首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
Environmental stress affects plant growth and development. Several plant hormones, such as salicylic acid, abscisic acid (ABA), jasmonic acid (JA), and ethylene play a crucial role in altering plant morphology in response to stress. Developmental regulation often has the cell cycle machinery among its targets. We analyzed the effect of JA and ABA on cell cycle progression in synchronized tobacco (Nicotiana tabacum) BY-2 cells. Both compounds were found to prevent DNA replication, keeping the cells in the G1 stage, when applied just before the G1/S transition. However, ABA did not have any effect on subsequent phases of the cell cycle when applied at a later stage, whereas JA effectively prevented mitosis on application during DNA synthesis. This demonstrates that JA treatment can freeze synchronized BY-2 cells in both the G1 and G2 stages of the cell cycle. Jasmonate administered after the S-phase was less effective in decreasing the mitotic index, suggesting that cell sensitivity toward JA is dependent on the cell cycle phase. In cultures detained in the G2-phase, we observed a reduced histone H1 kinase activity of kinases associated with the p13(suc1) protein.  相似文献   

2.
Auxin induction of cell cycle regulated activity of tobacco telomerase.   总被引:5,自引:0,他引:5  
Telomerase activity was measured at each phase of the cell cycle in synchronized tobacco (Nicotiana tabacum) BY-2 cells in suspension culture with the use of the telomeric repeat amplification protocol assay. The activity was low or undetectable at most phases of the cell cycle but showed a marked increase at early S phase. The induction of telomerase activity was not affected by the S phase blockers aphidicolin (which inhibits DNA polymerase alpha) or hydroxyurea (which inhibits ribonucleotide reductase), but it was prevented by olomoucine, an inhibitor of Cdc2/Cdk2 kinases that blocks G(1)-S cell cycle transition. These results suggest that the induction of telomerase activity is not directly coupled to DNA replication by conventional DNA polymerases, but rather is triggered by the entry of cells into S phase. Various analogs of the plant hormone auxin, including indole-3-acetic acid, alpha-naphthaleneacetic acid, and 2,4-dichlorophenoxyacetic acid, potentiated the increase in telomerase activity at early S phase; the growth-inactive analog 2,3-dichlorophenoxyacetic acid, however, had no such effect. Potentiation by indole-3-acetic acid of the induction of telomerase activity was dose dependent. Together, these data indicate that telomerase activity in tobacco cells is regulated in a cell cycle-dependent manner, and that the increase in activity at S phase is specifically inducible by auxin.  相似文献   

3.
In order to investigate the role of various serine/ threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells the influence of cyclin-dependent (olomoucine) and Ca2+ -calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine) and protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin dependent protein kinases and protein kinase C causes prophase delay, reduces the mitotic index and displaces of mitotic peak as compare with control cells. Inhibition of Ca2+ -calmodulin dependent protein kinases enhances the cell entry into prophase and delays their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances of synchronized BY-2 cells entering into all phases of mitosis.  相似文献   

4.
In order to investigate the role of various serine/threonine protein kinases and protein phosphatases in the regulation of mitosis progression in plant cells, the influence of cyclin(olomoucine) and Ca2+/calmodulin-dependent (W7) protein kinases inhibitors, as well as protein kinase C inhibitors (H7 and staurosporine), and a protein phosphatases inhibitor (okadaic acid) on mitosis progression in synchronized tobacco BY-2 cells has been studied. It was found that BY-2 culture treatment with inhibitors of cyclin-dependent protein kinases and protein kinase C caused a prophase delay, reduced the mitotic index, and displaced the mitotic peak as compared with control cells. Inhibition of Ca2+/calmodulin-dependent protein kinases enhanced the cells entry into prophase and delayed their exit from mitosis. Meanwhile inhibition of serine/threonine protein phosphatases insignificantly enhances synchronized BY-2 cells entering into all phases of mitosis.  相似文献   

5.
Although activation of A-type cyclin-dependent kinase (CDKA) is required for plant cell division, little is known about how CDKA is activated before commitment to cell division. Here, we show that auxin is required for the formation of active CDKA-associated complexes, promoting assembly of the complex in tobacco suspension culture Bright Yellow-2 (BY-2) cells. Protein gel blot analysis revealed that CDKA levels increased greatly after stationary-phase BY-2 cells were subcultured into fresh medium to re-enter the cell cycle. However, these increasing levels subsided when cells were subcultured into auxin-deprived medium, and a subtle increase was observed after subculturing into sucrose-deprived medium. Additionally, p13(suc1)-associated kinase activity did not increase significantly after subculturing into either auxin- or sucrose-deprived medium, but increased strongly after subculturing into medium containing both auxin and sucrose. Using gel filtration, we found that p13(suc1)-associated kinase activity against tobacco retinoblastoma-related protein was maximal in fractions corresponding to the molecular mass of the cyclin/CDKA complex. Interestingly, this peak distribution of high molecular-mass fractions of CDKA disappeared after cells were subcultured into auxin-deprived medium. These findings suggest an important role for auxin in the assembly of active CDKA-associated complexes.  相似文献   

6.
Previously we have demonstrated the dynamic change of microtubules (MTs) during cell cycle progression using highly synchronized tobacco BY-2 cells and characterized the specific transition points of MT organization (Hasezawa and Nagata, 1991). In this study the effect of okadaic acid (OA), a specific inhibitor of protein phosphatase 1 and 2A, on such changes of MTs during cell cycle was examined. These experiments revealed that cell cycle was arrested before the formation of the preprophase band (PPB), at anaphase and at the border of M/G1. Although the block at the anaphase seemed to be analogous to that observed in animal cells (Yamashita et al., 1990), the other two blocks were specific to plant cells. It is interesting that these two blocks coincided with the transition points of MT organization, as revealed in the previous study (Hasezawa and Nagata, 1991). Thus it is proposed that phosphorylation is involved in MT organization, although the effect of OA has been shown mainly to be the activation of cdc-2/histone H1 kinase in animal cells. Another inhibitor of protein phosphatase 1 and 2A, calyculin A (CLA), showed very similar effects on the cell cycle progression. The use of such inhibitors to dissect the cell cycle progression of plant cells is discussed.  相似文献   

7.
8.
Pharmacological studies have led to a model in which the phytohormone abscisic acid (ABA) may be positively transduced via protein phosphatases of the type 1 (PP1) or type 2A (PP2A) families. However, pharmacological evidence also exists that PP1s or PP2As may function as negative regulators of ABA signaling. Furthermore, recessive disruption mutants in protein phosphatases that function in ABA signal transduction have not yet been identified. A guard cell-expressed PP2A gene, RCN1, which had been characterized previously as a molecular component affecting auxin transport and gravity response, was isolated. A T-DNA disruption mutation in RCN1 confers recessive ABA insensitivity to Arabidopsis. The rcn1 mutation impairs ABA-induced stomatal closing and ABA activation of slow anion channels. Calcium imaging analyses show a reduced sensitivity of ABA-induced cytosolic calcium increases in rcn1, whereas mechanisms downstream of cytosolic calcium increases show wild-type responses, suggesting that RCN1 functions in ABA signal transduction upstream of cytosolic Ca(2+) increases. Furthermore, rcn1 shows ABA insensitivity in ABA inhibition of seed germination and ABA-induced gene expression. The PP1 and PP2A inhibitor okadaic acid phenocopies the rcn1 phenotype in wild-type plants both in ABA-induced cytosolic calcium increases and in seed germination, and the wild-type RCN1 genomic DNA complements rcn1 phenotypes. These data show that RCN1 functions as a general positive transducer of early ABA signaling.  相似文献   

9.
Telomeres are vital for preserving chromosome integrity during cell division. Several genes encoding potential telomere-binding proteins have recently been identified in higher plants, but nothing is known about their function or regulation during cell division. In this study, we have isolated and characterized a cDNA clone, pNgTRF1, encoding a putative double-stranded telomeric repeat binding factor of Nicotiana glutinosa, a diploid tobacco plant. The predicted protein sequence of NgTRF1 (Mr = 75,000) contains a single Myb-like domain with significant homology to a corresponding motif in human TRF1/Pin2 and TRF2. Gel retardation assays revealed that bacterially expressed full-length NgTRF1 was able to form a specific complex only with probes containing three or more contiguous telomeric TTTAGGG repeats. The Myb-like domain of NgTRF1 is essential, but not sufficient, to bind the telomeric repeat sequence. The glutamine-rich extreme C-terminal region, which does not exist in animal proteins, was additionally required to form a specific telomere-protein complex. The dissociation constant (Kd) of the Myb motif plus the glutamine-rich domain of NgTRF1 to the two-telomeric repeat sequence was evaluated to be 4.5 +/- 0.2 x 10-9 m, which is comparable to that of the Myb domain of human TRF1. Expression analysis showed that NgTRF1 gene activity was inversely correlated with the cell division capacity of tobacco root cells and during the 9-day culture period of BY-2 suspension cells, while telomerase activity was positively correlated with cell division. In synchronized BY-2 cells, NgTRF1 was selectively expressed in G1 phase, whereas telomerase activity peaked in S phase. These findings suggest that telomerase activity and NgTRF1 expression are differentially regulated in an opposing fashion during growth and cell division in tobacco plants. The possible physiological functions of NgTRF1 in tobacco cells are also discussed.  相似文献   

10.
In the cell cycle the transition from G2 phase to cell division (M) is strictly controlled by protein phosphorylation-dephosphorylation reactions effected by several protein kinases and phosphatases. Although much indirect and direct evidence point to a key role of protein phosphatase 2A (PP2A) at the G2/M transition, the control of the enzyme activity prior to and after the transition are not fully clarified. Using synchronized HeLa cells we determined the PP2A activity (i.e. the increment sensitive to inhibition by 2nM okadaic acid) in immunoprecipitates obtained with antibodies raised against a conserved peptide sequence (residues 169-182, Ab(169/182)) of the PP2A catalytic subunit (PP2A C). Two different substrates were offered: the phospho-peptide KR(p)TIRR and histone H1 phosphorylated by means of the cyclin-dependent protein kinase p34(cdc2). The results indicate that in HeLa cells the specific activity of PP2A towards both substrates goes through a minimum in late G2 phase and stays low until metaphase. Treatment of G2 cells with TPA (10(-7) M) caused a reactivation of the downregulated PP2A activity within 20 min, i.e. the same time frame within which TPA was shown earlier to block HeLa cells at the transition from G2 to mitosis [Kinzel et al., 1988. Cancer Res. 48, 1759-1762]. Activation of PP2A was also induced by TPA in mitotic cells. The low activity of PP2A in mitotic cells was accompanied by a strong reaction of mitotic PP2A C with anti-P-Tyr antibodies in Western blots, which was reversed by treatment of mitotic cells with TPA. The results suggest that the activity of cellular PP2A requires downregulation for the transition from G2 phase to mitosis. Unscheduled reactivation of PP2A induced by TPA in late G2 phase appears to inhibit the progress into mitosis.  相似文献   

11.
12.
We investigated the effects of the non-phorbol tumor promoter okadaic acid on human leukemia K562 cells. It was found that okadaic acid potently and reversibly inhibited cell growth, with a nearly complete inhibition of thymidine uptake seen at about 10 nM. The cytotoxicity of okadaic acid was characterized by a marked mitotic arrest of the cells exhibiting scattered chromosomes and abnormal anaphase-like structures, a phenomenon distinct from the typical metaphase arrest caused by colchicine. Okadaic acid (10-1,000 nM) greatly stimulated phosphorylation of a number of nuclear proteins in K562 cells. Phosphorylation of many of the same proteins was also stimulated by 12-O-tetradecanoylphorbol-13-O-acetate, a protein kinase C activator. The present findings, consistent with recent reports that okadaic acid is a potent inhibitor of protein phosphatases 1 and 2A (PP1 and PP2A) shown to be essential for normal mitosis, provided evidence for the first time that okadaic acid inhibition of PP1/PP2A resulted in enhanced nuclear protein phosphorylation and subsequent mitotic arrest.  相似文献   

13.
Okadaic acid and microcystin-LR, both potent inhibitors of protein phosphatases (PP), blocked vesicle fusion in a cell-free system. The effect of okadaic acid was reversed by the purified catalytic subunit of PP2A, but not PP1. Inhibition was gradual, required Mg-ATP, and was reduced by protein kinase inhibitors, indicating that it was mediated via protein phosphorylation. A candidate protein kinase would be cdc2 kinase, which normally is active in mitotic extracts and has been shown to inhibit endocytic vesicle fusion (Tuomikoski, T., M.-A. Felix, M. Dorée, and J. Gruenberg. 1989. Nature (Lond.). 342:942-945). However, it would appear that cdc2 kinase is not responsible for inhibition by okadaic acid. When compared to cytosol prepared from mitotic cells, okadaic acid did not increase cdc2 kinase activity sufficiently to account for the inhibition. In addition, inhibition was maintained when cdc2 protein was depleted from cytosol.  相似文献   

14.
TONSOKU(TSK)/MGOUN3/BRUSHY1 of Arabidopsis thaliana encodes a nuclear leucine-glycine-aspargine (LGN) domain protein implicated to be involved in genome maintenance, and mutants with defects in TSK show a fasciated stem with disorganized meristem structures. We identified a homolog of TSK from tobacco BY-2 cells (NtTSK), which showed high sequence conservation both in the LGN domain and in leucine-rich repeats with AtTSK. The NtTSK gene was expressed during S phase of the cell cycle in tobacco BY-2 cells highly synchronized for cell division. The tsk mutants of Arabidopsis contained an increased proportion of cells with 4C nuclei and cells expressing cyclin B1 compared with the wild type. These results suggest that TSK is required during the cell cycle and defects of TSK cause the arrest of cell cycle progression at G2/M phase.  相似文献   

15.
It is well established that HCV NS5A protein when expressed in mammalian cells perturbs the extracellular signal regulated kinase (ERK) pathway. The protein serine/threonine phosphatase 2A controls the phosphorylation of numerous proteins involved in cell signaling and one characterized function is the regulation of Ras-Raf mitogen activated protein (MAP) kinase signaling pathways. Our results showed that expression of HCV NS5A protein stimulates phosphatase 2A (PP2A) activity in cells, indicating the relevance of NS5A as a regulator of PP2A in vivo. We found that transient expression of the full length NS5A protein in different cell lines leads to a significant increase of the PP2A activity and this activity is specifically inhibited by the addition of okadaic acid, a PP2A inhibitor, in living cells. Further investigation showed that NS5A protein interacts in vivo and in vitro with the scaffolding A and the catalytic C subunits of PP2A. We propose that HCV NS5A represents a viral PP2A regulatory protein. This is a novel function for the NS5A protein which may have a key role in the ability of the virus to deregulate cell growth and survival.  相似文献   

16.
Two cDNA clones, cATMPK1 and CATMPK2, encoding MAP kinases (mitogen-activated protein kinases) have been cloned from Arabidopsis thaliana and their nucleotide sequences have been determined. Putative proteins encoded by ATMPK1 and ATMPK2 genes, designated ATMPK1 and ATMPK2, contain 370 and 376 amino acid residues, respectively, and are 88.7% identical at the amino acid sequence level. ATMPK1 and ATMPK2 exhibit significant similarity to rat ERK2 (49%) and Xenopus MAP kinase (50%). The amino acid residues corresponding to the sites of phosphorylation (Thr-Glu-Tyr) that are involved in the activation of MAP kinases are conserved in ATMPK1 and ATMPK2. Northern blot analysis indicates that the ATMPK1 and ATMPK2 mRNAs are significantly present in all the organs except seeds. Genomic Southern blot analysis suggests that there are a few additional genes that are related to ATMPK1 and ATMPK2 in the Arabidopsis genome. Purified Xenopus MAP kinase kinase (MAPK kinase) phosphorylates ATMPK1 and ATMPK2 proteins that have been expressed in Escherichia coli, activating these enzymes. A rapid and transient activation of 46-kDa protein kinase activity that phosphorylated myelin basic protein (MBP) was detected when auxinstarved tobacco BY-2 cells were treated with synthetic auxin, 2,4-dichlorophenoxyacetic acid (2,4-D). Protein kinase activities which phosphorylated the recombinant ATMPK2 protein also increased rapidly after auxin treatment in the auxin-starved BY-2 cells. These results suggest that auxin may function as an activator of plant MAP kinase homologues, as do various mitogens in animal systems.  相似文献   

17.
18.
19.
Vertebrate eggs arrest at second meiotic metaphase. The fertilizing sperm causes meiotic exit through Ca(2+)-mediated activation of the anaphase-promoting complex/cyclosome (APC/C). Although the loss in activity of the M-phase kinase CDK1 is known to be an essential downstream event of this process, the contribution of phosphatases to arrest and meiotic resumption is less apparent, especially in mammals. Therefore, we explored the role of protein phosphatase 2A (PP2A) in mouse eggs using pharmacological inhibition and activation as well as a functionally dominant-negative catalytic PP2A subunit (dn-PP2Ac-L199P) coupled with live cell imaging. We observed that PP2A inhibition using okadaic acid induced events normally observed at fertilization: degradation of the APC/C substrates cyclin B1 and securin resulting from loss of the APC/C inhibitor Emi2. Although sister chromatids separated, chromatin remained condensed, and polar body extrusion was blocked as a result of a rapid spindle disruption, which could be ameliorated by non-degradable cyclin B1, suggesting that spindle integrity was affected by CDK1 loss. Similar cell cycle effects to okadaic acid were also observed using dominant-negative PP2Ac. Preincubation of eggs with the PP2A activator FTY720 could block many of the actions of okadaic acid, including Emi2, cyclin B1, and securin degradation and sister chromatid separation. Therefore, in conclusion, we used okadaic acid, dn-PP2Ac-L199P, and FTY720 on mouse eggs to demonstrate that PP2A is needed to for both continued metaphase arrest and successful exit from meiosis.  相似文献   

20.
When guard cell protoplasts (GCPs) of tree tobacco [Nicotiana glauca (Graham)] are cultured at 32 degrees C with an auxin (1-napthaleneacetic acid) and a cytokinin (6-benzylaminopurine), they reenter the cell cycle, dedifferentiate, and divide. GCPs cultured similarly but at 38 degrees C and with 0.1 micro M +/- -cis,trans-abscisic acid (ABA) remain differentiated. GCPs cultured at 38 degrees C without ABA dedifferentiate partially but do not divide. Cell survival after 1 week is 70% to 80% under all of these conditions. In this study, we show that GCPs cultured for 12 to 24 h at 38 degrees C accumulate heat shock protein 70 and develop a thermotolerance that, upon transfer of cells to 32 degrees C, enhances cell survival but inhibits cell cycle reentry, dedifferentiation, and division. GCPs dedifferentiating at 32 degrees C require both 1-napthaleneacetic acid and 6-benzylaminopurine to survive, but thermotolerant GCPs cultured at 38 degrees C +/- ABA do not require either hormone for survival. Pulse-labeling experiments using 5-bromo-2-deoxyuridine indicate that culture at 38 degrees C +/- ABA prevents dedifferentiation of GCPs by blocking cell cycle reentry at G1/S. Cell cycle reentry at 32 degrees C is accompanied by loss of a 41-kD polypeptide that cross-reacts with antibodies to rat (Rattus norvegicus) extracellular signal-regulated kinase 1; thermotolerant GCPs retain this polypeptide. A number of polypeptides unique to thermotolerant cells have been uncovered by Boolean analysis of two-dimensional gels and are targets for further analysis. GCPs of tree tobacco can be isolated in sufficient numbers and with the purity required to study plant cell thermotolerance and its relationship to plant cell survival, growth, dedifferentiation, and division in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号