首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
The plasma proteins hemopexin (Hx) and albumin (Alb) are known to bind heme with high and medium affinity, respectively. To study how this binding modifies heme catalytic reactivity, the effects of Hx, human serum Alb (HSA), and bovine serum Alb (BSA) on the peroxidase- and catalaselike activities of hemin were investigated. These hemin activities were found to be inhibited by 50 to 60% with either HSA or BSA, and by 80 to 90% with Hx. The heme complexes with Hx or Alb (1:1 = protein:heme) therefore had a much lower reactivity toward H2O2 and Cum-OOH than the nonprotein heme. A kinetic analysis suggested that binding to Hx or Alb inhibited the primary activation of heme by H2O2, the step common for both peroxidase- and catalaselike activities of hemin. It is thought that by complexing heme, the Hx and Alb can prevent the toxic effects of extracellular heme in blood plasma.  相似文献   

2.
Hemopexin is a serum, CSF, and neuronal protein that is protective after experimental stroke. Its efficacy in the latter has been linked to increased expression and activity of heme oxygenase (HO)-1, suggesting that it facilitates heme degradation and subsequent release of cytoprotective biliverdin and carbon monoxide. In this study, the effect of hemopexin on the rate of hemin breakdown by CNS cells was investigated in established in vitro models. Equimolar hemopexin decreased hemin breakdown, as assessed by gas chromatography, by 60–75% in primary cultures of murine neurons and glia. Extracellular hemopexin reduced cell accumulation of 55Fe-hemin by over 90%, while increasing hemin export or extraction from membranes by fourfold. This was associated with significant reduction in HO-1 expression and neuroprotection. In a cell-free system, hemin breakdown by recombinant HO-1 was reduced over 80% by hemopexin; in contrast, albumin and two other heme-binding proteins had no effect. Although hemopexin was detected on immunoblots of cortical lysates from adult mice, hemopexin knockout per se did not alter HO activity in cortical cells treated with hemin. These results demonstrate that hemopexin decreases the accumulation and catabolism of exogenous hemin by neural cells. Its beneficial effect in stroke models is unlikely to be mediated by increased production of cytoprotective heme breakdown products.  相似文献   

3.
A radioligand assay was designed to detect and compare specific hemin binding by the periodontal anaerobic black-pigmenting bacteria (BPB) Porphyromonas gingivalis and Prevotella intermedia. The assay included physiological concentrations of the hemin-binding protein rabbit serum albumin (RSA) to prevent self-aggregation and nonspecific interaction of hemin with cellular components. Under these conditions, heme-starved P. intermedia cells (two strains) expressed a single binding site species (4,100 to 4,600 sites/cell) with a dissociation constant (Kd) of 1.0 x 10(-9) M. Heme-starved P. gingivalis cells (two strains) expressed two binding site species; the higher-affinity site (1,000 to 1,500 sites/cell) displayed a Kd of between 3.6 x 10(-11) and 9.6 x 10(-11) M, whereas the estimated Kd of the lower-affinity site (1.9 x 10(5) to 6.3 x 10(5) sites/cell) ranged between 2.6 x 10(-7) and 6.5 x 10(-8) M. Specific binding was greatly diminished in heme-replete cells of either BPB species and was not displayed by iron-replete Escherichia coli cells, which bound as much hemin in the absence of RSA as did P. intermedia. Hemin binding by BPB was reduced following treatment with protein-modifying agents (heat, pronase, and N-bromosuccinimide) and was blocked by protoporphyrin IX and hemoglobin but not by Congo red. Hemopexin also inhibited bacterial hemin binding. These findings indicate that both P. gingivalis and P. intermedia express heme-repressible proteinaceous hemin-binding sites with affinities intermediate between those of serum albumin and hemopexin. P. gingivalis exhibited a 10-fold-greater specific binding affinity and greater heme storage capacity than did P. intermedia, suggesting that the former would be ecologically advantaged with respect to heme acquisition.  相似文献   

4.
Hemin treatment of mouse Friend virus-transformed cells in cultured caused a dose-dependent increase in hemoglobin synthesis. By the addition of radioactively labeled hemin and by the analysis of the radioactive heme in hemoglobin, only 60 to 70% of heme in the newly synthesized hemoglobin was accounted for by the exogenously added hemin. In keeping with this finding, hemin treatment increased the activity of two enzymes in the heme biosynthetic activity, i.e. delta-aminolevulinate (ALA) dehydratase and uroporphyrinogen-I (URO) synthase in these cells. Incorporation of [2(-14C)]glycine, [14C]ALA, and 59Fe into heme was also significantly increased in the cells treated with hemin, suggesting that essentially all enzyme activities in the heme biosynethetic pathway were increased after hemin treatment. These results indicate that heme in the newly synthesized hemoglobin in hemin-treated Friend cells derives both from hemin added to the culture and from heme synthesized intracellularly. In addition, these results suggest that the stimulation of heme biosynthesis by hemin in Friend virus-transformed cells is in contrast to the hemin repression of heme biosynthesis in liver cells.  相似文献   

5.
The involvement of the serum heme-binding proteins hemopexin and albumin in the clearance of erythrocyte membranes from toxic hemin was compared. In the presence of hemopexin initial rates of hemin efflux from resealed ghosts were faster and the amount of extracted hemin larger. When hemin-containing ghosts were treated with a protein mixture of 1:45 hemopexin to albumin, as present in serum, most of the hemin was extracted in the form of heme-hemopexin. It was concluded that hemopexin is the serum protein responsible for heme extraction from cell membranes.  相似文献   

6.
Human serum heme–albumin (HSA–heme–Fe) displays reactivity and spectroscopic properties similar to those of heme proteins. Here, the nitrite reductase activity of ferrous HSA–heme–Fe [HSA–heme–Fe(II)] is reported. The value of the second-order rate constant for the reduction of $ {\text{NO}}_{2}^{ - } $ to NO and the concomitant formation of nitrosylated HSA–heme–Fe(II) (i.e., k on) is 1.3 M?1 s?1 at pH 7.4 and 20 °C. Values of k on increase by about one order of magnitude for each pH unit decrease between pH 6.5 to 8.2, indicating that the reaction requires one proton. Warfarin inhibits the HSA–heme–Fe(II) reductase activity, highlighting the allosteric linkage between the heme binding site [also named the fatty acid (FA) binding site 1; FA1] and the drug-binding cleft FA2. The dissociation equilibrium constant for warfarin binding to HSA–heme–Fe(II) is (3.1 ± 0.4) × 10?4 M at pH 7.4 and 20 °C. These results: (1) represent the first evidence for the $ {\text{NO}}_{2}^{ - } $ reductase activity of HSA–heme–Fe(II), (2) highlight the role of drugs (e.g., warfarin) in modulating HSA(–heme–Fe) functions, and (3) strongly support the view that HSA acts not only as a heme carrier but also displays transient heme-based reactivity.  相似文献   

7.
Hemin is a powerful in vitro inducer of low-density lipoprotein (LDL) oxidation, implicated in development of atherosclerosis. To support the proposed role of hemin in atherogenesis, the question of whether hemin has any chance of getting together with LDL in vivo, must be addressed. A stopped-flow technique was employed in order to investigate the fast kinetics of hemin binding to LDL and to other plasma hemin-binding proteins: high-density lipoprotein (HDL), albumin and hemopexin. Based on the measured rate constants of hemin association with and dissociation from each of these proteins, time-dependent hemin distribution in plasma was analyzed. The analysis shows that as much as 80% of total hemin binds initially to LDL and HDL, the plasma components which are most susceptible to oxidation. Only then hemin partially transfers to the antioxidants albumin and hemopexin. The half time of the hemin-LDL complex in plasma, initially comprising 27% of total hemin, was more than 20 s. Not only transient, but also oxidatively active steady-state hemin-lipoprotein complexes in plasma were both predicted from the kinetic analysis and found in experiment. Our data suggest that the hemin-LDL complex may exist in vivo and that its oxidative potential should be considered pro-atherogenic.  相似文献   

8.
The utilization of heme bound to the serum glycoprotein hemopexin by Haemophilus influenzae type b (Hib) strain DL42 requires the presence of the 100-kDa heme:hemopexin-binding protein encoded by the hxuA gene (M. S. Hanson, S. E. Pelzel, J. Latimer, U. Muller-Eberhard, and E. J. Hansen, Proc. Natl. Acad. Sci. USA 89:1973-1977, 1992). Nucleotide sequence analysis of a 5-kb region immediately upstream from the hxuA gene revealed the presence of two genes, designated hxuC and hxuB, which encoded outer membrane proteins. The 78-kDa HxuC protein had similarity to TonB-dependent outer membrane proteins of other organisms, whereas the 60-kDa HxuB molecule most closely resembled the ShlB protein of Serratia marcescens. A set of three isogenic Hib mutants with cat cartridges inserted individually into their hxuA, hxuB, and hxuC genes was constructed. None of these mutants could utilize heme:hemopexin. The hxuC mutant was also unable to utilize low levels of free heme, whereas both the hxuA and hxuB mutants could utilize free heme. When the wild-type hxuC gene was present in trans, the hxuC mutant regained its ability to utilize low levels of free heme but still could not utilize heme:hemopexin. The hxuA mutant could utilize heme:hemopexin when a functional hxuA gene from a nontypeable H. influenzae strain was present in trans. Complementation analysis using this cloned nontypeable H. influenzae hxuA gene also indicated that the HxuB protein likely functions in the release of soluble HxuA from the Hib cell. These studies indicate that at least two and possible three gene products are required for utilization of heme bound to hemopexin by Hib strain DL42.  相似文献   

9.
The effect of long-term incubation of residual globin-free hemin on whole red blood cell and isolated cytoskeletal proteins was studied. Hemin at concentrations found in pathological red cells was inserted to fresh erythrocytes. Increased hemolysis developed in the hemin-containing cells after a few days at 37 degrees C and after about four weeks at 4 degrees C. Since lipid and hemoglobin peroxidation did not depend on the presence of hemin, time-dependent effects on the cytoskeleton proteins were studied. Observations were: (1) spectrin and protein 4.1 exhibited a time-dependent increasing tendency to undergo hemin-induced peroxidative crosslinking. (2) The ability of the serum proteins, albumin and hemopexin, to draw hemin from spectrin, actin and protein 4.1 decreased with time of incubation with hemin. These results were attributed to time-dependent hemin-induced denaturation of the cytoskeletal proteins. Albumin taken as a control for physiological hemin trap was unaffected by hemin. Small amounts of hemo-spectrin (2-5%) were analyzed in circulating normal cells, and this in vivo hemo-spectrin also failed to release hemin. It was concluded that slow accumulation of hemin, a phenomenon increased in pathological cells, is a toxic event causing erythrocyte destruction.  相似文献   

10.
Heme formation in the erythron is subject to end product regulation by negative feedback, but the exact point of metabolic control in human erythroid cells is unknown. To investigate the mode of action of heme on its own formation, the effects of micromolar concentrations of hemin on de novo synthesis of protoporphyrin IX and delta-aminolevulinate (delta-ALA) by intact human reticulocytes were examined in the presence of 1 mM alpha,alpha'-bipyridyl and 200 microM 4,6-dioxoheptanoate to block their further conversion by ferrochelatase or delta-ALA dehydrase, respectively. At final concentrations (25-40 microM), hemin, which is known to reduce incorporation of [2-14C]glycine into cellular heme, significantly inhibited formation of protoporphyrin IX and total delta-aminolevulinate in situ by these cells. Since synthesis of the first committed precursor, delta-aminolevulinate, as well as protoporphyrin (which is derived from it) were diminished, the effects of hemin on delta-aminolevulinate synthase (EC 2.3.1.37) were studied. Hemin, at concentrations up to 40 microM, had no direct effect on enzymatic activity, as measured with [5-14C] alpha-ketoglutarate (in hypotonically lysed cells) or [1,4-14C]succinyl coenzyme A (in deoxycholate lysates), even after preincubation. However, when intact human reticulocytes were incubated with hemin before assay for delta-ALA synthase, there was a rapid, concentration-dependent reduction in enzymatic activity (mean 42 and 23% inhibition after 60 min for these two substrates, respectively). Hemin had no effect on steady-state levels of delta-ALA synthase mRNA, as determined by Northern blot hybridization using an erythroid-specific human cDNA probe. Thus, a mechanism for inducing feedback inhibition of the tetrapyrrole pathway exists in human erythroid cells. It controls formation of the first committed precursor of protoporphyrin IX, delta-aminolevulinate, and hence regulates heme biosynthesis by limiting the availability of the porphyrin, rather than the metal substrate for the ferrochelatase reaction. Hemin interacts with constituents of the intact reticulocyte significantly to reduce delta-aminolevulinic acid synthase activity by an indirect cellular process that does not influence the abundance of erythroid-specific synthase mRNA but may either inhibit its ribosomal translation in an unknown manner or promote degradation of the enzyme itself by specific proteolysis.  相似文献   

11.
pH- and metal ion-linked stability of the hemopexin-heme complex   总被引:1,自引:0,他引:1  
Rosell FI  Mauk MR  Mauk AG 《Biochemistry》2005,44(6):1872-1879
Thermal denaturation of the human hemopexin-heme complex was investigated under a variety of solution conditions to identify factors that influence heme release. The midpoint temperature for the transition between the folded and folded states, T(m), of the hemopexin-ferriheme complex exhibits a significant dependence on pH. When the pH is reduced from 7 to 5 (50 mM BisTris buffer and 50 mM NaCl), T(m) decreases by approximately 23 degrees C despite the relatively higher chloride concentration that tends to stabilize the protein. The thermal stability of the hemopexin-ferroheme complex was examined at pH 7.4 to yield a T(m) that is 3.2 degrees C lower than that of the hemopexin-ferriheme complex under identical conditions. The effect of transition metal ions, which hemopexin has recently been shown to bind [Mauk, M. R., Rosell, F. I., Lelj-Garolla, B., Moore, G. R., and Mauk, A. G. (2005) Biochemistry 44, XXXX-XXXX], was also considered. Cu(2+) and Zn(2+) had the greatest effect, reducing T(m) for the transition by 4.8 and 6.5 degrees C, respectively, relative to the value for the protein in the absence of metal ions [T(m) = 64.9 degrees C [10 mM sodium phosphate buffer (pH 7.4)]]. These metal ions also interfered significantly with the recovery of the native state from the unfolded protein when the protein on returning to 20 degrees C. The current results demonstrate how the conditions within the endosomes of hepatocytes (pH approximately 5.0, [Cl(-)] approximately 60 mM) and the potential presence of transition metal ions or heme iron reduction contribute to the membrane receptor-mediated process of heme release from hemopexin.  相似文献   

12.
Cyclic AMP-dependent protein kinases I and II, partially purified from rat liver cytosol, were inhibited 50% by 40 microM hemin and 100 microM hemin, respectively. With the purified catalytic subunit of cyclic AMP-dependent protein kinase, hemin caused non-competitive inhibition with respect to the peptide substrate and mixed inhibition with respect to ATP. Hemin also inhibited purified phosphorylase b kinase, indicating that hemin concentrations above 10 microM markedly inhibit multiple protein kinases. In isolated intact hepatocytes, hemin inhibited the glucagon-dependent activation of cyclic AMP-dependent protein kinases and the activation of glycogen phosphorylase. For both effects, high heme concentrations (40-60 microM) were required for 50% inhibition. Similar high levels of exogenous hemin inhibited total hepatocyte protein synthesis. By contrast, 5 microM hemin or less was sufficient to raise intracellular heme levels, as indicated by the relative heme-saturation of tryptophan oxygenase in hepatocytes. Hemin, 5 microM, completely repressed induction of 5-aminolevulinate synthase by dexamethasone in hepatocyte primary cultures. Such repression is unlikely to be mediated by inhibition of protein kinases.  相似文献   

13.
The interaction of hemopexin with bilirubin was characterized by spectrophotometric, fluorimetric and circular dichroic techniques. Hemopexin rapidly forms an equimolar complex with libirubin that has an apparent dissociation constant Kd, of 7.5.10(-7) M. The association alters the absorption band of bilirubin near 150 nm, quenches the fluorescence of tryptophan residues of hemopexin, enhances the fluorescence of bilirubin, and induces strong ellipticity extrema in bilirubin of --60 . 10(3) deg . cm2 . dmol-1 at 465 nm and +70 . 10(3) deg . cm2 . dmol-1 at 415 nm. However, the conformation-sensitive ellipticity aband at 231 nm of hemopexin is not altered. In displacement experiments using circular dichroism, heme readily replaced bound bilirubin, indicating that bilirubin and heme are bound at the same site on hemopexin. Even at molar ratios of hemopexin to albumin of 3 to 1, human serum albumin removes bilirubin from hemopexin. Hemopexin is thus unlikely to have a role in the transport of bilirubin in serum.  相似文献   

14.
Abstract

Hemorrhagic stroke is a common cause of permanent brain damage, with a significant amount of the damage occurring in the weeks following a stroke. This secondary damage is partly due to the toxic effects of hemin, a breakdown product of hemoglobin. The serum proteins hemopexin and albumin can bind hemin, but these natural defenses are insufficient to cope with the extremely high amounts of hemin (10 mM) that can potentially be liberated from hemoglobin in a hematoma. The present review discusses how hemin gets into brain cells, and examines the multiple routes through which hemin can be toxic. These include the release of redox-active iron, the depletion of cellular stores of NADPH and glutathione, the production of superoxide and hydroxyl radicals, and the peroxidation of membrane lipids. Important gaps are revealed in contemporary knowledge about the metabolism of hemin by brain cells, particularly regarding how hemin interacts with hydrogen peroxide. Strategies currently being developed for the reduction of hemin toxicity after hemorrhagic stroke include chelation therapy, antioxidant therapy and the modulation of heme oxygenase activity. Future strategies may be directed at preventing the uptake of hemin into brain cells to limit the opportunity for toxic interactions.  相似文献   

15.
Temperature jump relaxation kinetics of the P-450cam spin equilibrium   总被引:1,自引:0,他引:1  
M T Fisher  S G Sligar 《Biochemistry》1987,26(15):4797-4803
The ferric spin-state equilibrium and relaxation rate of cytochrome P-450 has been examined with temperature jump spectroscopy using a number of camphor analogues known to induce different mixed spin states in the substrate-bound complexes [Gould, P., Gelb, M., & Sligar, S. G. (1981) J. Biol. Chem. 256, 6686]. All temperature-induced spectral changes were monophasic, and the spin-state relaxation rate reached a limiting value at high substrate concentrations. The ferric spin equilibrium constant, Kspin, is defined in terms of the rate constants k1 and k-1 via Kspin = k1/k-1 = [P-450(HS)]/[P-450(LS)] where HS and LS represent high-spin (S = 5/2) and low-spin (S = 1/2) ferric iron, respectively, and the spectrally observed spin-state relaxation rate by kobsd = k1 + k-1. A strong correlation between the fraction of high-spin species and the rate constant, k-1, is observed. For a 3 degrees C temperature jump (from 10 to 13 degrees C), the 23% high-spin tetramethylcyclohexanone complex (Kd = 45 +/- 20 microM) is characterized by a ferric spin relaxation rate of kobsd = 1990 s-1, while the rates for the d-fenchone (41% high spin, Kd = 42 +/- 10 microM) and kobsd = 1990 s-1, while the rates for the d-fenchone (41% high spin, Kd = 42 +/- 10 microM) and camphoroquinone (75% high spin, Kd = 15 +/- 5 microM) complexes are 1430 and 346 s-1, respectively.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Enterocytes maintain fluid-electrolyte homeostasis by keeping a tight barrier and regulating ion channels. Carbon monoxide (CO), a product of heme degradation, modulates electrolyte transport in kidney and lung epithelium, but its role in regulating intestinal fluid-electrolyte homeostasis has not been studied. The major source of endogenous CO formation comes from the degradation of heme via heme oxygenase. We hypothesized that heme activates electrolyte transport in intestinal epithelial cells. Basolateral hemin treatment increased baseline Caco-2 cell short-circuit currents (I(sc)) twofold (control = 1.96 +/- 0.14 microA/cm(2) vs. hemin = 4.07 +/- 0.16 microA/cm(2), P < 0.01); apical hemin had no effect. Hemin-induced I(sc) was caused by Cl- secretion because it was inhibited in Cl- -free medium, with ouabain, 5-nitro-2-(3-phenylpropylamino) benzoic acid (NPPB), or DIDS. Apical electrogenic Na+ channel inhibitor benzamil had no effect on hemin-induced I(sc). Hemin did not alter the ability of Caco-2 cells to respond maximally to forskolin, but a soluble guanylate cyclase inhibitor, [1,2,4]oxadiazolo-[4,3-a]quinoxalin-1-one (ODQ) inhibited the effects of hemin. A CO-releasing molecule, tricarbonyldichlororuthenium II, induced active Cl- secretion that was also inhibited with ODQ. We conclude that hemin induces active Cl- secretion in Caco-2 cells via a cGMP-dependent pathway. These effects are probably the consequence of CO formation. Heme and CO may be important regulators of intestinal fluid-electrolyte homeostasis.  相似文献   

17.
Thyroperoxidase (TPO) is a glycosylated hemoprotein that plays a key role in thyroid hormone synthesis. We previously showed that in CHO cells expressing human TPO (hTPO) only 2% of synthesized hTPO reaches the cell surface. Herein, we investigated the role of heme moiety insertion in the exit of hTPO from the endoplasmic reticulum. Peroxidase activity at the cell surface and cell surface expression of hTPO were decreased by approximately 30 and approximately 80%, respectively, with succinyl acetone, an inhibitor of heme biosynthesis, and were increased by 20% with holotransferrin and aminolevulinic acid, precursors of heme biosynthesis. Results were similar with holotransferrin plus aminolevulinic acid or hemin, but hemin increased cell surface activity more efficiently (+120%) relative to the control. It had been suggested (DePillis, G., Ozaki, S., Kuo, J. M., Maltby, D. A., and Ortiz de Montellano, P. R. (1997) J. Biol. Chem. 272, 8857-8960) that covalent attachment of heme to mammalian peroxidases could be an H2O2-dependent autocatalytic processing. In our study, heme associated intracellularly with hTPO, and we hypothesized that there was insufficient exposure to H2O2 in Chinese hamster ovary cells before hTPO reached the cell surface. After a 10-min incubation, 10 microM H2O2 led to a 65% increase in cell surface activity. In contrast, in thyroid cells, H2O2 was synthesized at the apical cell surface and allowed covalent attachment of heme. Two-day incubation of primocultures of thyroid cells with catalase led to a 30% decrease in TPO activity at the cell surface. In conclusion, we provide compelling evidence for an essential role of 1) heme incorporation in the intracellular trafficking of hTPO and of 2) H2O2 generated at the apical pole of thyroid cells in the autocatalytic covalent heme binding to the TPO molecule.  相似文献   

18.
Heme oxygenase (HO) catalyzes heme degradation by utilizing O(2) and reducing equivalents to produce biliverdin IX alpha, iron, and CO. To avoid product inhibition, the heme[bond]HO complex (heme[bond]HO) is structured to markedly increase its affinity for O(2) while suppressing its affinity for CO. We determined the crystal structures of rat ferrous heme[bond]HO and heme[bond]HO bound to CO, CN(-), and NO at 2.3, 1.8, 2.0, and 1.7 A resolution, respectively. The heme pocket of ferrous heme-HO has the same conformation as that of the previously determined ferric form, but no ligand is visible on the distal side of the ferrous heme. Fe[bond]CO and Fe[bond]CN(-) are tilted, whereas the Fe[bond]NO is bent. The structure of heme[bond]HO bound to NO is identical to that bound to N(3)(-), which is also bent as in the case of O(2). Notably, in the CO- and CN(-)-bound forms, the heme and its ligands shift toward the alpha-meso carbon, and the distal F-helix shifts in the opposite direction. These shifts allow CO or CN(-) to bind in a tilted fashion without a collision between the distal ligand and Gly139 O and cause disruption of one salt bridge between the heme and basic residue. The structural identity of the ferrous and ferric states of heme[bond]HO indicates that these shifts are not produced on reduction of heme iron. Neither such conformational changes nor a heme shift occurs on NO or N(3)(-) binding. Heme[bond]HO therefore recognizes CO and O(2) by their binding geometries. The marked reduction in the ratio of affinities of CO to O(2) for heme[bond]HO achieved by an increase in O(2) affinity [Migita, C. T., Matera, K. M., Ikeda-Saito, M., Olson, J. S., Fujii, H., Yoshimura, T., Zhou, H., and Yoshida, T. (1998) J. Biol. Chem. 273, 945-949] is explained by hydrogen bonding and polar interactions that are favorable for O(2) binding, as well as by characteristic structural changes in the CO-bound form.  相似文献   

19.
Heme plays an important biomodulating role in various cell functions. In this study, we examined the effects of hemin on cellular sensitivity to imatinib and other anti-leukemia reagents. Hemin treatment of human BCR/ABL-positive KCL22 leukemia cells increased IC(50) values of imatinib, that is, the drug resistance, in a dose-dependent manner without any change in the BCR/ABL kinase activity. Imatinib-induced apoptosis was also suppressed by hemin treatment in KCL22 cells. Hemin treatment increased the activity of gamma-glutamylcysteine synthetase (gamma-GCS) light subunit gene promoter, which contains a Maf recognition element (MARE). Protein levels of gamma-GCS and heme oxygenase-1 (HO-1), two MARE-containing genes, were also increased after hemin treatment. Knockdown of Nrf2 expression by RNA interference largely abolished the effect of hemin on imatinib-treated cells, suggesting that Nrf2 recognition of MARE is essential for the hemin-mediated protective effect. Similar to hemin, treatment of cells with delta-aminolevulinic acid (delta-ALA), the obligatory heme precursor, also increased IC(50) values of imatinib. In contrast, inhibition of cellular heme synthesis by succinylacetone increased the sensitivity of cells to imatinib in two imatinib-resistant cell lines, KCL22/SR and KU812/SR. Hemin treatment also decreased the sensitivity of cells to four anthracyclins, daunorubicin, idarubicin, doxorubicin, and mitoxantrone, in BCR/ABL-negative leukemia U937 and THP-1 cells, as well as in KCL22 cells. These findings thus indicate that cellular heme level plays an important role in determining the sensitivity of cells to imatinib and certain other anti-leukemia drugs and that the effect of heme may be mediated via its ability to upregulate Nrf2 activity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号