首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
<正> 英国生物学学会生物学研究第121号《昆虫-植物相互关系的生态学》(Ecology of Insect-Plant Interac-tions)一书是由骚桑普敦大学生物系的爱德华(PeterJ.Edwards)和赖登(Stephen D.Wratten)两博士合著的。1980年,伦敦爱德华·阿诺德出版社(EdwardArnold(Publishers)Limited)出版。共60面。 该书研究了植物和植食性昆虫之间的生态学和进化关系。前几章(1—6章)谈了作为昆虫食物的植物问题和植物对植食者而发展起来的化学防御机能,然  相似文献   

2.
以紫果西番莲和黄果西番莲为试材进行盆栽试验,研究镉、铅处理后西番莲体内镉、铅含量变化。结果表明,镉、铅在西番莲体内分布的一般规律是枝蔓> 叶> 果。不同品种西番莲的镉含量未见显著差异,而铅含量则呈显著差异。西番莲枝蔓和叶对镉、铅的吸收量分别随着各自处理浓度的增加而增加;统计显示,西番莲枝蔓和叶的镉、铅含量与各自土壤的添加量呈极显著正相关。值得注意的是,西番莲对镉有较强的吸收能力(枝蔓和叶对土壤镉的富集系数均大于1),而对铅的吸收能力较差。在本试验中,铅处理浓度为1 000 mg/kg时,西番莲果实可食部分铅的含量也低于无公害果品标准,说明西番莲作为果树生产时,即使在铅含量较高的污染土上种植,也是安全的;但要特别注意镉的污染风险。  相似文献   

3.
乔娣  杨凤  曹建新  叶罕根  王焕冲 《广西植物》2017,37(11):1443-1446
外来物种的归化和入侵对全球环境和社会发展造成了严重影响,已成为当今各国生物多样性管理和生态保护中所面临的全球性问题。我国是遭受外来入侵危害最为严重的国家之一,在外来物种入侵的预警、管理和治理等方面形势严峻。该研究报道了中国西番莲科(Passifloraceae)西番莲属(Passiflora Linn.)一个新归化种,即桑叶西番莲(P.morifolia Mast.),并提供了形态描述和野外生态照片。桑叶西番莲原产于中美洲和南美洲的热带地区,现发现新归化于我国云南省普洱市孟连县的竜山龙血树省级自然保护区。桑叶西番莲的主要鉴别特征为叶片草质,掌状3浅裂,疏被短硬毛,托叶卵形,半抱茎,聚伞花序退化,苞片线状,具1~2花,花梗长3~6 cm,花瓣白色,副花冠基部紫色,浆果成熟时紫黑色,被短刺毛和白霜。国产种类中,桑叶西番莲与龙珠果(Passiflora foetida)最为近似,但后者全株被柔毛和腺毛,叶柄不具腺体,花序苞片一至三回羽状分裂,丝状的副花冠基部常粉红色。此外,还简要评估了桑叶西番莲的危害和入侵风险。  相似文献   

4.
樊航  冉娜  李安定  张洪亮  胥猛 《广西植物》2020,40(4):509-517
ERA(Eecherichia coli Ras-like protein)蛋白是与已知异三聚体G蛋白和小分子G蛋白不同的一种新的GTP结合蛋白。为了在木本植物中开展其同源基因ERG(ERA-like GTPase)克隆和功能验证的相关研究,该文首次在西番莲新品种‘平塘1号’中采用cDNA末端快速克隆(RACE)技术克隆鉴定1个ERG基因。结果表明:西番莲PeERG基因cDNA全长为1 518 bp,包括1 260 bp的开放阅读框、38 bp的5'-端非翻译区和220 bp的3'-端非翻译区,该基因编码蛋白由420个氨基酸残基组成,其二级结构含有丰富的α-螺旋和延伸链。PeERG蛋白不含跨膜区域,也不存在信号肽酶切位点,既在其N端有典型的GTPase保守结构域(GTPase domain)又在其C端有独特的RNA结合结构域(KH domain)。系统进化树分析表明,西番莲PeERG蛋白和水稻OsERG1、拟南芥AtERG1、大肠杆菌ERA位于同一进化分枝。实时定量PCR检测揭示PeERG基因在西番莲根、茎、叶、花、果中均有表达,叶中表达最高;同时该基因响应低温胁迫信号,其表达呈动态变化模式。该研究首次鉴定和描述了木本植物西番莲的ERG基因,为深入挖掘西番莲特异基因资源提供参考,也有助于进一步探究ERG基因在植物中的生物学功能及其作用机制。  相似文献   

5.
西番莲的扦插快繁   总被引:1,自引:0,他引:1  
著名的热带水果西番莲(Passiflora coerulea),别名时计草,属于西番莲科的多年生攀缘藤本植物。由于该植物喜温暖、潮湿和充足的阳光,在我国华南地区可露天种植,而北方仅夏季可露地栽种,到了冬季则要移入温室内,越冬温度6—8℃。2001年12月我们从福建农科院引进黄果西番莲,栽植在本所试验农场塑料大棚内。一年来,长势良好,现已结果。为了尽快实现热带果树西番莲能在北方地区快速繁殖,我们进行了绿枝扦插试验。其过程如下:  相似文献   

6.
土地利用方式的转换对农业生态系统中节肢动物不同功能群之间的相互作用关系有显著的影响.本研究通过调查不同经营方式的紫胶林中蚂蚁Formicidae和紫胶虫寄生蜂的多样性情况,探究紫胶生产系统对这两种功能群之间相互关系的影响路径和强度.于2018年4-9月,在临沧市云县两块不同的紫胶林样地中放置了树栖陷阱和地表陷阱用于收集蚂蚁,并用套笼法收集紫胶虫Kerria spp.的寄生蜂.结果表明:有地表覆盖的紫胶林样地(X2)中地表蚂蚁的多度显著高于无地表覆盖样地(X1)(F=7.256,P=0.011),而X2样地紫胶虫寄生蜂的物种丰富度(F=20.250,P=0.003)和多度(F=17.108,P=0.003)却显著低于X1样地.地表覆盖对树栖蚂蚁(β=0.787,P<0.001)和地表蚂蚁(β=0.652,P=0.004)均有显著的积极影响,而地表覆盖(β=-0.932,P<0.001)及地表蚂蚁(β=-0.362,P=0.039)对寄生蜂多度有显著的负面影响.本研究揭示了紫胶生产系统中,地表覆盖有利于维系蚂蚁-紫胶虫互利关系,抑制紫胶虫寄生蜂,从而对紫胶生产产生积极作用.  相似文献   

7.
从紫果西番莲(Passiflora edulis)、杂交种西番莲(P. edulis X P.edulis var. flavicarpa)、黄果西番莲(P.edulis var. flavicarpa)、转心莲(P.caerulea)及龙珠果(P.foetida)分离到的5个黄瓜花叶病毒(CMV)分离物(PE、PE2、PEf、PC、PF)所作的生物学性质、理化特性和血清学关系的比较研究结果表明,5个分离物在寄主反应及血清学性质上存在不同,而在病毒粒体形态、体外抗性、蚜虫传毒和病毒外壳蛋白分子量方面无明显差异.根据5个分离物的寄主反应和血清学关系,可将其区分为CMV的两个亚组,其中PE、PE2、PC和PF属CMV亚组I,PEf属CMV亚组II.  相似文献   

8.
本文对番木瓜根结线虫病和西番莲根结线虫病的症状作了描述。病原线虫经鉴定确认,侵染番木瓜的虫种为南方根结线虫(Meloidogneincognita),侵染西番莲的根结线虫是由南方根结线虫、高弓根结线虫(M. acrita)和花生根结线虫(M. arenaria)3个种组成的混合群体,南方根结线虫为优势种。  相似文献   

9.
西番莲(Passiflora caerulea)是一种营养丰富的热带亚热带特色水果,采后易发生果实品质劣变现象,是制约采后西番莲果实保鲜期的重要因素。本文就西番莲采后果实褶皱及失重、果皮色泽变化、营养物质含量减少和采后病害发生等品质劣变机理,及其低温、热处理、包装、1-MCP、多糖和化学保鲜剂等西番莲果实采后保鲜技术的国内外相关研究进行综述,以期为维持西番莲果实贮藏品质、延长果实保鲜期提供指导。  相似文献   

10.
低温胁迫下西番莲叶片的生理反应及超微结构变化   总被引:2,自引:0,他引:2  
以西番莲扦插苗为实验材料,比较预冷处理和常温处理(对照)情况下,西番莲叶片对-6℃低温胁迫的生理反应及叶肉细胞的超微结构变化,以探讨预冷处理对西番莲的抗寒作用及其机理。结果显示:(1)常温处理组在-6℃低温胁迫处理后,西番莲叶片的质膜相对透性、MDA含量随着低温处理时间的延长而逐渐增加,而预冷处理组这两个指标在处理期间都比常温处理组低;(2)常温处理组叶片H2O2含量在48h时达到峰值后出现下降,而预冷处理组的H2O2含量都低于对照,在48h时对照的H2O2含量比预冷锻炼的高1.14倍;(3)常温处理组的脯氨酸含量在24h内增加以后出现下降,而预冷处理组在处理期间逐渐增加且高于对照;(4)常温处理组的POD活性在12h时最高,CAT、SOD活性在24h时最高,以后出现下降。预冷处理组提高了3个酶的活性,其中POD在12h时是对照的2.73倍,CAT、SOD活性在24h时比对照分别提高18.7%和42.7%。(5)超微结构研究显示,预冷处理组在低温胁迫72h时虽出现叶绿体片层肿胀、核膜消失、质膜内陷等症状,但叶绿体伤害症状轻于常温处理。研究表明,低温预冷处理能够提高西番莲的抗寒性。  相似文献   

11.
F. F. Xu  J. Chen 《Insectes Sociaux》2010,57(3):343-349
In facultative ant–plant interactions, ants may compete with each other for food provided by extrafloral nectar (EFN) plants. We studied resource competition and plant defense in a guild of ants that use the same EFN resource provided by two species of Passiflora in a seasonal rain forest in tropical China. At least 22 ant species were recorded using the EFN resource, although some of those species were rare. Among these ants, Paratrechina sp.1 and Dolichoderus thoracicus were more aggressive than other species. Ant aggressiveness measured as ant behavioral dominance index (BDI) was positively correlated with ant abundance on the Passiflora species studied. Ant BDI was also positively correlated to the protection that ants provided against herbivory. In Passiflora siamica, the number of workers patrolling on the plants did negatively correlate with average leaf loss per plant. We conclude that in this facultative Passiflora–ant system, plant defense upon herbivore was indeed influenced by the total number of ants present on plant and the aggressiveness of these ants.  相似文献   

12.
J. Apple  D. Feener Jr. 《Oecologia》2001,127(3):409-416
Extrafloral nectary (EFN) plants are widespread and can be quite species-rich in some communities. Thus, ants that utilize extrafloral nectar may have the opportunity to discriminate among a wide variety of nectar sources, resulting in variation in the ant attention EFN plants receive. In this study, we compare ant visitation rates of three Passiflora species that coexist in an early successional neotropical forest. These three vine species (Passiflora auriculata, P. biflora, and P. oerstedii) differ in their extrafloral nectary structure and placement, and thus may attract different numbers or species of ants. Through censuses of ants tending extrafloral nectaries, we found that P. auriculata received significantly higher numbers of ant visitors than P. oerstedii, but did not differ significantly from P. biflora in its attractiveness to ants. We also found that termite worker baits (simulating herbivores) placed on P. auriculata and P. biflora were discovered by ants significantly more quickly than baits placed on P. oerstedii. In both ant visitation censuses and in termite bait trials, we found no significant associations between Passiflora species and the species of ant visitors. We also performed experimental manipulations of several characteristics of P. auriculata, which resulted in changes in levels of ant visitation. When petiolar nectaries of P. auriculata were experimentally blocked, visitation by the common ant Ectatomma ruidum declined, even though nectaries on the leaf surfaces were still functional. Connections with other vegetation also had an effect on ant visitation. Though experimental creation of connections between growing P. auriculata shoots and other vegetation did not enhance ant visitation, eliminating connections resulted in a significant decline in the number of ant visitors. The results of this study suggest factors that may contribute to variation in ant visitation of extrafloral nectary plants. In addition, this study demonstrates that extrafloral nectary plants co-occurring in a habitat and available to the same ants may differ in patterns of visitation by ants and perhaps in the quality of protection from herbivores that they receive.  相似文献   

13.
Extrafloral nectaries: ants,herbivores and fecundity in Cassia fasciculata   总被引:1,自引:0,他引:1  
Carol A. Kelly 《Oecologia》1986,69(4):600-605
Summary Extrafloral nectaries of Cassia fasciculata attract nectar feeding ants which protect the plant against leaf herbivores. High ant visitation in late July coincided with high herbivore densities at two sites in east central Iowa. The highest level of leaf herbivory occurred during the time of flowering and early fruit filling, just after the peak of herbivore and ant activity. Results of ant exclusion experiments at the two sites showed that ant visitation resulted in decreased herbivore numbers, decreased leaf area loss, increased growth, and at one site decreased plant mortality. However, this reduction in leaf area loss and increase in growth did not translate into seed set differences between plants with and without ants at either site. Initial plant size was more important than the presence or absence of ants in determining fecundity for this temperate annual during a year of summer drought.  相似文献   

14.
Rios RS  Marquis RJ  Flunker JC 《Oecologia》2008,156(3):577-588
The benefits of ant–plant–herbivore interactions for the plant depend on the abundance of ants and herbivores and the selective pressures these arthropods exert. In plants bearing extrafloral nectaries (EFN), different mean trait values may be selected for by different populations in response to local herbivore pressure, ultimately resulting in the evolution of differences in plant traits that attract ants as defensive agents against herbivory. To determine if variation in traits that mediate ant–plant interactions reflect herbivore selective pressures, we quantified intra- and inter-population variation in plant traits for eight populations of the EFN-bearing annual Chamaecrista fasciculata (Michx.) (Fabaceae). Censuses in rural and urban areas of Missouri and Illinois (USA) showed population differences in ant attendance and herbivore pressure. Seeds were collected from each population, and plants were grown in a common greenhouse environment to measure sugar production, nectar volume and composition, EFN size and time of emergence, leaf pubescence, and leaf quality throughout plant development. Populations varied mainly in terms of nectary size, sugar production, and nectar volume, but to a lesser degree in leaf pubescence. Populations of C. fasciculata within urban areas (low in insect abundance) had small nectaries and the lowest nectar production. There was a positive correlation across populations between herbivore density and leaf damage by those herbivores on the one hand and sugar production and nectar volume on the other. These results, in conjunction with lack of evidence for maternally based environmental effects, suggest that population differences in herbivore damage have promoted differential evolution of EFN-related traits among populations. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

15.
Interspecific interactions play an important role in the success of introduced species. For example, the ‘enemy release’ hypothesis posits that introduced species become invasive because they escape top–down regulation by natural enemies while the ‘invasional meltdown’ hypothesis posits that invasions may be facilitated by synergistic interactions between introduced species. Here, we explore how facilitation and enemy release interact to moderate the potential effect of a large category of positive interactions – protection mutualisms. We use the interactions between an introduced plant (Japanese knotweed Fallopia japonica), an introduced herbivore (Japanese beetle Popillia japonica), an introduced ant (European red ant Myrmica rubra), and native ants and herbivores in riparian zones of the northeastern United States as a model system. Japanese knotweed produces sugary extrafloral nectar that is attractive to ants, and we show that both sugar reward production and ant attendance increase when plants experience a level of leaf damage that is typical in the plants’ native range. Using manipulative experiments at six sites, we demonstrate low levels of ant patrolling, little effect of ants on herbivory rates, and low herbivore pressure during midsummer. Herbivory rates and the capacity of ants to protect plants (as evidenced by effects of ant exclusion) increased significantly when plants were exposed to introduced Japanese beetles that attack plants in the late summer. Beetles were also associated with greater on‐plant foraging by ants, and among‐plant differences in ant‐foraging were correlated with the magnitude of damage inflicted on plants by the beetles. Last, we found that sites occupied by introduced M. rubra ants almost invariably included Japanese knotweed. Thus, underlying variation in the spatiotemporal distribution of the introduced herbivore influences the provision of benefits to the introduced plant and to the introduced ant. More specifically, the presence of the introduced herbivore converts an otherwise weak interaction between two introduced species into a reciprocally beneficial mutualism. Because the prospects for facilitation are linked to the prospects for enemy release in protection mutualisms, species introductions can have complex effects on existing species interactions, between both native and introduced species.  相似文献   

16.
Although fire‐ and ant–plant interactions influence the community structure and dynamics of Neotropical savannas, no previous studies have considered their simultaneous effects on target host plants. We monitored the effect of ant exclusion for 3 years on leaf area loss to leaf chewing insects, thrips abundance, and reproductive output of the extrafloral nectary‐bearing shrub, Peixotoa tomentosa (Malpighiaceae). We predicted that the impact of ants on herbivores and plants would depend on the ant species, and that fire would reduce the effect of ants. We deliberately chose control plants that differed in their occupant ant species. Fire occurred in the second year of the study, allowing us to determine its effect on the benefit afforded by ants. Ants reduced leaf area loss and thrips abundance, and increased fruit and seed production in all 3 years. Some ant species were more effective than others, while plants with multiple ant species suffered higher leaf area loss than plants with a single ant species. In the year following the fire, leaf damage was greater than in the other years, regardless of the ant species, and the proportional effect of ants in reducing damage was less. Interactions affecting thrips abundance did not change following fire, nor was the benefit to the plant proportionally reduced. Overall, the identity of the ant species had a greater effect than did the occurrence of fire on the ant–herbivore–plant interaction: the identity of the ant species influenced leaf area loss, thrips numbers, and bud and seed production, while fire only modified the impact of ants on the amount of leaf area consumed by insect herbivores.  相似文献   

17.
Although induced defenses are widespread in nature, and a potentially important strategy used by invasive plants, it is unclear how induced defenses vary among populations and whether the intensity and duration of induced defenses depends on herbivore type. For invasive plants, low herbivore loads in their introduced ranges can lead to differences in herbivore defense compared to their native ranges, but we currently know little about how induced defenses vary among native and invasive populations. We conducted a greenhouse experiment to examine variation in one type of induced defense, extrafloral nectar (EFN) production, among native and invasive populations of Chinese tallow tree, Triadica sebifera. We experimentally manipulated herbivory from an exotic generalist scale insect, a native generalist caterpillar, both herbivores, or neither and then examined EFN production by Triadica. Damage from leaf-chewing caterpillars resulted in strongly induced EFN in both native and invasive populations while damage from phloem-feeding scales did not. Extrafloral nectar production and dissolved solute content peaked 4 days after caterpillar herbivory for both native and invasive populations. Number and proportion of leaves producing EFN, EFN volume and concentration of dissolved solutes were similar among native and invasive populations. These results suggest that selection for indirect defenses may be different than selection for other defenses in the introduced ranges of invasive plants, as constitutive and induced EFN production is retained in invasive populations.  相似文献   

18.
Extrafloral nectar (EFN) plays an important role as plant indirect defence through the attraction of defending ants. Like all rewards produced in the context of a mutualism, however, EFN is in danger of being exploited by non-ant consumers that do not defend the plant against herbivores. Here we asked whether plants, by investing more in EFN, can improve their indirect defence, or rather increase the risk of losing this investment to EFN thieves. We used the obligate plant-ant Acacia-Pseudomyrmex system and examined experimentally in the field during the dry and the rainy seasons how variations in EFN secretion are related to (i) ant activity, to (ii) the ant-mediated defence against herbivores and (iii) the exploitation of EFN by non-ant consumers. Extrafloral investment enhanced ant recruitment and was positively related to the ant mediated defence against herbivores. The ant-mediated protection from exploiters also increased in proportion to the nectar sugar concentration. Although the daily peak of EFN production coincided with the highest activity of EFN thieves, Pseudomyrmex ferrugineus ants protected this resource effectively from exploiters. Nevertheless, the defensive effects by ants differed among seasons. During the dry season, plants grew slower and secreted more EFN than in the rainy season, and thus, experienced a higher level of ant-mediated indirect defence. Our results show that an increased plant investment in an indirect defence trait can improve the resulting defensive service against both herbivores and exploiters. EFN secretion by obligate ant-plants represents a defensive trait for which the level of investment correlates positively with the beneficial effects obtained.  相似文献   

19.
We directly evaluated the role of extrafloral nectaries (EFN) in ant attraction and herbivore exclusion by experimental removal of EFN in the laboratory. When EFN of Vicia faba Linnaeus (Leguminosae) were artificially removed, the number of workers of Tetramorium tsushimae Emery (Hymenoptera: Formicidae) visiting the plant decreased, and the efficiency of herbivore exclusion by ants also decreased. Herbivore exclusion by ants was mostly ineffective on a plant when less than four workers visited the plant, but when more than four workers visited, the time a herbivore resided on the plant decreased rapidly with increasing numbers of visiting ants. Therefore, the efficiency of herbivore exclusion from a plant is determined by the number of ants visiting, and EFN play an important role in ant attraction.  相似文献   

20.
Aim Invasive ants can have substantial and detrimental effects on co‐occurring community members, especially other ants. However, the ecological factors that promote both their population growth and their negative influences remain elusive. Opportunistic associations between invasive ants and extrafloral nectary (EFN)‐bearing plants are common and may fuel population expansion and subsequent impacts of invasive ants on native communities. We examined three predictions of this hypothesis, compared ant assemblages between invaded and uninvaded sites and assessed the extent of this species in Samoa. Location The Samoan Archipelago (six islands and 35 sites). Methods We surveyed abundances of the invasive ant Anoplolepis gracilipes, other ant species and EFN‐bearing plants. Results Anoplolepis gracilipes was significantly more widely distributed in 2006 than in 1962, suggesting that the invasion of A. gracilipes in Samoa has progressed. Furthermore, (non‐A. gracilipes) ant assemblages differed significantly between invaded and uninvaded sites. Anoplolepis gracilipes workers were found more frequently at nectaries than other plant parts, suggesting that nectar resources were important to this species. There was a strong, positive relationship between the dominance of EFN‐bearing plants in the community and A. gracilipes abundance on plants, a relationship that co‐occurring ants did not display. High abundances of A. gracilipes at sites dominated by EFN‐bearing plants were associated with low species richness of native plant‐visiting ant species. Anoplolepis gracilipes did not display any significant relationships with the diversity of other non‐native ants. Main conclusions Together, these data suggest that EFN‐bearing plants may promote negative impacts of A. gracilipes on co‐occurring ants across broad spatial scales. This study underscores the potential importance of positive interactions in the dynamics of species invasions. Furthermore, they suggest that conservation managers may benefit from explicit considerations of potential positive interactions in predicting the identities of problematic invaders or the outcomes of species invasions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号