首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 937 毫秒
1.
Imidazoline receptors are divided into I(1) and I(2) subtypes. I(1)-imidazoline receptors are distributed in the heart and are upregulated during hypertension or heart failure. The aim of this study was to define the possible role of I(1)-imidazoline receptors in the regulation of atrial natriuretic peptide (ANP) release in hypertrophied atria. Experiments were performed on isolated, perfused, hypertrophied atria from remnant-kidney hypertensive rats. The relatively selective I(1)-imidazoline receptor agonist moxonidine caused a decrease in pulse pressure. Moxonidine (3, 10, and 30 micromol/l) also caused dose-dependent increases in ANP secretion, but clonidine (an alpha(2)-adrenoceptor agonist) did not. Pretreatment with efaroxan (a selective I(1)-imidazoline receptor antagonist) or rauwolscine (a selective alpha(2)-adrenoceptor antagonist) inhibited the moxonidine-induced increases in ANP secretion and interstitial ANP concentration and decrease in pulse pressure. However, the antagonistic effect of efaroxan on moxonidine-induced ANP secretion was greater than that of rauwolscine. Neither efaroxan nor rauwolscine alone has any significant effects on ANP secretion and pulse pressure. In hypertrophied atria, the moxonidine-induced increase in ANP secretion and decrease in pulse pressure were markedly augmented compared with nonhypertrophied atria, and the relative change in ANP secretion by moxonidine was positively correlated to atrial hypertrophy. The accentuation by moxonidine of ANP secretion was attenuated by efaroxan but not by rauwolscine. These results show that moxonidine increases ANP release through (preferentially) the activation of atrial I(1)-imidazoline receptors and also via different mechanisms from clonidine, and this effect is augmented in hypertrophied atria. Therefore, we suggest that cardiac I(1)-imidazoline receptors play an important role in the regulation of blood pressure.  相似文献   

2.
Quantitative autoradiography was used to localize and characterize atrial natriuretic peptide (ANP) receptors in the rat brain and to study their regulation. Peptide receptors are selectively located to circumventricular organs outside the blood brain barrier, such as the subfornical organ, and to brain areas involved in fluid and cardiovascular regulation. Dehydration, either by water deprivation of normal rats, or chronic dehydration present in homozygous Brattleboro rats lacking vasopressin, results in large increases in ANP binding in receptor number in the subfornical organ. In the deoxycorticosterone acetate (DOCA)-salt hypertensive model, only salt treatment, but not DOCA alone or the combination of DOCA-salt, increased the ANP receptor number in the subfornical organ and the choroid plexus. Both young and adult genetically hypertensive rats have a greatly decreased ANP receptor number in the subfornical organ and the choroid plexus. Selective displacement with an inactive analog lacking the disulfide bond (ANP 111-126) suggests that genetically hypertensive rats may lack C (clearance) atrial natriuretic peptide receptors. Our results implicate brain atrial natriuretic peptide receptors in the central response to alterations in fluid regulation and blood pressure.  相似文献   

3.
Acute exposure of rainbow trout (Salmo gairdneri) to low external calcium (25 microM) caused an immediate but transient increase in plasma epinephrine concentration that may have been related to a concomitant depression of blood pH. Intra-arterial infusion of epinephrine at normal ambient calcium levels (0.35 mM) for 4 h caused circulating levels of epinephrine to rise from 2.9 X 10(-9) to 8.0 X 10(-8) M but did not affect norepinephrine levels, or branchial unidirectional calcium fluxes. Active (ATP-dependent) calcium transport across basolateral plasma membranes prepared from gill epithelial cells was not affected by pretreatment of fish with epinephrine or by direct application of epinephrine or cAMP, in vitro. Epinephrine infusion elevated urine flow rate, decreased urine pH, and increased urine phosphate levels significantly. Net renal calcium efflux increased significantly as a result of the increased urine flow rate. It is concluded that epinephrine does not stimulate branchial calcium uptake or renal conservation of calcium in rainbow trout at normal external calcium levels and therefore we cautiously suggest that epinephrine is unlikely to be involved in calcium balance during periods of exposure to low external calcium. Instead, epinephrine may play a role in compensating the acid-base disturbances and the increased branchial water influx that are associated with exposure to low ambient calcium.  相似文献   

4.
Using an antiserum raised against the purified atrial natriuretic peptide (ANP) receptor that has a disulfide-linked homodimeric structure and represents one subtype of the multiple ANP receptors, we showed that the receptor is coupled to the guanylate cyclase activation; formerly, this type of ANP receptor is not considered to be coupled to the cyclase. The specificity of the antiserum was determined by immunoblot analysis and immunoprecipitation. The anti-receptor antiserum did not compete with 125I-ANP for binding to the receptor but it lowered the affinity of the receptor. When added to bovine endothelial cell cultures, the antiserum blocked the cyclic GMP response of the cells triggered by ANP. These results indicate that the subtype of the ANP receptor recognized by the antiserum is responsible for the activation of particulate guanylate cyclase as well as the double function type receptor that has been assumed to contain both the receptor domain and the catalytic domain for cGMP synthesis on the same molecule. The presence of dissociative complexes of ANP receptor and particulate guanylate cyclase was also demonstrated by radiation inactivation analysis.  相似文献   

5.
The aim of the present study was to determine the extent to which the fish liver is perfused with blood. Transonic? flow probes were therefore implanted around the ventral aorta and hepatic vein(s) to record baseline blood flows in rainbow trout (Oncorhynchus mykiss) previously held under two different feeding regimes (food-deprived or fed to satiation, 8-12 weeks). Fish from both groups were exposed to a gradual temperature decrease (12°C to 5°C) and physical disturbance. Cardiac output (Q), stroke volume (Sv) and hepatic venous blood flow (HVBF) were significantly reduced in food-deprived trout at 12°C. Heart rate was not significantly affected by nutritional status, but was significantly reduced when temperature was decreased to 5°C. Physically disturbing each fish at 12°C and 5°C showed that the performance capacity of the heart was not affected by food deprivation as the capacity to increase Q and Sv was not reduced in the food-deprived group. Overall this study showed that food deprivation in rainbow trout reduced cardiac and hepatic blood flows. However, long-term food deprivation did not affect the capacity of the heart to acutely increase performance.  相似文献   

6.
Summary The renal and in vitro vascular effects of atrial natriuretic peptides have been examined in seveal species of fish. However, comparatively few investigations have described the effects of these peptides on the cardiovascular system in vivo. In the present experiments the dorsal aorta and urinary bladder were cannulated and the effects of atrial natriuretic peptides from rat and eel were monitored in conscious trout during bolus injection or continuous atrial natriuretic peptide infusion. The results show that the initial pressor effect of atrial natriuretic peptides is independent of environmental salinity adaptation (fresh or seawater) and the chemical form of atrial natriuretic peptide injected, but it is affected by the rate of atrial natriuretic peptide administration. This pressor response, and the accompanying diuresis, are mediated through -adrenergic activation. Continuous infusion of either rat or eel atrial natriuretic peptide produces a steady fall in mean arterial blood pressure, which is temporally preceded by an increase in heart rate and a decrease in pulse pressure. Diuresis induced by atrial natriuretic peptides is only partially sustained during continuous infusion. Propranolol partially blocks the increase induced in heart rate by atrial natriuretic peptides, but does not affect either pulse pressure or mean arterial pressure. Propranolol significantly increases urine flow in saline-infused animals but has no apparent effect on animals subjected to infusions of atrial natriuretic peptides. These results indicate that there are multiple foci for the action of atrial natriuretic peptides in trout and that in many instances the effects of atrial natriuretic peptides are mediated through secondary effector systems.Abbreviations ANP atrial natriuretic peptide - bw body weight - PBS phosphate-buffered saline  相似文献   

7.
Atrial natriuretic peptide (ANP) is secreted by the heart in response mainly to atrial distension and circulates in plasma in picomolar concentrations. It binds to receptors in blood vessels which it relaxes, renal glomeruli where it induces increased glomerular filtration rate, renal papilla to produce natriuresis, adrenal glomerulosa celts to inhibit aldosterone secretion, and median eminence and pituitary where it may inhibit vasopressin secretion. In experimental models of hypertension plasma levels of ANP are uniformly elevated, except in spontaneously hypertensive rats, in which plasma ANP may only rise transiently. The action of ANP on smooth muscle cells of the blood vessel wall results in production of cyclic GMP, which appears to be the second messenger producing relaxation of pre-contracted blood vessels. Mechanisms other than cGMP generation have been proposed but remain unproven as mediators of ANP action. Receptors for ANP in blood vessels are of two subtypes: B-receptors (or R1-receptors), which contain guanylate cyclase in their structure, and C-receptors (or R2-receptors), which have not been shown to the present to be biologically active. Our studies on vascular ANP receptors are reviewed. In several experimental models of hypertension such as saralasin-insensitive 2-kidney, 1-clip and 1-kidney, 1-clip Goldblatt hypertensive rats and in DOCA-salt hypertensive rats, we have found elevated plasma ANP, as well as decreased binding and ANP-induced vascular relaxation and blood pressure-lowering effects of ANP. Both the B and C ANP receptors appear decreased in density, even after acid washing of membranes to remove any retained circulating ANP. In SHR we have found that plasma ANP was higher than in control WKY rats only transiently at 8 weeks. Binding was significantly lower in 4 and 8 week-old SHR, but cGMP generation and relaxation produced by ANP were increased in the 4 week-old SHR but normal at 8, 12 or 16 weeks. Expression of B-receptors was exaggerated in 4 week-old SHR relative to C receptors in comparison to age-matched WKY and Wistar rats. These results may underly the normalization of blood pressure found in SHR when a small dose of ANP is infused intravenously, in contrast to other models of experimental hypertension which appear to be more resistant to ANP-induced blood pressure lowering effects. In humans with essential hypertension, plasma ANP was increased in patients with moderate to severe uncontrolled high blood pressure, associated with echocardiographic evidence of left ventricular hypertrophy. In these patients, platelet ANP binding was significantly reduced. If these sites resemble vascular ANP sites in their behavior, severely hypertensive patients may be less sensitive to ANP, which may contribute to blood pressure elevation.  相似文献   

8.
SC-71952, a substituted analog of dithiobisnicotinic acid dimethyl ester, was identified as a potent inhibitor of cholesteryl ester transfer protein (CETP). When tested in an in vitro assay, the concentration of SC-71952 required for half-maximal inhibition was 1 microm. The potency of SC-71952 was enhanced 200-fold by preincubation of the inhibitor with CETP, and was decreased 50-fold by treatment with dithiothreitol. Analogs of SC-71952 that did not contain a disulfide linkage were less potent, did not display time dependency, and were not affected by dithiothreitol treatment. Kinetic and biochemical characterization of the inhibitory process of CETP by SC-71952 suggested that the inhibitor initially binds rapidly and reversibly to a hydrophobic site on CETP. With time, the bound inhibitor irreversibly inactivates CETP, presumably by reacting with one of the free cysteines of CETP. Liquid chromatography/mass spectroscopy (LC/MS) analyses of tryptic digests of untreated or SC-71952-inactivated CETP was used to identify which cysteine(s) were potentially involved in the time-dependent, irreversible component of inactivation by the inhibitor. One disulfide bond, Cys143-Cys184, was unaffected by treatment with the inhibitor. Inactivation of CETP by SC-71952 correlated with a progressive decrease in the abundance of free Cys-13 and Cys-333. Conversion of Cys-13 to alanine had no effect on the rapid reversible component of inactivation by SC-71952. However, it abolished the time-dependent enhancement in potency seen with the inhibitor when using wild-type CETP. These data indicate that Cys-13 is critical for the irreversible inactivation of CETP by SC-71952 and provides support for the structural model that places Cys-13 near the neutral lipid-binding site of CETP.  相似文献   

9.
The crucial functions of atrial natriuretic peptide (ANP) and endothelial nitric oxide/NO in the regulation of arterial blood pressure have been emphasized by the hypertensive phenotype of mice with systemic inactivation of either the guanylyl cyclase-A receptor for ANP (GC-A-/-) or endothelial nitric-oxide synthase (eNOS-/-). Intriguingly, similar levels of arterial hypertension are accompanied by marked cardiac hypertrophy in GC-A-/-, but not in eNOS-/-, mice, suggesting that changes in local pathways regulating cardiac growth accelerate cardiac hypertrophy in the former and protect the heart of the latter. Our recent observations in mice with conditional, cardiomyocyte-restricted GC-A deletion demonstrated that ANP locally inhibits cardiomyocyte growth. Abolition of these local, protective effects may enhance the cardiac hypertrophic response of GC-A-/- mice to persistent increases in hemodynamic load. Notably, eNOS-/- mice exhibit markedly increased cardiac ANP levels, suggesting that increased activation of cardiac GC-A can prevent hypertensive heart disease. To test this hypothesis, we generated mice with systemic inactivation of eNOS and cardiomyocyte-restricted deletion of GC-A by crossing eNOS-/- and cardiomyocyte-restricted GC-A-deficient mice. Cardiac deletion of GC-A did not affect arterial hypertension but significantly exacerbated cardiac hypertrophy and fibrosis in eNOS-/- mice. This was accompanied by marked cardiac activation of both the mitogen-activated protein kinase (MAPK) ERK 1/2 and the phosphatase calcineurin. Our observations suggest that local ANP/GC-A/cyclic GMP signaling counter-regulates MAPK/ERK- and calcineurin/nuclear factor of activated T cells-dependent pathways of cardiac myocyte growth in hypertensive eNOS-/- mice.  相似文献   

10.
SC-41930 was evaluated for effects on human neutrophil chemotaxis and degranulation. At concentrations up to 100 microM, SC-41930 alone exhibited no effect on neutrophil migration, but dose-dependently inhibited neutrophil chemotaxis induced by leukotriene B4 (LTB4) in a modified Boyden chamber. Concentrations of SC-41930 from 0.3 microM to 3 microM competitively inhibited LTB4-induced chemotaxis with a pA2 value of 6.35. While inactive at 10 microM against C5a-induced chemotaxis, SC-41930 inhibited N-formyl-methionyl-leucyl-phenylalanine (fMLP)-induced chemotaxis, with 10 times less potency than against LTB4-induced chemotaxis. SC-41930 inhibited [3H]LTB4 and [3H]fMLP binding to their receptor sites on human neutrophils with KD values of 0.2 microM and 2 microM, respectively. SC-41930 also inhibited neutrophil chemotaxis induced by 20-OH LTB or 12(R)-HETE. At concentrations up to 10 microM, SC-41930 alone did not cause neutrophil degranulation, but inhibited LTB4-induced degranulation in a noncompetitive manner. SC-41930 also inhibited fMLP- or C5a-induced degranulation, but was about 8 and 10 times less effective for fMLP and C5a, respectively. The results indicate that SC-41930 is a human neutrophil LTB4 receptor antagonist with greater specificity for LTB4 than for fMLP or C5a receptors.  相似文献   

11.
Yuan K  Bai GY  Park WH  Kim SZ  Kim SH 《Peptides》2008,29(12):2216-2224
Adenosine is a potent mediator of myocardial protection against hypertrophy via A(1) or A(3) receptors that may be partly related to atrial natriuretic peptide (ANP) release. However, little is known about the possible involvement of the A(3) receptor on ANP release. We studied the effects of the A(3) receptor on atrial functions and its modification in hypertrophied atria. A selective A(3) receptor agonist, 2-chloro-N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (2-CI-IB-MECA), was perfused into isolated, beating rat atria with and without receptor modifiers. 2-CI-IB-MECA dose-dependently increased the ANP secretion, which was blocked by the A(3) receptor antagonist, but the increased atrial contractility and decreased cAMP levels induced by 30muM 2-CI-IB-MECA were not affected. The 100muM 2-(1-hexylnyl)-N-methyladenosine (HEMADO) and N(6)-(3-iodobenzyl) adenosine-5'-N-methyluronamide (IB-MECA), A(3) receptor agonist, also stimulated the ANP secretion without positive inotropy. The potency for the stimulation of ANP secretion was 2-CI-IB-MECA>IB-MECA=HEMADO. The inhibition of the ryanodine receptor or calcium/calmodulin-dependent kinase II (CaMKII) attenuated 2-CI-IB-MECA-induced ANP release, positive inotropy, and translocation of extracellular fluid. However, the inhibition of L-type Ca(2+) channels, sarcoplasmic reticulum Ca(2+)-reuptake, phospholipase C or inositol 1,4,5-triphosphate receptors did not affect these parameters. 2-CI-IB-MECA decreased cAMP level, which was blocked only with an inhibitor of CaMKII or adenylyl cyclase. These results suggest that 2-CI-IB-MECA increases the ANP secretion mainly via A(3) receptor activation and positive inotropy by intracellular Ca(2+) regulation via the ryanodine receptor and CaMKII.  相似文献   

12.
The increase in cerebral blood flow (CBF) during neuronal activation can be only partially attenuated by individual inhibitors of epoxyeicosatrienoic acids (EETs), cyclooxgenase-2, group I metabotropic glutamate receptors (mGluR), neuronal nitric oxide synthase (nNOS), N-methyl-D-aspartate receptors, or adenosine receptors. Some studies that used a high concentration (500 μM) of the cyclooxygenase-1 inhibitor SC-560 have implicated cyclooxygenase-1 in gliovascular coupling in certain model systems in the mouse. Here, we found that increasing the concentration of SC-560 from 25 μM to 500 μM over whisker barrel cortex in anesthetized rats attenuated the CBF response to whisker stimulation. However, exogenous prostaglandin E(2) restored the response in the presence of 500 μM SC-560 but not in the presence of a cyclooxygenase-2 inhibitor, thereby suggesting a limited permissive role for cyclooxygenase-1. Furthermore, inhibition of the CBF response to whisker stimulation by an EET antagonist persisted in the presence of SC-560 or a cyclooxygenase-2 inhibitor, thereby indicating that the EET-dependent component of vasodilation did not require cyclooxygenase-1 or -2 activity. With combined inhibition of cyclooxygenase-1 and -2, mGluR, nNOS, EETs, N-methyl-D-aspartate receptors, and adenosine 2B receptors, the CBF response was reduced by 60%. We postulated that the inability to completely block the CBF response was due to tissue acidosis resulting from impaired clearance of metabolically produced CO2. We tested this idea by increasing the concentration of superfused bicarbonate from 25 to 60 mM and found a markedly reduced CBF response to hypercapnia. However, increasing bicarbonate had no effect on the initial or steady-state CBF response to whisker stimulation with or without combined inhibition. We conclude that the residual response after inhibition of several known vasodilatory mechanisms is not due to acidosis arising from impaired CO2 clearance when the CBF response is reduced. An unidentified mechanism apparently is responsible for the rapid, residual cortical vasodilation during vibrissal stimulation.  相似文献   

13.
In order to clarify the role of atrial natriuretic polypeptide (ANP) in the brain on regulation of blood pressure and urine output, we examined the effects of intracerebroventricular (i.c.v.) administration of synthetic alpha-human ANP (alpha-hANP) to both anesthetized and conscious rats. In anesthetized rats, i.c.v. injection of angiotension II (A II) caused increases of blood pressure, urine flow and sodium excretion in a dose dependent manner. alpha-HANP alone had no effect on these two parameters. The hypertensive effect of A II was apparently attenuated by concurrent injection of alpha-hANP, while, the diuretic response to A II was not changed by alpha-hANP. In conscious spontaneously hypertensive rats, i.c.v. injection of saralasin (an A II antagonist) produced a decrease in blood pressure. The i.c.v. pretreatment with alpha-hANP significantly potentiated the central depressor effect of saralasin. These findings suggest that brain ANP may be involved in controlling blood pressure in the central renin-angiotensin system.  相似文献   

14.
The objective of this study was to evaluate the renal actions of atrial natriuretic peptide (ANP) in the unilateral postischemic kidney of anesthetized dogs with a severe reduction in glomerular filtration rate. The dose of atrial natriuretic peptide (50 ng.kg-1.min-1) we gave did not alter the mean systemic arterial pressure, renal blood flow, and glomerular filtration rate in the normal kidney, as determined in foregoing studies. ANP was infused into the intrarenal artery continuously for 60 min after the release from 45 min of complete renal artery occlusion. In the vehicle-infused group, the glomerular filtration rate fell dramatically (6% of control), the renal blood flow decreased (60% of control), and the mean systemic arterial pressure tended to increase (136% of control). The urine flow rate and urinary excretion of sodium decreased significantly (25 and 25%, respectively) at 30 min after reflow in the postischemic period. Continuous renal artery infusion of ANP resulted in a marked increase in urine flow rate (246% of control) and the urinary excretion of sodium (286% of control). The administration of ANP led to an improvement in renal blood flow (99% of control) and glomerular filtration rate (40% of control), and attenuated the rise in mean systemic arterial pressure (109% of control), compared with findings in the vehicle-infused group. Plasma renin activity and prostaglandin E2 concentration in the renal venous blood were elevated after the release from complete renal artery occlusion in both groups. These results indicate that the vascular effects of ANP on the postischemic kidney were enhanced and that the peptide maintained the natriuretic effect.  相似文献   

15.
Cyclooxygenase (COX) is a key enzyme regulating the production of various prostaglandins (PGs) from arachidonic acid. Angiotensin II has been reported to be an important inflammatory mediator, which increases COX-2. The aim of this study was to determine the role of various PGs and COX-2 in the regulation of atrial natriuretic peptide (ANP) secretion. PGF2α and PGD2 caused dose-dependent increases in ANP release and intra-atrial pressure. The potency for the stimulation of ANP secretion by PGF2α was higher than that by PGD2. In contrast, PGE2, PGI2, PGJ2, and thromboxane A2 did not show any significant effects. The increases in intra-atrial pressure and ANP secretion induced by PGF2α and PGD2 were significantly attenuated by the pretreatment with an inhibitor of PGF2α receptor. By the pretreatment with an inhibitor for phospholipase C (PLC), inositol 3-phosphate (IP3) receptor, protein kinase C (PKC), or myosin light chain kinase (MLCK), PGF2α-mediated increase in ANP secretion and positive inotropy were attenuated. Inhibitor for COX-1 or COX-2 did not cause any significant effects on atrial parameters. In hypertrophied rat atria, PGF2α-induced positive inotropy and ANP secretion were markedly attenuated whereas COX-2 inhibitor stimulated ANP secretion. The expression of COX-2 increased and the expression of PGF2α receptor mRNA decreased in hypertrophied rat atria. These results suggest that PGF2α increased the ANP secretion and positive inotropy through PLC–IP3–PKC–MLCK pathway, and the modulation of ANP secretion by COX-2 inhibitor and PGF2α may partly relate to the development of renal hypertension.  相似文献   

16.
17.
The objective of this study was to investigate the possible involvement of cortisol in controlling urea metabolism and excretion in the ammoniotelic rainbow trout (Oncorhynchus mykiss). Trout fitted with dorsal aortic and internal urinary catheters received either no implant (control), or were implanted with coconut oil (sham), cortisol in coconut oil, RU486, a glucocorticoid receptor blocker, in coconut oil, or cortisol+RU486 in coconut oil, and monitored over 72 h. Rainbow trout treated with cortisol (±RU486) had similarly elevated plasma cortisol concentrations that were six fold greater than in control and sham fish. Elevated circulating cortisol concentrations caused a three-fold rise in plasma and urine urea concentrations, which was blocked by RU486. Similarly, a positive correlation between plasma cortisol and plasma urea concentrations was observed in fish treated with cortisol alone but not in fish treated with cortisol+RU486. Cortisol treatment caused an elevation in branchial (two fold higher) and urinary (three fold higher) excretion rates of urea compared to sham-implanted fish, which was prevented by treatment with RU486. However, as branchial and renal clearance were unaffected, there appears to be no stimulation or inhibition of urea excretion mechanisms in the gill or kidney separate from effects due to changes in plasma urea concentrations. Thus, cortisol and glucocorticoid receptors appear to be involved in the regulation of endogenous urea production but not in the control of urea excretory mechanisms in the ammoniotelic trout.Abbreviations GFR glomerular filtration rate - GS glutamine synthetase - O-UC ornithine urea cycle - PEG polyethylene glycol - UFR urine flow rate Communicated by: G. Heldmaier  相似文献   

18.
T Sano  R Imura  Y Morishita  Y Matsuda  K Yamada 《Life sciences》1992,51(18):1445-1451
HS-142-1, a novel polysaccharide, of microbial origin had been characterized as a specific antagonist of guanylyl cyclase-linked atrial natriuretic peptide (ANP) receptors (ANP-GC receptor) in bovine adrenal cortex. The effect of HS-142-1 on ANP receptors of rat glomeruli were examined. HS-142-1 blocked rat ANP (r-ANP)-stimulated cGMP production in a concentration-dependent manner, although it caused only slight inhibition in the specific binding of [125I]-rANP to the glomeruli where only a small portion of the binding sites are coupled to guanylyl cyclase. HS-142-1 recognized the 135K ANP receptor which is thought to be ANP-GC receptors but did not recognized 60K receptor, guanylyl cyclase-free type from affinity cross-linking studies with glomerular membranes. These results indicate that HS-142-1 is a specific antagonist for the ANP-GC receptor in rat glomeruli, and that it will be a powerful tool for understanding the physiological roles of ANP in renal responses.  相似文献   

19.
The expression of the natriuretic peptide system in the human ocular ciliary epithelium (CE) and in cultured nonpigmented (NPE) ciliary epithelial cells was examined. By RT-PCR and DNA sequencing, we demonstrated that the CE and NPE cells express mRNA for (i) ANP; (ii) BNP; (iii) NPR-A, NPR-B, and NPR-C receptors; and (iv) the neutral endopeptidase 24.11. Radioimmunoassay results indicate that BNP is secreted by cultured NPE cells at much higher levels than ANP. NPR-A and NPR-B receptors elicited a cGMP response to ANP, BNP, and CNP, in a rank order of potency (CNP > ANP >/= BNP), indicative that the NPR-B receptor is predominant in NPE cells. A71915, an inhibitor of NPR-A activity, attenuated (65-75%) cGMP response to ANP and BNP, but not to CNP. C-ANP4-23 elicited an inhibitory effect (30-37%) on basal levels of cAMP in NPE cells and on forskolin NPE-treated cells, indicative that the NPR-C receptor is functional in these cells. PMA induced, in NPE cells, a long-term downregulation (75-85%) of NPR-C receptor mRNA, but not of NPR-A or NPR-B receptor mRNA, suggesting a differential regulation of NPR-C receptor mRNA via activation of PKC. Collectively, our data provide molecular evidence that all the components of the natriuretic peptide system with the exception of CNP are coexpressed in the ocular NPE ciliary epithelial cells, where they may function as local autocrine/paracrine modulators to influence eye pressure.  相似文献   

20.
Atrial natriuretic peptide (ANP) is known as a potent natriuretic/diuretic hormone in vertebrates. However, eel ANP infused at doses that did not alter arterial blood pressure (0.3-3.0 pmol/kg/min) decreased urine volume and increased urinary Na concentration in seawater (SW)-adapted eels but not in freshwater (FW)-adapted eels. The renal effects were dose-dependent and disappeared after infusate was switched back to a vehicle (0.9% NaCl). Urinary Na excretion (volume x Na concentration) did not change during ANP infusion. ANP infusion increased plasma ANP concentration, but the increase at the highest dose was still within those observed endogenously after injection of hypertonic saline. Urinary Mg and Ca concentrations increased during ANP infusion in SW eels, but urinary Ca excretion decreased in FW eels. Plasma Na concentration profoundly decreased during ANP infusion only in SW eels, suggesting that ANP stimulates Na extrusion via non-renal routes. These results indicate that ANP is a hormone which specifically extrudes Na ions and thereby promotes SW adaptation in the eel. This is in sharp contrast with mammals where ANP is a volume regulating hormone that extrudes both Na and water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号