomes complicated when the targeted gene is essential during thymic development. Other approaches to conditionally modify gene functions in peripheral T‐cells involve infection of in vitro activated cells with Cre expressing lenti‐, retro‐, or adenoviruses, which precludes in vivo analyses. To study molecular mechanisms of peripheral CD4‐T‐cell differentiation in vivo and in vitro we generated transgenic mice expressing a tamoxifen inducible Cre recombinase (CreERT2) under the control of the CD4 gene promoter. We show here that in CD4CreERT2 mice Cre is inducibly and selectively activated in CD4‐T‐cells. Tamoxifen treatment both in vivo and in vitro results in efficient recombination of loci marked by LoxP sites. Moreover, this strain shows no abnormalities related to transgene insertion. Therefore it provides a valuable tool for studying gene function during differentiation of naïve peripheral CD4‐T‐cells into effector or suppressor sub‐lineages. genesis 50:908–913, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
T cell-mediated destruction of the myelin sheath causes inflammatory damage of the CNS in multiple sclerosis (MS). The major T and B cell responses in MS patients who are HLA-DR2 (about two-thirds of MS patients) react to a region between residues 84 and 103 of myelin basic protein (1 ). The crystal structure of HLA-DR2 complexed with myelin basic protein(84-102) confirmed that Lys(91) is the major TCR contact site, whereas Phe(90) is a major anchor to MHC and binds the hydrophobic P4 pocket (2 ). We have tested peptides containing repetitive 4-aa sequences designed to bind critical MHC pockets and to interfere with T cell activation. One such sequence, EYYKEYYKEYYK, ameliorates experimental autoimmune encephalomyelitis in Lewis rats, an animal model of MS.  相似文献   

14.
Inflammation results in CNS damage in multiple sclerosis (MS) and experimental autoimmune encephalomyelitis (EAE), an animal model of MS. It is uncertain how much repair of injured myelin and axons can occur following highly selective anti-inflammatory therapy in EAE and MS. In this study, SJL/J mice with established EAE were treated successfully with an antigen-specific recombinant T cell receptor ligand (RTL), RTL401, a mouse I-A(s)/PLP-139-151 construct, after the peak of EAE. To define the mechanisms by which late application of RTL401 inhibits EAE, we evaluated mice at different time points to assess the levels of neuroinflammation and myelin and axon damage in their spinal cords. Our results showed that RTL401 administered after the peak of acute EAE induced a marked reduction in inflammation in the CNS, associated with a significant reduction of demyelination, axonal loss and ongoing damage. Electron microscopy showed that RTL-treated mice had reduced pathology compared with mice treated with vehicle and mice at the peak of disease, as demonstrated by a decrease in continued degeneration, increase in remyelinating axons and the presence of an increased number of small, presumably regenerative axonal sprouts. These findings indicate that RTL therapy targeting encephalitogenic T cells may promote CNS neuroregenerative processes.  相似文献   

15.
Usually we rely on vaccination to promote an immune response to a pathogenic microbe. In this study, we demonstrate a suppressive from of vaccination, with DNA encoding a minigene for residues 139-151 of myelin proteolipid protein (PLP139-151), a pathogenic self-Ag. This suppressive vaccination attenuates a prototypic autoimmune disease, experimental autoimmune encephalomyelitis, which presents clinically with paralysis. Proliferative responses and production of the Th1 cytokines, IL-2 and IFN-gamma, were reduced in T cells responsive to PLP139-151. In the brains of mice that were successfully vaccinated, mRNA for IL-2, IL-15, and IFN-gamma were reduced. A mechanism underlying the reduction in severity and incidence of paralytic autoimmune disease and the reduction in Th1 cytokines involves altered costimulation of T cells; loading of APCs with DNA encoding PLP139-151 reduced the capacity of a T cell line reactive to PLP139-151 to proliferate even in the presence of exogenous CD28 costimulation. DNA immunization with the myelin minigene for PLP-altered expression of B7.1 (CD80), and B7.2 (CD86) on APCs in the spleen. Suppressive immunization against self-Ags encoded by DNA may be exploited to treat autoimmune diseases.  相似文献   

16.
The genome organizer special AT‐rich sequence binding protein 1 (SATB1) regulates specific functions through chromatin remodeling in T helper cells. It was recently reported by our team that T cells from SATB1 conditional knockout (SATB1cKO) mice, in which the Satb1 gene is deleted from hematopoietic cells, impair phosphorylation of signaling molecules in response to T cell receptor (TCR) crosslinking. However, in vivo T cell responses upon antigen presentation in the absence of SATB1 remain unclear. In the current study, it was shown that SATB1 modulates T cell antigen responses during the induction and effector phases. Expression of SATB1 was upregulated in response to TCR stimulation, suggesting that SATB1 is important for this antigen response. The role of SATB1 in TCR responses and induced experimental autoimmune encephalomyelitis (EAE) was therefore examined using the myelin oligodendrocyte glycoprotein peptide 35‐55 (MOG35‐55) and pertussis toxin. SATB1cKO mice were found to be resistant to EAE and had defects in IL‐17‐ and IFN‐γ‐producing pathogenic T cells. Thus, SATB1 expression appears necessary for T cell function in the induction phase. To examine SATB1 function during the effector phase, a tamoxifen‐inducible SATB1 deletion system, SATB1cKO‐ER‐Cre mice, was used. Encephalitogenic T cells from MOG35‐55‐immunized SATB1cKO‐ER‐Cre mice were transferred into healthy mice. Mice that received tamoxifen before the onset of paralysis were resistant to EAE. Furthermore, no disease progression occurred in recipient mice treated with tamoxifen after the onset of EAE. Thus, SATB1 is essential for maintaining TCR responsiveness during the induction and effector phases and may provide a novel therapeutic target for T cell‐mediated autoimmune diseases.  相似文献   

17.
Multiple sclerosis (MS) is believed to be an autoimmune disease mediated by T cells specific for CNS Ags. MS lesions contain both CD4+ and CD8+ T lymphocytes. The contribution of CD4+ T cells to CNS autoimmune disease has been extensively studied in an animal model of MS, experimental autoimmune encephalomyelitis. However, little is known about the role of autoreactive CD8+ cytotoxic T cells in MS or experimental autoimmune encephalomyelitis. We demonstrate here that myelin basic protein (MBP) is processed in vivo by the MHC class I pathway leading to a MBP79-87/Kk complex. The recognition of this complex by MBP-specific cytotoxic T cells leads to a high degree of tolerance in vivo. This study is the first to show that the pool of self-reactive lymphocytes specific for MBP contain MHC class I-restricted T cells whose response is regulated in vivo by the induction of tolerance.  相似文献   

18.
Experimental autoimmune encephalomyelitis (EAE) is the most extensively studied animal model of the human disease multiple sclerosis (MS). In EAE, CNS demyelination is induced by immunization with myelin proteins or adoptive transfer of myelin-reactive CD4+ T cells. Since the antigen specificity of the immune response believed to be responsible for the pathology of MS is not well defined, therapies that target aspects of T cell activation that are not antigen specific may be more applicable to the treatment of MS. As a result, understanding the role of costimulatory molecules in the activation of na?ve and memory T cells has become an area of extensive investigation. Na?ve T cells require two signals for activation. Signal one is provided by engagement of the T cell receptor (TCR) with MHC/peptide complexes and provides antigen specificity to the immune response. The second signal, termed costimulation, is usually provided by B7 molecules on APC to CD28 molecules expressed on T cells and is antigen-independent. This review will discuss our current understanding of costimulation in the induction and perpetuation of EAE, as well as the potential of costimulation blockade in the treatment of MS.  相似文献   

19.
T cell expression of class II MHC/peptide complexes may be important for maintenance of peripheral self-tolerance, but mechanisms underlying the genesis of class II MHC glycoproteins on T cells are not well resolved. T cell APC (T-APC) used herein were transformed IL-2-dependent clones that constitutively synthesized class II MHC glycoproteins. When pulsed with myelin basic protein (MBP) and injected into Lewis rats, these T-APC reduced the severity of experimental autoimmune encephalomyelitis, whereas unpulsed T-APC were without activity. Normal MBP-reactive clones cultured without APC did not express class II MHC even when activated with mitogens and exposed to IFN-gamma. However, during a 4-h culture with T-APC or macrophage APC, recognition of MBP or mitogenic activation of responder T cells elicited high levels of I-A and I-E expression on responders. Acquisition of class II MHC glycoproteins by responders was resistant to the protein synthesis inhibitor cycloheximide, coincided with transfer of a PKH26 lipophilic dye from APC to responders, and resulted in the expression of syngeneic and allogeneic MHC glycoproteins on responders. Unlike rested I-A- T cell clones, rat thymic and splenic T cells expressed readily detectable levels of class II MHC glycoproteins. When preactivated with mitogens, naive T cells acquired APC-derived MHC class II molecules and other membrane-associated proteins when cultured with xenogeneic APC in the absence of Ag. In conclusion, this study provides evidence that APC donate membrane-bound peptide/MHC complexes to Ag-specific T cell responders by a mechanism associated with the induction of tolerance.  相似文献   

20.
《Cytotherapy》2014,16(7):1024-1030
Background aimsDendritic cell (DC)-based immunotherapy has shown potential to counteract autoimmunity in multiple sclerosis (MS).MethodsWe compared the phenotype and T-cell stimulatory capacity of in vitro generated monocyte-derived DC from MS patients with those from healthy controls.ResultsExcept for an increase in the number of C-C chemokine receptor 7–expressing DC from MS patients, no major differences were found between groups in the expression of maturation-associated membrane markers or in the in vitro capacity to stimulate autologous T cells.ConclusionsOur observations may pave the way for the development of patient-tailored DC-based vaccination strategies to treat MS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号