首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have studied the effect of Triton-X-100 on glutamate decarboxylase (GAD) activity in brain and retina from chick embryos of 12 and 16 days' incubation and from chicks 4–6 weeks old. GAD activity was measured in five different homogenization media. Triton-X-100 inhibited the enzyme by about 60% in both brain and retina of 12-day embryos and by about 50% in 16-day embryos, independently of the homogenization medium. In chicks only about 20% inhibition by the detergent was observed in brain whereas no effect was found in retina. These results indicate that the evaluation of the experimental conditions of enzyme assays at different ages is essential for developmental studies of GAD activity in nervous tissue.  相似文献   

2.
The transport of six amino acids (GABA(γ-aminobutyric acid), glycine, AIB (α-aminoisobutyric acid), leucine, d-glutamate, and lysine) was studied in brain slices from chick embryos and young chicks at different developmental stages.  相似文献   

3.
The effects of adrenergic drugs on the twitch tension of the electrically driven (1.2-1.5 Hz) ventricular preparations from 2-20-day old chick embryos and hatched chicks were studied. Agonists evoked positive inotropic responses of 3-day embryonic ventricles and of ventricles from older animals. 2-day embryonic ventricles were unresponsive. 5-day embryonic ventricles were most sensitive to agonists (EC50 value of adrenaline = 4.5 x 10(-9) M), while ventricles from 14-20-day old embryos had a minimal sensitivity (1-2 x 10(-9) M), while ventricles from 14-20-day old embryos had a minimal sensitivity (1-2 x 10(-7) M). The order of agonists activity (isoproterenol greater than noradrenaline greater than adrenaline much greater than phenylephrine) and the high potency of propranolol as antagonist of adrenaline indicate that responses are mediated with beta-adrenoceptors. The role of GTP-binding protein for the regulation of adrenoreactivity in embryonic chick heart during ontogenesis is discussed.  相似文献   

4.
1. Two hypotheses may explain how long-lived seabirds regulate the food provisioning to their chick. The fixed level of investment hypothesis states that the parents provide food for their chick according to an intrinsic rhythm, independent of their chick's need. The flexible investment hypothesis states that the parents adjust their food provisioning both according to their chick's and their own need.
2. We tested how the Antarctic petrels adjust the food-provisioning according to their own body condition or to their chick's need. First, we selected parents in poor and good body condition. Then we gave all parents randomly a chick of different body mass, but of the same age. We then measured the chicks daily until they were fed for the first time after swapping.
3. Parents in good body condition at hatching were more likely to produce a chick that was still alive 9 days after hatching than parents in poor body condition. Chick body mass at day 9 and at the end of the guarding period was positively related to the mean body condition of the parents at hatching.
4. The meal size provided by parents in good body condition was larger than that provided by parents in poor body condition. Parents in good body condition delivered more food to small than to large chicks, whereas no such relationship was found among parents in poor body condition.
5. Our results suggest that the Antarctic petrel parents adjust the amount of food delivered to their chick according to both the chick's need and their own body condition, and that the ability to respond to the chick's need is dependent upon their own body condition.  相似文献   

5.
Abstract— The uptake and metabolism of [3H]norepinephrine were studied in slices of cerebral hemispheres removed from chick embryos at 10, 15 and 20 days of embryonic age, as well as from 90-day-old hens. Brain tissue from all age groups concentrated [3H]norepinephrine to much greater levels at 37°C than at 0°C. There was a marked increase in the rate of accumulation of [3H]norepinephrine in tissues from 10 to 15 days of embryonic age, with no further increase in the rate observed from 15 to 20 days of embryonic age. Tissue slices were incubated for 20 min with [3H]norepinephrine, and the deaminated metabolites of norepinephrine were separated by paper chromatography. In tissues from all age groups, the neutral metabolites were produced in greater amounts than the acid metabolites. A significant increase in the amounts of deaminated metabolites formed was observed in the period from 10 to 15 days of embryonic age and a significant decrease in the amounts formed was observed in the period from 15 to 20 days of embryonic age. The deamination at 20 days was very similar to that observed in the adult. A significant decrease in the level of the deaminated metabolites was noted in all age groups in response to cocaine (an inhibitor of neuronal uptake mechanisms), an observation suggesting that mechanisms for neuronal uptake of NE are functional by 10 days of embryonic development in the chick. However, a significant increase in the level of deaminated metabolites in response to reserpine (an inhibitor of uptake of NE into storage granules) was observed only in slices taken from 20-day embryos and from the 90-day-old hen. The effect in the hen was more prominent than in the 20-day embryo. These results were interpreted to indicate that mechanisms for the uptake of NE develop at an earlier embryonic age than mechanisms for the storage of NE and that mechanisms for storage continue to develop after hatching.  相似文献   

6.
Abstract: To investigate certain biochemical aspects of myelination, a study was undertaken of the messenger-like RNA in the nervous system of pre- myelinating 14-day embryos and of myelinating 17-day embryos and 3-day chicks. The central and peripheral nervous systems of the chick were found to contain and to actively synthesize poly(A)+ RNA. RNA species binding to oligo(dT)-cellulose contained a relatively high proportion of adenylate residues and were resistant to the actions of pancreatic and T1 ribonucleases. Preparations labeled by incubation with adenosine in vitro showed a decrease in the proportion of poly(A)+ RNA as the age of the animal increased, while preparations labeled in vivo exhibited the opposite trend. Polyacrylamide gel electrophoretograms of both in vivo and in vitro labeled pqeparations showed that the poly(A)+ fractions contained mainly heterodisperse RNA species. The average molecular size of poly(A)+ RNAs of purified polysomal fractions of nerve RNA from 3-day chicks was smaller than 18S, whereas that of total poly(A) RNA was larger than 18s. The proportion of poly(A)+ molecules larger than 18s was lower in the rapidly myelinating nerve tissues of 17-day embryos and post-hatching chicks than in those of premyelinating 14-day embryos. Similar results were obtained for crude nuclear RNA fractions or RNA preparations fractionated under denaturing conditions. These results are consistent with previous work showing that the embryonic peripheral nerve contains a larger proportion of high-molecular-weight, messenger-like RNA molecules than does nerve tissue from young chicks or adults.  相似文献   

7.
The degree of histological deterioration of the original explant and the extent of cell spreading was evaluated in cultures of pectoralis muscle from 11-day chicks. Although the frequencies of these two parameters varied with the amounts of horse serum and embryo extract added to the medium, cultures from dystrophic chicks, in comparison to those from either normal or heterozygous animals, consistently showed the largest number of explants with the most extreme forms of histological deterioration and cell spreading. At 20 per cent horse serum the cultures from heterozygous chicks showed greater frequencies of the more extensive forms of deterioration and spreading than the normal muscle explants, but at 5 per cent horse serum these two groups appeared similar. Regardless of genetic background, cultures of the pectoralis muscle from 18-day embryos and of the latissimus dorsi muscle from 11-day chicks exhibited comparable high frequencies for the maximal degrees of deterioration and spreading.  相似文献   

8.
On incubation Days 9, 11, 12, 14, or 15, chick embryos were injected intravenously with 4.0 × 106L. donovani amastigotes. Embryos were incubated at 33 C immediately after infection. Numbers of amastigotes found in the liver 1 hr after injection increased as the age of embryo recipients increased. Most 14- or 15-day infected embryos hatched when allowed to do so, but many younger embryos were unable to survive at 33 C. Numbers of amastigotes in the liver of chicks, hatched after infection as embryos, decreased as the cloacal temperature of the chicks increased. Despite a 31 C incubation temperature, chicks exhibited a mean 38.3 C cloacal temperature 1 day after hatching.Chick fibroblast cultures were initiated as explants of embryo brain and infected with amastigotes from hamster spleen. Only amastigotes were seen in cultures kept at 37 C, but extracellular promastigotes and intracellular amastigotes were present in cultures at 33 C. Although promastigotes increased in number in the medium overlay at 33 C, amastigotes decreased in number at 33 C and 37 C. One intracellular amastigote was seen in a culture which had been incubated at 25 C after inoculation with promastigotes.  相似文献   

9.
—Incubation of slices of rat central nervous system in Krebs-Ringer bicarbonate buffer produced a lipoprotein fraction which floated on 10·5% sucrose after homogenization of the slices and centrifugation. This fraction was not found after homogenization and centrifugation of fresh tissue and appeared to depend upon incubation. The amount of the light fraction increased in the following order per 100-mg slice: cerebrum < thalamic area < cerebellum < brain stem < spinal cord. The lipid composition of this fraction was similar to that of myelin, but contained a lower protein content compared to myelin of the corresponding area. This fraction was termed ‘dissociated myelin’. Upon incubation of slices a portion of the basic protein was lost from myelin subsequently isolated, and the dissociated fraction was slightly enriched in basic protein. The distribution of myelin protein among the characteristic three groups (basic, proteolipid and high mol. wt.) was quite different in myelin from spinal cord compared to that from other CNS area. Spinal cord myelin contained about 17% protein compared to about 23% in cerebrum, with brain stem myelin intermediate (19%), and the difference appeared to be due to lesser amounts of proteolipid in the caudal areas. The amount of dissociation after incubation was about 3–5 per cent of the total myelin in the cerebral cortex, 10 per cent in the thalamic area, 20 per cent in cerebellum, 35 per cent in the brain stem, and around 45 per cent in spinal cord. The smaller amount of proteolipid protein in spinal cord myelin may result in a deficiency of cohesive forces holding lipids and proteins together, thus causing greater instability and dissociation. Myelin dissociation increased with time of incubation up to 3 h, was augmented by Ca2+, and was substantial at pH 11, reaching a peak at pH 7, then decreased in the acid range. A similar fraction has been isolated previously from fresh CNS tissue made edematous by chronic treatment of rats with triethyl tin. The possible relationship of swelling in the disease process and myelin dissociation are discussed.  相似文献   

10.
The pattern of the methylation of RNA was investigated in organ cultures of the sciatic nerve of the chicken. Nerve tissue from 14-day embryos, 17-day embryos and 3-day- old chicks was incubated with [methyl-3H]methionine or with [2-14C]uridine and [methyl-3H]methionine simultaneously for various periods of time. Subsequently, RNA was extracted from the tissues and the purified preparations were fractionated by polyacrylamide gel electrophoresis. The electrophoretic patterns of the rapidly labelled RNA changed during the three developmental stages. The incorporation of both uridine and the methyl groups from methionine was highest in the‘heavy’RNA species of the 14-day embryonic nerve during the 0.5 and 1.0 h incubation periods. In contrast, in the nerves of 3-day-old chicks during a 0.5 h pulse with both precursors, methylation was almost entirely limited to the transfer RNA species. Furthermore, the incorporation of uridine in the nerves from 3-day-old animals revealed the presence of a heterogeneous population of rapidlylabelled, unmethylated species of RNA, most of which migrated between the smaller ribosomal RNA and transfer RNA components of the bulk RNA. The pattern of uridine incorporation and the methylation of the rapidly-labelled RNA of the 17-day embryonic nerve represented a transitional state between that of the 14-day embryos and that of the 3-day-old chicks. The 17-day embryonic stage of development corresponded to the phase of the onset of rapid deposition of myelin lipids in the sciatic nerve. Pulse-chase experiments on the embryonic nerves indicated that a number of methylated precursors of ribosomal RNA and labile, heterogeneous, probably DNA-like RNA were synthesized.  相似文献   

11.
PROTEIN SYNTHESIS IN FRACTIONS FROM ISOLATED BRAIN CELL NUCLEI   总被引:2,自引:0,他引:2  
Abstract— 1. The incorporation in vivo and in vitro of isotopically labelled leucine into fractions of nuclear proteins from young and adult rat brain was investigated.
2. During post-natal cerebral maturation, the ability of nuclei from brain cells to synthesize proteins decreased. The specific activities of all the fractions of nuclear protein were highest in 3-day-old rats and declined thereafter. Nuclei from adult brain cells exhibited only 10 per cent of the activity found in nuclei from brain cells of 3-day-old rats.
3. The 'residual protein' fraction was most rapidly labelled, peak activity being reached within 30 min after injection. In vitro , the 'residual protein' fraction attained maximum activity within 40 min.
4. The specific activity of the chromatin acidic proteins (HCl-insoluble) was considerably higher than that of the histones both in vivo and in vitro. Histones were the most inert of all the nuclear protein fractions studied.
The possible functional significance of the various protein fractions during the process of cerebral maturation and in the adult brain is discussed.  相似文献   

12.
Functional development of the adrenocorticotropic axis was inferred from plasma ACTH and corticosterone levels in intact and embryonically bursectomized (BFX) embryos and chicks from 8 days before to 56 days after hatch. Bursectomy was surgically made at 80 h of incubation and resulted in various alterations in developing adrenocorticotropic axis: ether stress-induced hormonal stimulation could be detected more precociously in BFX (day-6) than in intact embryos; the non stress-responsive period of newly hatched controls did not appear in BFX chicks; BFX young adult chicken exhibited quite smaller responses to stress than controls. In ovo injection of bursin (Lys-His-Gly-NH2) to 6- and 9-days old BFX embryos could restore normal adrenocorticotropic development provided convenient doses of tripeptide were used: administration of 100 fg or 100 pg of bursin was effective to restore normal hormonal levels at all stages studied whereas 100 micrograms was effective at embryonic stages only. The tripeptide Lys-His-Gly-NH2 is suggested as a possible signal from the immune B system directed at the hypothalamo-hypophysial-adrenocortical axis.  相似文献   

13.
Newly hatched chicks spontaneously peck at conspicuous objects, and soon learn to discriminate between edible food particles and inedible objects. To examine whether this discrimination is based on a chick's ability to memorize objects by shape cues, we analyzed the pecking behavior. One- to 3-day old quail chicks (Coturnix japonica) were presented with dry objects of different shapes (ball, disk, triangle and T-shape) of similar size (4 mm) and color (green). Habituation occurred after repeated presentation of any one of these objects (duration: 30 sec; interval: 4 min). When chicks showed significantly more pecks at a novel object (dishabituation), we assumed that chicks had memorized the habituated shapes and distinguished the novel object. Chicks did not show dishabituation between a ball and a disk. On the other hand, chicks discriminated a triangle or T-shape from the memorized image of disk, but did not memorize either triangle or T-shape by its shape. Similarly, chicks did not memorize the size of disks as a reference for subsequent pecking behavior. Chicks proved to have a limited ability to memorize shape and size cues for selective pecking behavior, in strong contrast to their accurate memorization of colors.  相似文献   

14.
Brain Slice Protein Degradation and Development   总被引:2,自引:2,他引:0  
Protein degradation rates were measured in brain slices prepared from rats of various ages. This was done by adding the protein synthesis rate, determined by incorporation of a labeled precursor, and the net protein degradation rate, determined by measuring the changes with time of total free amino acids. These rates are about 30% higher than those previously calculated from data on protein synthesis rates and protein accumulation rates in vico. The protein degradation rates in brain slices diminish with age; i.e., 2-day cerebellum > 2-day cerebral hemisphere > 12-day cerebral hemisphere > young adult cerebral hemisphere. Protein degradation rates in slices from young brain are initially slightly higher than protein synthesis rates, resulting in a small net degradation with time. Unlike slices from adult brain, the protein degradation rates in slices from young brain decline only modestly with time for as much as 100 min of incubation. The characteristics of protein degradation in brain slices from young animals are roughly similar to some of the data calculated for protein degradation in vivi. suggesting that this system may prove useful for studying factors which control or affect brain protein degradation.  相似文献   

15.
Fatty acid synthesis by subcellular fractions of heart and liver of chick embryos at varying stages of development has been studied. Fatty acid synthetase activity is associated with the embryonic heart at early stages of development, as suggested by substrate requirement, Schmidt decarboxylation of synthesized fatty acids and gas liquid chromatographic identification of the products as palmitic and stearic acids. The fatty acid synthetase activity decreases in heart cytosol with age of the embryo and is absent in the newly hatched chick and in older chicken. The acetyl CoA carboxylase activity is negligible in embryonic and adult chicken heart. The fatty acid synthetase activity in liver is low, but measurable during the entire embryonic development. The activity increases by about three-fold on hatching and thereafter in fed, newly hatched chicks by about 35-fold, over the basal embryonic activity. The acetyl and malonyl transacylase activities in the heart and liver cytosols during development followed closely the fatty acid synthetase activities in heart and liver, respectively. A non-coordinate induction of fatty acid synthetase and acetyl CoA carboxylase activities in liver was observed during development. The microsomal chain elongation in liver and heart followed the pattern of fatty acid synthetase activity in liver and heart, respectively. The mitochondrial chain elongation in embryonic heart is initially low and increases with age; while this activity in liver is higher in early stages of embryonic development than in the older embryos and the chicks. Measurement of lipogenesis from acetate-1-14C by liver and heart slices from chick embryos and newly hatched chicks support the conclusions reached in the studies with the subcellular fractions. The results obtained indicate that the major system of fatty acid synthesis in embryonic and adult heart is the mitochondrial chain elongation. In embryonic liver, fatty acid synthesis proceeds by chain elongation, while the de novo system is the major contributor to the lipogenic capacity of the liver after hatching.  相似文献   

16.
Separation of different molecular species of hemoglobin from developing chickens by starch gel electrophoresis has revealed the appearance of early embryonic (embryonic), late embryonic (fetal) and adult hemoglobin (Hb) type during development. In 5-day embryos, there are 3 or 4 forms of embryonic Hb type. They begin to decrease in 6-day embryos and cannot be detected in embryos after 10 days of incubation. In 6-day embryos, two forms of adult Hb type appear, and one of them, which is a major form in adults, becomes t o be a major one in 7-day embryos. One or two forms of fetal Hb type first appear in 10-day embryos and are still present in 5-day posthatching chickens.
Ultracentrifugation of carbonmonoxyhemoglobins from embryos at early and at later stages (fetuses), from newly hatched and from adult chickens has shown that they have a single monodisperse peak. Some heterogeneity, however, has been detected after starch gel electrophoresis, probably owing to aggregation or polymerization.
Subunit analysis of embryonic, fetal and adult Hb type by starch gel electrophoresis in formate buffer at pH 1.9 has indicated that embryonic Hb type contains total 5 subunits, C, D, E, F and G; fetal Hb type, total 2, A and H; and adult Hb type, total 3, B, F and H.  相似文献   

17.
Activity of the phosphoinositide system of intracellular signalization was studied in offspring of rats exposed to severe hypobaric hypoxia at the 14–16th (group 1) or the 18–20th day (group 2) of prenatal hypoxia. At the age of 15 days, in animals of both experimental groups the basal level of triphosphoinositides in the brain cortex was shown to be elevated as compared with control. In the group 1, this parameter also remains elevated in adult animals. Application of glutamate produces a more pronounced increase of the inositephosphates in brain slices of the 15-day old rats of the group 1 than in slices of animals of the control group. In the 15-day old rats of the group 2, as compared with control, the phosphoinositide response to glutamate application was reduced. No changes in the inositephosphate levels were revealed after application of glutamate upon slices of adult (the 90-day old) control animals and of adult rats of the group 2. In slices of adult rats of the group 1, on the contrary, the glutamate application produced an increase of the inositephosphate content. The obtained data indicate essential changes of the phosphoinositide metabolism in the brain of rats exposed to action of hypoxia at the period of prenatal development. The character and the severity of these changes depend on the period of development when action of hypoxia occurs.  相似文献   

18.
Abstract— Myelin, synaptosomal and mitochondrial fractions obtained from homogenates of whole mouse brain contain K+ which can exchange with 42K+ at 2º in 0·32 m -sucrose. The content and rates of exchange of K+ were greater at pH 8·2 than at 6·1. In the synaptosomal preparations, the rates of exchange and content of 42K+ and K+ declined progressively with decreasing pH.
Of the total synaptosomal K+, 95 per cent could exchange with external 42K+. At pH 7·5, 20 per cent of the K+ and 78 per cent of the Na+ appeared to reside in osmotically insensitive pools. Synaptosomal K+ at 2º was slowly displaced by NaCl (0·18 m ) and the rate of exchange between 42K+ and K+ was retarded. KCI (0·18 m ) did not readily displace endogenous Na+. Synaptosomal K+ exchanged with exogenous K+ more rapidly than with exogenous Na+.
These observations have been discussed in terms of possible roles for ion exchange as the principal means by which K+ traverses the plasma membrane at 2º.  相似文献   

19.
Abstract— Mannose was transferred from GDP-[14C]mannose by homogenates of embryonic chick and adult rat brain to mannolipids with properties identical to manriosyl-phosphoryl-dihydropolyisoprenols. Embryonic chick brain formed six-fold larger quantities of mannolipid than adult rat brain. The reaction was stimulated by Mn2+ ions and Triton X-100 but inhibited by EDTA. Phosphoenolpyruvic acid had no effect on the reaction. A crude mitochondrial fraction was two to three times more active than the microsomal fraction. All radioactivity in the mannolipid could be displaced by the addition of non-radioactive GDP-mannose. The endogenous lipid acceptor in brain was readily labelled in vivo by injection of [3H]mevalonate into the amniotic sac of 7-day-old embryos. The mannolipid formed had the properties of an acidic phospholipid on column and TLC, was stable to dilute alkali but readily cleaved by dilute acid. Synthesis was markedly stimulated by the addition of pig liver or calf brain dolichol phosphate in the presence of Triton X-100 and Mn2+. The mannolipid so formed displayed chemical characteristics identical to the endogenous lipid acceptor. Incubation of the purified radioactive mannolipid with the 'post-nuclear' fraction from 14-day-old embryonic chick brain in the presence of EDTA and Triton X-100 resulted in the transfer of 40-50 per cent of the radioactive mannose to protein and 40-45 per cent to water soluble compounds. The efficiency of transfer of radioactivity from endogenously formed mannolipid with or without the addition of dolichol phosphate was similar to exogenously added highly purified mannolipid. These results are compatible with the hypothesis that synthesis of the mannose core of brain glycoproteins involves the synthesis first of mannosyl-phosphoryl-dolichols followed by transfer of the mannose to glycoprotein.  相似文献   

20.
Older breeder flocks produce eggs with a relatively larger yolk and thereby a higher nutrient availability than young breeder flocks. To optimise nutrient utilisation and embryonic development throughout incubation and posthatch period, embryos originating from older breeder flocks may require a higher oxygen availability. The current study investigated effects of broiler breeder flock age and incubational oxygen concentration on embryonic metabolism and chicken development until 7-day posthatch. Similar sized eggs of a young (28–32 week) or old (55–59 week) Cobb 500 breeder flock were incubated at one of three oxygen concentrations (17%, 21% or 25%) from day 7 of incubation until 6 h after emergence from the eggshell. Posthatch, chickens were reared until 7 days of age. Egg composition at the start of incubation, heat production during incubation, and embryo or chicken development at embryonic day (ED)14 and ED18 of incubation, 6 h after hatch and day 7 posthatch were evaluated. An interaction was found between breeder age and oxygen concentration for yolk-free body mass (YFBM) at ED18. A higher oxygen concentration increased YFBM in the old breeder flock, whereas no difference was found between 21 and 25% oxygen in the young breeder flock. Yolk size was larger in the old compared to the young flock from ED0 until 6 h after hatch. Breeder flock age did not affect YFBM at ED14 and 6 h after hatch nor daily embryonic heat production, but there were some effects on relative organ weights. Chickens of the old compared to the young breeder flock showed a higher weight gain at day 7, but at a similar feed conversion ratio (FCR). A higher oxygen concentration during incubation stimulated embryonic development, especially between 17% and 21% of oxygen, in both flock ages. Although this growth advantage disappeared at 7 days posthatch, a low oxygen concentration during incubation resulted in a higher FCR at 7 days posthatch. Results indicated that breeder flock age seemed to influence body development, with an advantage for the older breeder flock during the posthatch period. Oxygen concentrations during incubation affected body development during incubation and FCR in the first 7 days posthatch. Although an interaction was found between breeder flock age and oxygen concentration at ED18 of incubation, there was no strong evidence that nutrient availability at the start of incubation (represented by breeder flock ages) affected embryo and chicken development at a higher oxygen concentration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号