首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Enzymes that degrade glycosaminoglycans (GAGs) can help reveal the biological roles, structure, and mechanisms of GAGs. We cloned chondroitinase AC, which can degrade chondroitin sulfates A and C, from the genomic library of Bacteroides stercoris HJ-15 isolated from human intestine. The probe (1.4 kb) for the chondroitinase AC gene was prepared from the PCR product of the primers produced using two internal amino acid sequences of chondroitinase AC purified from B. stercoris HJ-15. Using this probe, a chondroitinase AC-positive, 4 kb DNA fragment was selected from pKF3 vector gene libraries containing 2.5–4.5 kb DNA fragments digested with HindIII. The amino acid sequence of the cloned chondroitinase AC showed 41% homology to that of Flavobacterium heparinum. The cloned chondroitinase AC gene was expressed under the T7 promoter of the expression vector, pET-26b(+), in Escherichia coli BL21(DE3) and purified using His bind column chromatography. The expressed chondroitinase AC potently degraded chondroitin sulfates A and C.  相似文献   

2.
Salt-active acharan sulfate lyase (no EC number) has been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with GAG degrading enzymes. The enzyme was purified to apparent homogeneity by a combination of QAE-cellulose, diethylaminoethyl (DEAE)-cellulose, CM-Sephadex C-50, HA ultrogel and phosphocellulose column chromatography with the final specific activity of 81.33 micro mol x min-1 x mg-1. The purified salt-active acharan sulfate lyase was activated to 5.3-fold by salts (KCl and NaCl). The molecular weight of salt-active acharan sulfate lyase was 94 kDa by SDS/PAGE and gel filtration. The salt-active acharan sulfate lyase showed optimal activity at pH 7.2 and 40 degrees C. Salt-active acharan sulfate lyase activity was potently inhibited by Cu2+, Ni2+ and Zn2+. This enzyme was inhibited by some agents, butanediol and p-chloromercuric sulfonic acid, which modify arginine and cysteine residues. The purified Bacteroidal salt-active acharan sulfate lyase acted to the greatest extent on acharan sulfate, to a lesser extent on heparan sulfate and heparin. The biochemical properties of the purified salt-active acharan sulfate lyase are different from those of the previously purified heparin lyases. However, these findings suggest that the purified salt-active acharan sulfate lyase may belong to heparin lyase II.  相似文献   

3.
Heparin lyase I was purified to homogeneity from Bacteroides stercoris HJ-15 isolated from human intestine, by a combination of DEAE-Sepharose, gel-filtration, hydroxyapatite, and CM-Sephadex C-50 column chromatography. This enzyme preferred heparin to heparan sulfate, but was inactive at cleaving acharan sulfate. The apparent molecular mass of heparin lyase I was estimated as 48,000 daltons by SDS-PAGE and its isoelectric point was determined as 9.0 by IEF. The purified enzyme required 500 mM NaCl in the reaction mixture for maximal activity and the optimal activity was obtained at pH 7.0 and 50 degrees C. It was rather stable within the range of 25 to 50 degrees C but lost activity rapidly above 50 degrees C. The enzyme was activated by Co(2+) or EDTA and stabilized by dithiothreitol. The kinetic constants, K(m) and V(max) for heparin were 1.3 10(-5) M and 8.8 micromol/min.mg. The purified heparin lyase I was an eliminase that acted best on porcine intestinal heparin, and to a lesser extent on porcine intestinal mucosa heparan sulfate. It was inactive in the cleavage of N-desulfated heparin and acharan sulfate. In conclusion, heparin lyase I from Bacteroides stercoris was specific to heparin rather than heparan sulfate and its biochemical properties showed a substrate specificity similar to that of Flavobacterial heparin lyase I.  相似文献   

4.
Two novel acharan sulfate lyases (ASL1 and ASL2: no EC number) have been purified from Bacteroides stercoris HJ-15 which was isolated from human intestinal bacteria with glycosaminoglycan (GAG) degrading enzymes. These enzymes were purified to apparent homogeneity by a combination of QAE-cellulose, DEAE-cellulose, carboxymethyl-Sephadex C-50, hydroxyapatite and HiTrap SP Sephadex C-25 column chromatography with the final specific activity of 50.5 and 76.7 micromol.min-1.mg-1, respectively. Both acharan sulfate lyases are single subunits of 83 kDa by SDS/PAGE and gel filtration. ASL1 showed optimal activity at pH 7.2 and 45 degrees C. ASL1 activity was inhibited by Cu2+, Ni2+ and Co2+, but ASL2 activity was inhibited by Cu2+, Ni2+and Pb2. Both enzymes were slightly inhibited by some agents that modify histidine and cysteine residues, but activated by reducing agents such as DL-dithiothreitol and 2-mercaptoethanol. Both purified bacteroidal acharan sulfate lyases acted to the greatest extent on acharan sulfate, and to a lesser extents on heparan sulfate and heparin. They did not act on de-O-sulfated acharan sulfate. These findings suggest that the biochemical properties of these purified acharan sulfate lyases are different from those of the previously purified heparin lyases, but these enzymes belong to heparinase II.  相似文献   

5.
Recombinant heparinase III (rHepIII) from Bacteroides stercoris HJ-15 was cloned, expressed, and characterized. The full-length heparinase III gene from B. stercoris HJ-15 was identified by Southern blotting, and the sequence was deposited in GenBank. The heparinase III gene, which is 2,001-bp long, was cloned and overexpressed in Escherichia coli; highly active rHepIII was easily purified using only one step of immobilized Ni2+ affinity column chromatography. Enzymatic properties and substrate specificities of rHepIII were assessed, and its kinetic constants were calculated. rHepIII was most active in 50 mM sodium phosphate buffer with 350 mM NaCl (pH 6.6) at 45°C. Through amino acid modification studies and site-directed mutagenesis assay, cysteines and histidines were identified as crucial residues for enzymatic activity. Moreover, this enzyme digested not only heparan sulfate but also heparin and hyaluronic acid, and their degradation products were verified by strong anion exchange/high-performance liquid chromatography. These characteristics, including active residues and substrate specificities were interesting compared with those of existing heparinase III from other species. We anticipate that the convenience of purification and the characteristics of this enzyme will make it a powerful tool for studies of glycosaminoglycans and their lyases.  相似文献   

6.
A novel type of heparinase (heparin lyase, no EC number) has been purified from Bacteroides stercoris HJ-15, isolated from human intestine, which produces three kinds of heparinases. The enzyme was purified to apparent homogeneity by a combination of QAE-cellulose, DEAE-cellulose, CM-Sephadex C-50, hydroxyapatite, and HiTrap SP chromatographies with a final specific activity of 19.5 mmol/min/mg. It showed optimal activity at pH 7.2 and 45 degrees C and the presence of 300 mM KCl greatly enhanced its activity. The purified enzyme activity was inhibited by Cu(2+), Pb(2+), and some agents that modify histidine and cysteine residues, and activated by reducing agents such as dithiothreitol and 2-mercaptoethanol. This purified Bacteroides heparinase is an eliminase that shows its greatest activity on bovine intestinal heparan sulfate, and to a lesser extent on porcine intestinal heparan sulfate and heparin. This enzyme does not act on acharan sulfate but de-O-sulfated acharan sulfate and N-sulfoacharan sulfate were found to be poor substrates. The substrate specificity of this enzyme is similar to that of Flavobacterial heparinase II. However, an internal amino acid sequence of the purified Bacteroides heparinase shows significant (73%) homology to Flavobacterial heparinase III and only 43% homology to Flavobacterial heparinase II. These findings suggest that the Bacteroidal heparinase is a novel enzyme degrading GAGs.  相似文献   

7.
随着大型褐藻生产燃料乙醇以及褐藻寡糖重大药用价值的发现,褐藻胶裂解酶成为国内外多个领域的研究重点。文中对解藻酸弧菌上与褐藻胶降解相关的5个基因分别进行克隆表达,通过SDS-PAGE和酶活性定量测定,发现该基因簇中的4个基因有降解褐藻胶活性。对酶活最高的rAlgV3进行了诱导条件的优化、酶蛋白纯化及酶性质研究,发现优化诱导条件后重组酶rAlgV3的酶活由2.34×10~4 U/L上升为1.68×10~5 U/L,比优化前提高了7.3倍;对酶性质进行表征发现该酶在4–70℃均有活性,最适反应温度为40℃,在4–20℃酶相对稳定;该酶在pH 6.5-9.0环境下均有较高的酶活,最适pH为8.0;pH稳定性好,在pH 4.5–9.5环境下可以稳定存在;适量的NaCl浓度和Fe~(2+)、Fe~(3+)等离子具有促进酶活的作用,SDS和Cu~(2+)离子可明显抑制酶活力。对该酶的底物特性的研究发现,该酶不仅可以降解褐藻胶中的Poly-M片段,也能降解Poly-G片段,具有广泛底物特性;其降解海藻酸钠主要释放二糖和三糖,是一种内切酶。该酶对于第三代燃料乙醇的发展及褐藻寡糖的生产具有重要作用。  相似文献   

8.
NAD激酶能催化NAD生成NADP。本研究采用PCR技术从嗜热脂肪地芽孢杆菌基因组中获得NAD激酶基因,以pET30a(+)为表达载体、E.coliBL21(DE3)为宿主菌,实现其在大肠杆菌中异源表达,并进行酶学性质研究。结果显示,嗜热脂肪地芽孢杆菌中NAD激酶编码基因大小为816bp,酶分子量大约为35kD。酶学性质分析表明,来源于嗜热脂肪地芽孢杆菌的NAD激酶最适反应温度和pH分别为35℃、pH7.5,在35qC中保温2h后仍能保持80%左右的活性。Mn2+、Ca2+对该酶有较强的激活作用,在最适反应条件下该酶的比活力为4.43U/mg。动力学性质分析结果显示NAD激酶对底物NAD催化的k和圪。,分别为1.46mmol/L和0.25tzmol/(L·min)。NAD激酶在大肠杆菌的异源表达为以NAD为底物生物合成NADP提供了更多生物资源。  相似文献   

9.
Abstract A neuraminidase-encoding gene nanH of Bacteroides fragilis strain YCH46 was cloned into the cosmid vector pHC79. The nanH gene was subcloned from the cosmid and was located within a 2.2-kb Xho I- Kpn I fragment. Southern hybridization experiments demonstrated that the gene was present as a single copy on the bacterial chromosome. Neuraminidase activity expressed in the initial Escherichia coli clone was approximately 3600-fold lower than that expressed in B. fragilis YCH46. However, when nanH was transferred from E. coli to B. uniformis by mobilization of a shuttle plasmid, the transconjugant expressed 1100-fold higher activity than the E. coli donor did. These results suggest that modes of nanH expression in E. coli and Bacteroides are heterologous.  相似文献   

10.
将来源于极端嗜热菌属海栖热袍杆菌Thermotoga maritima MSB8的编码碱性果胶裂解酶的结构基因pelA与新型热激质粒pHsh连接, 得到重组质粒pHsh-pelA, 运用mRNA二级结构预测软件对pHsh-pelA的翻译起始区的二级结构进行优化, 得到了具有最佳mRNA二级结构及自由能的质粒pHsh-pelC。将重组质粒pHsh-pelC转入大肠杆菌JM109(DE3)进行表达, 得到了一种极耐热性碱性果胶裂解酶(PelC)。对重组酶的酶学性质研究发现, 该酶的最适反应温度为90oC, 最适反应pH为8.5, 在pH 8.2~9.8之间酶活力稳定, 95oC酶活半衰期为2 h, 并且该酶依赖Ca2+作为活性离子。在工业生产常用温度60oC下, 该酶能够长时间保持稳定, 并具有较高的酶活力。以多聚半乳糖醛酸(PGA)为底物时, 其动力学参数Km值为0.11 mmol/L, Vmax值为327 U/mg。SDS-PAGE结果显示该重组酶的分子量为43 kD, 与理论值相符。基于热激载体pHsh的重组表达系统具有诱导表达简便、诱导方式廉价的优点, 且重组酶热稳定性非常好, 这对该酶的大规模发酵应用具有重要意义。  相似文献   

11.
在生物体内,NMN(烟酰胺单核苷酸)转移酶能够催化NMN生成NAD.本研究通过构建重组表达质粒pET30α(+)-Nmnat,成功实现来源于大肠杆菌的NMN转移酶基因(Nmnat)的原核表达.从大肠杆菌基因组中克隆得到的NMN转移酶基因长度为1 245 bp,所编码的重组酶分子量45 kDa.对重组酶的酶学性质进行分析,结果显示该酶最适反应温度和pH分别为37℃和7.5.4℃下,该酶的热失活半衰期可长达990.2 min.Mn2+、Fe2对该酶的酶活的激活作用显著,而EDTA对酶活能造成明显的抑制作用.酶动力学分析结果显示,该酶对底物NMN催化的Km和Vmax分别为16.89 mmol/L和2.46 μmol/(L·min).该NMN转移酶基因在大肠杆菌宿主中的成功表达,为NAD生物合成应用研究奠定了基础.  相似文献   

12.
Two novel chondroitinases, chondroitin ABC lyase (EC 4.2.2.4) and chondroitin AC lyase (EC 4.2.2.5), have been purified from Bacteroides stercoris HJ-15, which was isolated from human intestinal bacteria with glycosaminoglycan degrading enzymes. Chondroitin ABC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and Sephacryl S-300 column chromatography with a final specific activity of 45.7 micromol.min-1.mg-1. Chondroitin AC lyase was purified to apparent homogeneity by a combination of QAE-cellulose, CM-Sephadex C-50, hydroxyapatite and phosphocellulose column chromatography with a final specific activity of 57.03 micromol.min-1.mg-1. Chondroitin ABC lyase is a single subunit of 116 kDa by SDS/PAGE and gel filtration. Chondroitin AC lyase is composed of two identical subunits of 84 kDa by SDS/PAGE and gel filtration. Chondroitin ABC and AC lyases showed optimal activity at pH 7.0 and 40 degrees C, and 5.7-6.0 and 45-50 degrees C, respectively. Both chondroitin lyases were potently inhibited by Cu2+, Zn2+, and p-chloromercuriphenyl sulfonic acid. The purified Bacteroidal chondroitin ABC lyase acted to the greatest extent on chondroitin sulfate A (chondroitin 4-sulfate), to a lesser extent on chondroitin sulfate B (dermatan sulfate) and C (chondroitin 6-sulfate). The purified chondroitin AC lyase acted to the greatest extent on chondroitin sulfate A, and to a lesser extent on chondroitin C and hyaluronic acid. They did not act on heparin and heparan sulfate. These findings suggest that the biochemical properties of these purified chondroitin lyases are different from those of the previously purified chondroitin lyases.  相似文献   

13.
【目的】克隆伯克霍尔德菌ZYB002菌株中的新型脂肪酶lip C24基因,测定其基本酶学性质,为后续深入研究该基因在菌株中的生理功能奠定基础。【方法】根据洋葱伯克霍尔德菌JK321菌株的全基因组DNA信息,直接设计引物从伯克霍尔德菌ZYB002菌株基因组中扩增出lip C24基因,并对之进行原核表达、重组蛋白的纯化及酶学性质分析。【结果】lip C24基因全长1317 bp,编码438个氨基酸残基;多肽链中具有保守五肽-G-X1-S-X2-G-序列;重组蛋白Lip C24的分子量为45 k Da;能有效水解各种对硝基苯酯,对中链脂肪酸的对硝基苯酯表现出偏爱性;其催化水解反应的最适温度为40℃,最适p H7.5;40℃下的半衰期为15.72 min,在p H 7.0-8.0的条件下,具有较好的稳定性。【结论】lip C24的编码产物为一个45 k Da蛋白,具有明显的脂肪酶活性,为中温中性脂肪酶。  相似文献   

14.
15.
薛群  应向贤  杨池  汪钊 《生物工程学报》2011,27(9):1317-1325
为了研究荧光假单胞菌中短链脱氢酶的生理角色和催化特性,从荧光假单胞菌Pseudomonas fluorescens GIM1.49基因组DNA克隆表达了一个短链脱氢酶的编码基因pfd,并分析了该基因产物的酶学性质。基因pfd全长684 bp,编码227个氨基酸,推算分子量为24.2 kDa。将携带短链脱氢酶基因的重组质粒pET28b-pfd转入大肠杆菌BL21(DE3) 进行表达,得到了28 kDa的表达产物。重组荧光假单胞菌短链脱氢酶 (PFD) 能氧化4-氯-3-羟基丁酸乙酯、1-苯乙醇、苯甲醇、仲丁醇和还原4-氯-乙酰乙酸乙酯、2-溴-苯乙酮、4-溴-苯乙酮等底物。以4-氯-3-羟基丁酸乙酯为底物时活力最高,Km值为186.90 mmol/L,Vmax为89.56 U/mg。氧化4-氯-3-羟基丁酸乙酯时,最适反应温度和pH分别为12 ℃和10.5,倾向于利用NAD+作辅酶;而还原4-氯-乙酰乙酸乙酯时,最适温度和pH为24 ℃和8.8,倾向于利用NADPH作辅酶。重组PFD能耐受50% (V/V) 的甲醇等有机助溶剂,Ca2+ (1 mmol/L) 和EDTA (5 mmol/L) 对其酶活有一定的促进作用。上述结果表明,重组PFD是一个新型的短链脱氢酶,其代谢角色推测与卤代次级醇的氧化降解有关。  相似文献   

16.
赖氨酸脱羧酶(Lysine decarboxylase,LDC)是抗老年痴呆药——石杉碱甲生物合成的第一个酶。为了研究蛇足石杉中LDC的特性和功能,以其总RNA为模板,通过RT-PCR扩增得到2个赖氨酸脱羧酶基因LDC1和LDC2,克隆至pMD?19-T中测序发现,两基因同源性为95.3%,分别编码212和202个氨基酸。将两基因引入pET-32a(+)构建重组表达质粒pET-32a(+)/LDC1和pET-32a(+)/LDC2,分别转入BL21(ED3)中进行诱导表达,在30℃条件下获得可溶性表达产物Trx-LDC1和Trx-LDC2;采用Ni-NTA亲和层析法纯化目的蛋白,建立酶促反应体系分析其脱羧酶活性,薄层层析(TLC)检测表明重组融合蛋白Trx-LDC1和Trx-LDC2均能催化赖氨酸脱羧生成尸胺。利用生物信息学软件分析发现LDC1和LDC2理化性质存在差异,但预测的二级结构和三维结构基本一致。  相似文献   

17.
人端粒酶RNA基因的克隆与鉴定   总被引:2,自引:0,他引:2  
以人血基因组DNA为模板,合成两段20个寡聚核苷酸为引物,经过PCR扩增,得到480bp的片段,克隆到pMD18-T载体中,经电泳、酶切、PCR鉴定后测定序列。序列分析表明氙克隆的人端粒酶RNA(human telomease RNA,hTR)基因含有480bp,包括约450bp的编码模板区主序列和约30bp的上游调控区序列,其中模板区的11个核苷酸(5’-CUAACCCUAAC-3’)合成端粒亚  相似文献   

18.
通过PCR技术扩增得到dhbC基因,对其进行序列分析发现,dhbC基因片段长为1197bp,预期编码398个氨基酸,蛋白分子量大小为43.8kD。将目的片段连接到表达载体pET-30a(+),转化大肠杆菌Escherichia coli BL21(DE3)获得重组菌株BL21(DE3)/pET-30a-dhbC,以IPTG在30oC诱导4h实现高效表达,获得一个分子量为48.8kD的融合蛋白。重组蛋白可溶性分析结果表明:融合蛋白主要为可溶性蛋白。Western blotting分析结果表明:重组蛋白可与兔抗His-tag多克隆抗体发生特异性反应,在48.8kD处有特异条带,与预期结果一致,证明重组质粒中含有dhbC基因。通过同源重组的策略将dhbC基因敲除后重新导入,验证了dhbC基因与嗜铁素的生物合成密切相关。  相似文献   

19.
Cheong  Na Eun  Choi  Yeon Ok  Lee  Kyun Oh  Kim  Woe Yeon  Jung  Bae Gyo  Chi  Yong Hun  Jeong  Jin Sook  Kim  Kanghwa  Cho  Moo Je  Lee  Sang Yeol 《Plant molecular biology》1999,40(5):825-834
A cDNA (C2C-Prx) corresponding to a 2Cys-peroxiredoxin (2Cys-Prx) was isolated from a leaf cDNA library of Chinese cabbage. The predicted amino acid sequence of C2C-Prx has 2 conserved cysteines and several peptide domains present in most of the 2Cys-Prx subfamily members. It shows the highest sequence homology to the 2Cys-Prx enzymes of spinach (88%) and Arabidopsis (86%). Southern analysis using the cDNA insert of C2C-Prx revealed that it consists of a small multigene family in Chinese cabbage genome. RNA blot analysis showed that the gene was predominantly expressed in the leaf tissue of Chinese cabbage seedlings, but the mRNA was generally expressed in most tissues of mature plant, except roots. The expression of C2C-Prx was slightly induced by treatment with H2O2 (100M) or Fe3+/O2/DTT oxidation system, but not by ABA (50 M) or GA3 (10 M). The C2C-Prx is encoded as a preprotein of 273 amino acids containing a putative chloroplast-targeting signal of 65 amino acids at its N-terminus. The N-terminally truncated recombinant protein (C2C-Prx) migrates as a dimer in a non-reducing SDS-polyacrylamide gel and as a monomer in a reducing condition. The C2C-Prx shows no immuno cross-reactivity to antiserum of the yeast thiol-specific antioxidant protein, and vice versa. The C2C-Prx prevents the inactivation of glutamine synthetase and the DNA cleavage in the metal-catalyzed oxidation system. In the yeast thioredoxin system containing thioredoxin reductase, thioredoxin, and NADPH, the C2C-Prx exhibits peroxidase activity on H2O2.  相似文献   

20.
The acylneuraminate lyase gene from Clostridium perfringens A99 was cloned on a 3.3 kb HindIII DNA fragment identified by screening the chromosomal DNA of this species by hybridization with an oligonucleotide probe that had been deduced from the N-terminal amino acid sequence of the purified protein, and another probe directed against a region that is conserved in the acylneuraminate lyase gene of Escherichia coli and in the putative gene of Clostridium tertium. After cloning, three of the recombinant clones expressed lyase activity above the background of the endogenous enzyme of the E. coli host. The sequenced part of the cloned fragment contains the complete acylneuraminate lyase gene (ORF2) of 864 bp that encodes 288 amino acids with a calculated molecular weight of 32.3 kDa. The lyase structural gene follows a non-coding region with an inverted repeat and a ribosome binding site. Upstream from this regulatory region another open reading frame (ORF1) was detected. The 3′-terminus of the lyase structural gene is followed by a further ORF (ORF3). A high homology was found between the amino acid sequences of the sialate lyases from Clostridium perfringens and Haemophilus influenzae (75% identical amino acids) or Trichomonas vaginalis (69% identical amino acids), respectively, whereas the similarity to the gene from E. coli is low (38% identical amino acids). Based on our new sequence data, the ‘large’ sialidase gene and the lyase gene of C. perfringens are not arranged next to each other on the chromosome of this species. This revised version was published online in November 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号