首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Summary The structure of the membrane junctions of the hybrid cell system, examined in the companion paper in respect to competence for communication through cell-to-cell membrane channels, is here examined by freeze-fracture electron microscopy. The junctions of the channel-competent parent cell and of the channel-competent hybrid cells present aggregates of intramembranous particles typical of gap junction; those of the channel-incompetent parent cell and channel-incompetent segregant hybrid cells do not. Competence for junctional communication and for gap junction formation are genetically related. The junctions of the intermediate hybrid cells with incomplete channel-competence (characterized by cell-to-cell transfer of small inorganic ions but not of fluorescein), present special intramembranous fibrillar structures instead of discrete gap-junctional particles. The possibility that these structures may constitute coupling elements with subnormal permeability is discussed in terms of incomplete dominance of the genetic determinants of gap junction.  相似文献   

2.
Under far-red (>650 nm) illumination Anacystis nidulans grows poorly and develops a low chlorophyll content. During continued culture over many generations there are increases in growth rate and in the chlorophyll/phycocyanin ratio, usually occurring in concomitant and stepwise fashion. From such selection cultures six clones have been established which differ from the parent in pigment content and show improved growth rate in far-red light. From the evidence at hand the six clones are presumed to be spontaneous mutants selected under the photosynthetically restrictive condition of far-red illumination.  相似文献   

3.
Three series of neuroblastoma X fibroblast hybrid clones were isolated from crosses between mouse or human fibroblasts and mouse or human neuroblastoma cell lines by virus-mediated cell fusion. The expression of 14-3-2 protein (an acidic protein specific to neurons) and steroid sulfatase activity was studied in parental and hybrid cell lines. Steroid sulfatase was extinguished in hybrids when only one parent expressed the enzyme, but was expressed in one hybrid combination in which both parents expressed the enzyme. The neuron-specific 14-3-2 protein, on the other hand, continued to be expressed in all three series of neuroblastoma x fibroblast hybrids. In most cases where these pheno-types were expressed, they also exhibited temporal modulation; that is, specific activity is low during logarithmic growth and increases markedly during stationary phase. The glial-specific protein S-100 is absent from all parents and hybrids. The results are discussed in terms of mechanisms of regulation of differentiated phenotypes in mammalian cells.  相似文献   

4.
Cell cycle studies, using PLM analysis, were carried out on a mouse-Chinese hamster cell hybrid and its derivatives which stably retained all parental chromosomes during the year of study. Parameter estimates were obtained from the PLM curves, using conjugate gradient curve fitting procedures. The hybrid initially grew very slowly, and all phases (especially G1) were longer than those of either parent. During propagation, mean generation time decreased progressively, and the phase times approached those of the mouse parent (which had the longer G1 and S). DNA replication could be scored separately in mouse and hamster chromosome sets; initially termination was highly asynchronous, but during growth asynchrony was progressively reduced as DNA synthesis in the hamster set was prolonged. We conclude that cell hybrids may undergo progressive modifications of the cell cycle, even in the absence of significant chromosome segregation, and suggest that such changes may at least partly account for the great variety of relationships between the growth rates and phase times of parent and hybrid cells which have been reported. Because of the complexity of these changes in the cycles of interspecific cell hybrids, we believe that somatic cell genetic analysis of the regulation of the cell cycle would be more usefully applied to intraspecific hybrids whose parents differ in only one specific cycle characteristic.  相似文献   

5.
One approach to gain an insight into the genetics of tree architecture is to make use of morphologically divergent parents and study their segregating progeny in the F2 and backcross (B1) generations. This approach was chosen in the present study in which material of a three-generation pedigree growing side by side in a replicated plantation, was analyzed. The pedigree included Populus trichocarpa (T) and P. deltoides (D) parents, their F1 and F2 hybrids and their B1 hybrids to the D parent. The trees were grown in the environment of the T parent and measured for the first 2 years of growth. Nine quantitative traits were studied at the stem, branch and leaf levels of tree architecture, in which the original parents differed. Strong F1 hybrid vigor relative to the better parent (T) was expressed in growth and its components. Most quantitative traits in the F2 and B1 hybrids were intermediate between the T and D parents but displayed a wide range of variation due to segregation. The results from the analysis of variance indicated that all morphometric traits were significantly different among F2 and B1 clones, but the B1 hybrids were more sensitive to replicates than the F2. Broad-sense heritabilities (H 2) based on clonal means ranged from moderately high to high (0.50–0.90) for the traits studied, with H 2 values varying over age. The H 2 estimates reflected greater environmental noise in the B1 than in the F2, presumably due to the greater proportion of maladaptive D alleles in those hybrids. In both families, sylleptic branch number and length, and leaf size on the terminal, showed strong genetic correlations with stem growth. The large divergence between the two original parents in the traits studied, combined with the high chromosome number in Populus (2n=38), makes this pedigree well suited for the estimation of the number of quantitative trait loci (QTLs) underlying quantitative variation by Wright's biometric method (1968). Variation in several traits was found to be under the control of surprisingly few major QTLs: 3–4 in 2nd-year height and diameter growth, a single QTL in stem diameter/height ratio.  相似文献   

6.
The structural locus for human beta glucuronidase is assigned to chromosome 7, a localization based upon concordant segregation of the expression of the human enzyme and the presence of human chromosome 7 in somatic cell hybrid clones derived independently from fusions of different human and mouse cells. Hybrid clones containing only human chromosome 7 are included in this study. Electrophoresis of beta glucuronidase also has revealed that human beta glucuronidase has a tetrametric structure.  相似文献   

7.
Hybrid cells are readily formed by fusing clonal Chinese hamster cells to fresh, noncultured, adult mouse spleen cells followed by isolation in selective medium. The vast majority of such hybrids retain Chinese hamster chromosomes and isozymes while segregating mouse chromosomes and isozymes. The growth, plating efficiency, ease of karyology, and rapid segregation of mouse markers allows linkage tests in primary clones. Analysis of 13 isozymes showed 12 to be asyntenic and on epair (PGD-PGM2) to be syntenic This system will allow extensive somatic cell hybrid gene mapping in the mouse and permit a comparison of human and mouse linkage relationships.  相似文献   

8.
The expression of the UPS locus encoding uroporphyrinogen I synthase has been investigated in human/mouse somatic cell hybrids. Human and mouse uroporphyrinogen I synthase can be readily distinguished by their isoelectric points. In hybrid cells, both human and mouse isozymes are detected. The multiple human uroporphyrinogen I synthase isozymes segregate as a single unit, as expected if they are the products of a single locus. The absence of new heteropolymers in hybrid cells supports the biochemical evidence that the active enzyme is a monomer. The presence of human uroporphyrinogen I synthase in hybrid clones was correlated with the presence of human chromosome 11, or its enzymatic marker, without exception in 44 independent hybrid lines. All other chromosomes could be eliminated as possible locations for this locus, due to their independent segregation. This report represents the first gene assignment for an enzyme in the heme biosynthesis pathway.  相似文献   

9.
The inheritance of organogenic response in melon   总被引:1,自引:0,他引:1  
Previous studies have demonstrated variation in organogenic competence among plants within a population ofCucumis melo. In order to determine if leaf explant response is under genetic control, we investigated the distribution of the shoot regeneration frequency in F1 and F2 generations from parents representing extreme values forin vitro organogenic response. Results suggest a genetic model with two genes, partial dominance, independent segregation and similar effects for both genes.  相似文献   

10.
Studying the genetic architecture of sexual traits provides insight into the rate and direction at which traits can respond to selection. Traits associated with few loci and limited genetic and phenotypic constraints tend to evolve at high rates typically observed for secondary sexual characters. Here, we examined the genetic architecture of song traits and female song preferences in the field crickets Gryllus rubens and Gryllus texensis. Song and preference data were collected from both species and interspecific F1 and F2 hybrids. We first analysed phenotypic variation to examine interspecific differentiation and trait distributions in parental and hybrid generations. Then, the relative contribution of additive and additive‐dominance variation was estimated. Finally, phenotypic variance–covariance ( P ) matrices were estimated to evaluate the multivariate phenotype available for selection. Song traits and preferences had unimodal trait distributions, and hybrid offspring were intermediate with respect to the parents. We uncovered additive and dominance variation in song traits and preferences. For two song traits, we found evidence for X‐linked inheritance. On the one hand, the observed genetic architecture does not suggest rapid divergence, although sex linkage may have allowed for somewhat higher evolutionary rates. On the other hand, P matrices revealed that multivariate variation in song traits aligned with major dimensions in song preferences, suggesting a strong selection response. We also found strong covariance between the main traits that are sexually selected and traits that are not directly selected by females, providing an explanation for the striking multivariate divergence in male calling songs despite limited divergence in female preferences.  相似文献   

11.
A study was made of the ultrastructure of cell nuclei of two types of hybrid clones obtained from the fusion of Chinese hamster with human skin fibroblasts, and from that of mouse hepatoma cells with mink fibroblasts. In cell nuclei of the eight hybrid clones deep invaginations of the inner membrane, not characteristic of the parent cells, were revealed. Analysis of serial sections, and application of electron microscopic radioautography and histochemistry have suggested that these structures are associated with the nuclear envelope which is necessary for regulating the superfluous chromosome localization in the hybrid nucleus.  相似文献   

12.
Summary Fibroblasts from a beige mouse (C57BL/6J;bg J bgJ) have been established and maintained in culture for more than 3 yr. At early passages, the mutant cells were distinguishable from C57BL/6J control mouse fibroblasts at the ultrastructural level by the presence of enlarged cytoplasmic granules. After continuous passaging, this distinguishing feature was lost from the mutant cells, correlated with their increased growth rate. Clustered, perinuclear distribution of lysosomes was retained, however, and was quantitatively different at any passage number of the beige cell line from the dispersed distribution of these organelles in control mouse fibroblasts, as analyzed by computer-aided, video-enhanced light microscopy. In somatic cell hybrids between the established beige cell line and a control human diploid fibroblast cell strain, seven uncorrected hybrid lines retained a lysosomal dispersion pattern statistically indistinguishable from that of the beige mouse cell lines. Three corrected hybrid lines had lysosomal dispersion patterns that were significantly different from the beige parent line and indistinguishable from that of the control mouse fibroblast line. Thus, lysosomal dispersion can be used objectively and quantitatively to distinguish mutant beige and control mouse fibroblasts and corrected vs. uncorrected cell hybrids made from the beige/control human somatic cell crosses.  相似文献   

13.
In contrast to the prevailing dogma in the 1990s, recent studies have suggested that an evolutionary history of segregation distortion within species may contribute to sterility in species hybrids. However, this recent work identified segregation distortion exclusively in species hybrids that may never have had an evolutionary history of segregation distortion in either parent species. We expand on previous work using a strain of Drosophila persimilis exhibiting segregation distortion within species to generate QTL maps for segregation distortion and hybrid sterility in crosses between D. persimilis and D. pseudoobscura. The maps localize regions along the XR contributing to both phenotypes, and they indicate one region of overlap between the two maps. This overlap could provide preliminary evidence for an association between segregation distortion within species and hybrid sterility, but the localizations are currently too broad to have confidence in this conclusion. This work is a first step towards possibly supporting a genetic conflict model of speciation in this system.  相似文献   

14.
Legionella pneumophila mutants specifically defective for intracellular replication were isolated using an intracellular thymineless death enrichment strategy. Mutants belonging to two distinct phenotypic classes were unable to grow in macrophage-like cultured cells. One class of mutants was defective for both inhibition of phagosome–lysosome fusion and association of host cell organelles with bacteria-containing phagosomes (‘recruitment’). Another class of mutants was defective only for organelle recruitment, suggesting that recruitment may be necessary for intracellular growth. Recombinant clones were identified that complemented the intracellular growth defects of these mutants. A single genetic locus, designated dot (for defect in organelle trafficking), restored wild-type phenotypes for intracellular growth, organelle recruitment, and inhibition of phagosome–lysosome fusion to mutants belonging to both phenotypic classes.  相似文献   

15.
Chromosome segregation is an essential process of cell multiplication. In prokaryotes, segregation starts with the newly replicated sister origins of replication, oriCs, which move apart to defined positions in the cell. We have developed a genetic screen to identify mutants defective in placement of oriC during spore development in the Gram‐positive bacterium Bacillus subtilis. In addition to the previously identified proteins Soj and DivIVA, our screen identified several new factors involved in polar recruitment of oriC: a reported regulator of competence ComN, and the regulators of division site selection MinD and MinJ. Previous work implicated Soj as an important regulator of oriC positioning in the cell. Our results suggest a model in which the DivIVA‐interacting proteins ComN and MinJ recruit MinD to the cell pole, and that these proteins work upstream of Soj to enable oriC placement. We show that these proteins form a polar complex, which acts in parallel with but distinct from the sporulation‐specific RacA pathway of oriC placement, and also functions during vegetative growth. Our study further shows that MinD has two distinct cell cycle roles, in cell division and chromosome segregation, and highlights that cell probably use multiple parallel mechanisms to ensure accurate chromosome segregation.  相似文献   

16.
We have studied the effect of X or γ irradiation, of one parent of a cell hybrid, on hybrid viability and chromosome segregation. The hybrid types studied were mouse-Chinese hamster (which spontaneously lose a few hamster chromosomes) and Chinese hamster-human (which spontaneously lose most of the human complement). Preirradiation of the segregated and retained cell parent resulted in highly asymmetric hybrid survival curves; survival was greatly reduced when the retained parent was irradiated, especially for hamster-human fusions. Preirradiation of the parents of mouse-hamster hybrids modified both the direction and the extent of chromosome segregation, but no consistent effect on elimination was observed for hamster-human hybrids, and reversal of the direction of loss was never observed. These results are more consistent with the hypothesis that chromosome segregation from hybrids results from an intracellular chromosome selection, than with the hypothesis that cellular selection acts on randomly generated chromosome variants.  相似文献   

17.
Mammalian hybrids often show abnormal growth, indicating that developmental inviability may play an important role in mammalian speciation. Yet, it is unclear if this recurrent phenotype reflects a common genetic basis. Here, we describe extreme parent‐of‐origin‐dependent growth in hybrids from crosses between two species of dwarf hamsters, Phodopus campbelli and Phodopus sungorus. One cross type resulted in massive placental and embryonic overgrowth, severe developmental defects, and maternal death. Embryos from the reciprocal cross were viable and normal sized, but adult hybrid males were relatively small. These effects are strikingly similar to patterns from several other mammalian hybrids. Using comparative sequence data from dwarf hamsters and several other hybridizing mammals, we argue that extreme hybrid growth can contribute to reproductive isolation during the early stages of species divergence. Next, we tested if abnormal growth in hybrid hamsters was associated with disrupted genomic imprinting. We found no association between imprinting status at several candidate genes and hybrid growth, though two interacting genes involved in embryonic growth did show reduced expression in overgrown hybrids. Collectively, our study indicates that growth‐related hybrid inviability may play an important role in mammalian speciation but that the genetic underpinnings of these phenotypes remain unresolved.  相似文献   

18.
Somatic hybrids were produced between haploid Nicotiana tabacum L. cv. Petite Havana (wild type) and haploid streptomycin resistant (SR1) mutant by an improved version of microelectrofusion of preselected pairs of protoplasts and the culture of fusion products in a nurse culture. Resistance of diploid plants regenerated from 20 somatic hybrid clones was tested at low concentration of streptomycin in the light as well as at high concentrations of streptomycin in the dark. In two independent hybrid lines, plants resistant in the light but sensitive in the dark were found. The existence of this plant type indicates a segregation of chloroplasts and mitocondria in somatic hybrid clones. It is suggested that microelectrofusion of preselected pairs of protoplasts combined with a reliable nurse culture might be a good technique for controlled somatic hybridization, cell reconstitution and partial gene transfer to different plant species. It might also be used to follow and analyse organelle segregation in somatic hybrid clones. The possibility that mitochondria might be resistant to streptomycin in the SR1 mutant is also discussed.  相似文献   

19.
Mycobacteria are among the clinically most important pathogens, but still not much is known about the mechanisms of their cell cycle control. Previous studies suggested that the genes encoding ParA and ParB (ATPase and DNA binding protein, respectively, required for active chromosome segregation) may be essential in Mycobacterium tuberculosis. Further research has demonstrated that a Mycobacterium smegmatis parB deletion mutant was viable but exhibited a chromosome segregation defect. Here, we address the question if ParA is required for the growth of M. smegmatis, and which cell cycle processes it affects. Our data show that parA may be deleted, but its deletion leads to growth inhibition and severe disturbances of chromosome segregation and septum positioning. Similar defects are also caused by ParA overproduction. EGFP–ParA localizes as pole‐associated complexes connected with a patch of fluorescence accompanying two ParB complexes. Observed aberrations in the number and positioning of ParB complexes in the parA deletion mutant indicate that ParA is required for the proper localization of the ParB complexes. Furthermore, it is shown that ParA colocalizes and interacts with the polar growth determinant Wag31 (DivIVA homologue). Our results demonstrate that mycobacterial ParA mediates chromosome segregation and co‐ordinates it with cell division and elongation.  相似文献   

20.
A microscale isoelectric focusing technique has been developed and used to study hypoxanthine-guanine phosphoribosyl transferase (HGPRT; E.C. 2.4.2.8, inosinate-guanylate:pyrophosphate phosphoribosyl transferase) activities in mouse and human cell lines. The enzymes of both mouse and human origin are shown to exhibit considerable heterogeneity, but each type has a unique range of isoelectric pH. The enzyme of a mouse × human hybrid cell line, derived by fusion of HGPRT parental cells, gives a homogeneous peak of activity, unlike the wild-type enzyme of either parent. The possibility is suggested that this enzyme activity is due to intra-allelic complementation.Centennial Fellow of the Medical Research Council of Canada, 1967–1970.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号