首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Degenerate primers corresponding to highly conserved regions of previously characterized ftsZ genes were used to PCR amplify a portion of the ftsZ gene from the genomic DNA of Ehrlichia chaffeensis (ftsZ(Ech)), Anaplasma phagocytophilum (ftsZ(Ap)), and Rickettsia rickettsii (ftsZ(Rr)). Genome walking was then used to amplify the 5' and 3' termini of the genes. The DNA sequences of the resulting amplification products yielded open reading frames coding for proteins with molecular masses of 42.0, 45.7, and 48.3 kDa for A. phagocytophilum, E. chaffeensis, and R. rickettsii, respectively. These homologs are 20 to 70 amino acids longer than the FtsZ proteins characterized in bacteria such as Escherichia coli and Bacillus subtilis, but do not possess the large extended carboxyl-termini found in the FtsZ proteins of Bartonella, Rhizobium, and Agrobacterium species. The functional domains important for FtsZ activity are conserved within the ehrlichial and rickettsial FtsZ protein sequences. The R. rickettsii FtsZ sequence is highly homologous to the FtsZ protein previously described for Rickettsia prowazekii (89% identity), and identical to the FtsZ protein of Rickettsia conorii. The percent identity observed between the A. phagocytophilum and E. chaffeensis FtsZ proteins is only 79% and is particularly low in the carboxyl-terminal region (15.8% identity). Primers were designed to PCR amplify a portion of the variable carboxyl-terminal region of the ftsZ gene, and used to differentiate each agent based on the size of the amplicons: A. phagocytophilum, 278 bp; E. chaffeensis, 341 bp; and Rickettsia spp., 425 bp.  相似文献   

4.
The NlpD/LppB homolog of the human pathogen, Bartonella bacilliformis, is an immunogenic 43-kDa protein that is encoded by a 1206-bp open reading frame (ORF-401). The regions flanking the nlpD/lppB gene of B. bacilliformis were sequenced to determine if it is located within the rpoS operon, as it is in most bacteria. We report that the B. bacilliformis nlpD/lppB gene is located immediately downstream of pcm, a gene encoding a 25-kDa protein, L-isoaspartyl protein carboxyl methyltransferase, that is a component of the rpoS operon in other bacteria. However, the genomic organization downstream of the B. bacilliformis nlpD/lppB gene appears to be distinct. In other bacteria, the third gene in the operon is rpoS, a gene that codes for an alternative sigma factor of RNA polymerase. In B. bacilliformis, an open reading frame encoding a protein homologous to the immunodominant YajC protein is located directly downstream of the nlpD/lppB gene. We show that Bartonella henselae, a close relative of B. bacilliformis, also shares this unusual organizational feature. Thus, the genomic organization of the nlpD/lppB genes of B. bacilliformis, and B. henselae appears to be unique among all bacteria for which the sequence of this region has been reported.  相似文献   

5.
Although Bartonella bacilliformis causes a severe anemia in humans, this study presents the first report of hemolytic activity by B. bacilliformis. The activity was not apparent in culture supernatants but was reliably detected when B. bacilliformis cells were centrifuged onto erythrocytes prior to incubation. Abrogation of hemolytic activity by proteinase K treatment suggested the hemolysin was a Bartonella protein. Even though hemolysis required relatively long incubation times, de novo protein synthesis was not required to produce the protein. A preparation containing factors released by B. bacilliformis, including deformin, a B. bacilliformis protein able to induce pits and invaginations in erythrocyte membranes, had some ability to lyse erythrocytes. However, pre-deformed erythrocytes did not lyse faster or to a greater extent than control erythrocytes after the addition of B. bacilliformis cells. Inhibition of deformation caused by B. bacilliformis cells with the erythrocyte ATPase inhibitor, vanadate, did not affect hemolytic activity. This study suggests hemolytic activity and deforming activity are attributable to different B. bacilliformis proteins.  相似文献   

6.
W Margolin  R Wang    M Kumar 《Journal of bacteriology》1996,178(5):1320-1327
We have isolated a homolog of the cell division gene ftsZ from the extremely halophilic archaebacterium Halobacterium salinarium. The predicted protein of 39 kDa is divergent relative to eubacterial homologs, with 32% identity to Escherichia coli FtsZ. No other eubacterial cell division gene homologs were found adjacent to H. salinarium ftsZ. Expression of the ftsZ gene region in H. salinarium induced significant morphological changes leading to the loss of rod shape. Phylogenetic analysis demonstrated that the H. salinarium FtsZ protein is more related to tubulins than are the FtsZ proteins of eubacteria, supporting the hypothesis that FtsZ may have evolved into eukaryotic tubulin.  相似文献   

7.
Plant nuclear genomes encode chloroplast division proteins homologous to the eubacterial cell division protein FtsZ. In higher plants, FtsZ genes constitute a small gene family that consists of two subgroups, FtsZ1 and FtsZ2. It was previously hypothesized that members of one family (FtsZ1) targeted chloroplasts, while members of the other family (FtsZ2) localized in the cytoplasm. We determined the full-length cDNA sequences of two FtsZ2 genes from Arabidopsis thaliana (AtFtsZ2-1 and AtFtsZ2-2) and found that the genes encode polypeptides of 478 and 473 amino acids, respectively, and both contain N-terminal extensions beyond what have previously been predicted. The N-terminal regions of both AtFtsZ2-1 and AtFtsZ2-2 were expressed as green fluorescent protein (GFP) fusions under the cauliflower mosaic virus 35S promoter in bombarded tobacco cells. Confocal laser scanning microscopy revealed both fusions exclusively localized to chloroplasts, demonstrating that the N-terminal regions function as chloroplast-targeting signals in vivo. Thus, FtsZ2 proteins function within chloroplasts.  相似文献   

8.
X Ma  Q Sun  R Wang  G Singh  E L Jonietz    W Margolin 《Journal of bacteriology》1997,179(21):6788-6797
FtsZ and FtsA are essential for cell division in Escherichia coli and colocalize to the septal ring. One approach to determine what regions of FtsA and FtsZ are important for their interaction is to identify in vivo interactions between FtsA and FtsZ from different species. As a first step, the ftsA genes of Rhizobium meliloti and Agrobacterium tumefaciens were isolated and characterized. In addition, an FtsZ homolog that shared the unusual C-terminal extension of R. meliloti FtsZ1 was found in A. tumefaciens. In order to visualize their localization in cells, we tagged these proteins with green fluorescent protein (GFP). When R. meliloti FtsZ1-GFP or A. tumefaciens FtsZ-GFP was expressed at low levels in E. coli, they specifically localized only to the E. coli FtsZ ring, possibly by coassembly. When A. tumefaciens FtsA-GFP or R. meliloti FtsA-GFP was expressed in E. coli, they failed to localize detectably to the E. coli FtsZ ring. However, when R. meliloti FtsZ1 was coexpressed with them, fluorescence localized to a band at the midcell division site, strongly suggesting that FtsA from either A. tumefaciens or R. meliloti can bind directly to its cognate FtsZ. As expected, GFP-tagged FtsZ1 and FtsA from either R. meliloti or A. tumefaciens localized to the division site in A. tumefaciens cells. Therefore, the 61 amino acid changes between A. tumefaciens FtsA and R. meliloti FtsA do not prevent their direct interaction with FtsZ1 from either species, suggesting that those residues are not essential for protein-protein contacts. Moreover, the failure of the two non-E. coli FtsA derivatives to interact strongly with E. coli FtsZ in this in vivo system unless their cognate FtsZ was also present suggests that FtsA-FtsZ interactions have coevolved and that the residues which differ between the E. coli proteins and those of the two other species may be important for specific interactions.  相似文献   

9.
A cytolytic toxin gene encoding a 30.1-kDa Cyt2Bb1 toxin protein from B. thuringiensis subsp. jegathasan was cloned employing a limited-growth PCR screening method with forward and reverse oligonucleotide primers designed from N-terminal amino acid sequences of native and trypsin-cleaved protein, respectively. The expressed protein showed little cross-reactivity to the antibody raised against the Cyt1Aa protein. Unlike Cyt1Aa and Cyt2Aa expression, there was little or no visible crystal inclusion formation under microscopic observation. The amino acid sequence alignment indicated 31 and 66% identity to Cyt1Aa and Cyt2Aa, respectively. The sequence alignment for five known cytolytic proteins indicated three highly conserved regions, two in the loop regions between alpha-helices and beta-sheets and one in the loop region between beta-sheets 5 and 6. beta-Blocks 4 to 7 are also conserved, not only structurally but also among the amino acids in the hydrophobic faces. Mosquitocidal activity assays indicated that the Cyt2Bb toxin had less toxicity than Cyt1Aa and had about 600-times-lower toxicity than the wild-type whole toxin crystal. However, both the Cyt2Bb and the Cyt1Aa toxin showed comparable levels of hemolytic activity.  相似文献   

10.
We have provided evidence that exposure of human cells to protein kinase inhibitors results in decreased invasion of these cells by Bartonella bacilliformis in a dose-dependent manner. Preincubation of human laryngeal epithelial cells in the presence of genistein, a tyrosine protein kinase inhibitor, decreased the invasion of these cells by B. bacilliformis significantly. Further, exposure of normal human umbilical vein endothelial cells to staurosporine, a potent inhibitor of protein kinase C and some tyrosine protein kinases, resulted in a considerable reduction in the number of organisms internalized by these cells. Moreover, Bartonella infection of HEp-2 cells induced tyrosine phosphorylation of several Triton X-100 soluble proteins with approximate molecular masses of 243, 215 179, 172 (doublet), 160, 145 and 110 kDa that were absent or reduced in the presence of genistein in cells after 1 h of infection. Exposure of HEp-2 cell monolayers to anti-alpha 5 and anti-beta 1 chain integrin monoclonal antibodies resulted in a moderate decrease in the invasion of these cells, suggesting a possible role of alpha 5 beta 1 integrins in the uptake of Bartonella into nucleated cells.  相似文献   

11.
Azospirillum brasilense can display a single polar flagellum and several lateral flagella. The A. brasilense Sp7 gene laf1, encoding the flagellin of the lateral flagella, was isolated and sequenced. The derived protein sequence is extensively similar to those of the flagellins of Rhizobium meliloti, Agrobacterium tumefaciens, Bartonella bacilliformis, and Caulobacter crescentus. An amino acid alignment shows that the flagellins of these bacteria are clustered and are clearly different from other known flagellins. A laf1 mutant, FAJ0201, was constructed by replacing an internal part of the laf1 gene by a kanamycin resistance-encoding gene cassette. The mutant is devoid of lateral flagella but still forms the polar flagellum. This phenotype is further characterized by the abolishment of the capacities to swarm on a semisolid surface and to spread from a stab inoculation in a semisolid medium. FAJ0201 shows a normal wheat root colonization pattern in the initial stage of plant root interaction.  相似文献   

12.
W Wang  R Skopp  M Scofield    C Price 《Nucleic acids research》1992,20(24):6621-6629
We have identified two 1.6 kb macronuclear DNA molecules from Euplotes crassus that hybridize to the alpha subunit of the Oxytricha telomere protein. We have shown that one of these molecules encodes the 51 kDa Euplotes telomere protein while the other appears to encode a homolog of the telomere protein. Although this homolog clearly differs in sequence from the Euplotes telomere protein, the two proteins share extensive amino acid sequence identity with each other and with the alpha subunit of the Oxytricha telomere protein. In all three proteins 35-36% of the amino acids are identical, while 54-56% are similar. The most extended regions of sequence conservation map within the N-terminal section; this section has been shown to comprise the DNA-binding domain in the Euplotes telomere protein. Our findings suggest that some of the conserved amino acids may be involved in DNA recognition and binding. The gene encoding the telomere protein homolog contains two introns; one of these introns is only 24 bp in length. This is the smallest mRNA intron reported to date.  相似文献   

13.
Infections in humans by Bartonella bacilliformis, but not Bartonella henselae, are characterized by invasion of red cells. Supernatants of culture medium from B. bacilliformis and B. henselae each contain a protein which causes invagination of membranes of human red cells and formation of intracellular vacuoles. These two proteins are very similar in molecular mass, heat stability and mechanism of action. B. henselae does not bind to human red cells, but human red cell ghost membrane proteins were recognized by both bacteria, five by B. bacilliformis and the same five, and one additional protein by B. henselae. Two of these proteins had molecular masses consistent with actin and spectrin. Actin binds to five electroblotted outer membrane proteins from B. henselae and four of these proteins are retained on an actin-Sepharose column.  相似文献   

14.
The alignment of all the CNBr-cleavage peptides of fragment Bb from human Factor B (a component of the alternative pathway of complement) was determined. This was derived from cleavage of the fragment Bb at arginine residues by using trypsin and clostripain. Details of the isolation and amino acid sequences of these peptides are given. Together with previously published N-terminal sequences of the CNBr-cleavage peptides [Christie & Gagnon (1982) Biochem. J. 201, 555-567], this provides the amino acid sequence of the N-terminal half of fragment Bb.  相似文献   

15.
Analysis of the interaction of FtsZ with itself, GTP, and FtsA.   总被引:30,自引:9,他引:21       下载免费PDF全文
The interaction of FtsZ with itself, GTP, and FtsA was examined by analyzing the sensitivity of FtsZ to proteolysis and by using the yeast two-hybrid system. The N-terminal conserved domain consisting of 320 amino acids bound GTP, and a central region of FtsZ, encompassing slightly more than half of the protein, was cross-linked to GTP. Site-directed mutagenesis revealed that none of six highly conserved aspartic acid and asparagine residues were required for GTP binding. These results indicate that the specificity determinants for GTP binding are different than those for the GTPase superfamily. The N-terminal conserved domain of FtsZ contained a site for self-interaction that is conserved between FtsZ proteins from distantly related bacterial species. FtsZ320, which was truncated at the end of the conserved domain, was a potent inhibitor of division although it expressed normal GTPase activity and could polymerize. FtsZ was also found to interact directly with FtsA, and this interaction could also be observed between these proteins from distantly related bacterial species.  相似文献   

16.
CAP-50 is a member of annexin family proteins which binds specifically to calcyclin in a Ca2+ dependent manner (Tokumitsu. H., Mizutani. A., Minami. H., Kobayashi. R., and Hidaka. H. (1992) J. Biol. Chem. 267,8919-8924). The cDNA representing the rabbit form of this protein has been cloned from rabbit lung cDNA library. Sequence analysis of two overlapping clones revealed a 81-nucleotides 5'-nontranslated region, 1512-nucleotides of open reading frame, a 672-nucleotides 3'-nontranslated region, and a poly(A) tail. Authenticity of the clones was confirmed by comparison of portions of the deduced amino acid sequence with eight sequences of proteolytic peptides obtained from rabbit lung protein. CAP-50 cDNA encodes a 503 residue protein with a calculated M(r) of 54,043 and shows that the protein is composed of four imperfect repeats and hydrophobic N-terminal region. C-terminal region including four imperfect repeats shows 58.1% identity with human synexin (annexin VII), 48.0% identity with annexin I, 47.4% identity with annexin II, 60.1% identity with annexin IV, 54.5% identity with annexin V. Hydrophobic N-terminal region composed of 202 amino acid residues is not homologous with other annexin proteins suggesting that CAP-50 is a novel member of annexin family proteins.  相似文献   

17.
Bacterial cell division is mediated by a multi-protein machine known as the "divisome", which assembles at the site of cell division. Formation of the divisome starts with the polymerization of the tubulin-like protein FtsZ into a ring, the Z-ring. Z-ring formation is under tight control to ensure bacteria divide at the right time and place. Several proteins bind to the Z-ring to mediate its membrane association and persistence throughout the division process. A conserved stretch of amino acids at the C-terminus of FtsZ appears to be involved in many interactions with other proteins. Here, we describe a novel pull-down assay to look for binding partners of the FtsZ C-terminus, using a HaloTag affinity tag fused to the C-terminal 69 amino acids of B. subtilis FtsZ. Using lysates of Escherichia coli overexpressing several B. subtilis cell division proteins as prey we show that the FtsZ C-terminus specifically pulls down SepF, but not EzrA or MinC, and that the interaction depends on a conserved 16 amino acid stretch at the extreme C-terminus. In a reverse pull-down SepF binds to full-length FtsZ but not to a FtsZΔC16 truncate or FtsZ with a mutation of a conserved proline in the C-terminus. We show that the FtsZ C-terminus is required for the formation of tubules from FtsZ polymers by SepF rings. An alanine-scan of the conserved 16 amino acid stretch shows that many mutations affect SepF binding. Combined with the observation that SepF also interacts with the C-terminus of E. coli FtsZ, which is not an in vivo binding partner, we propose that the secondary and tertiary structure of the FtsZ C-terminus, rather than specific amino acids, are recognized by SepF.  相似文献   

18.
19.
ClpXP is a two-component ATP-dependent protease that unfolds and degrades proteins bearing specific recognition signals. One substrate degraded by Escherichia coli ClpXP is FtsZ, an essential cell division protein. FtsZ forms polymers that assemble into a large ring-like structure, termed the Z-ring, during cell division at the site of constriction. The FtsZ monomer is composed of an N-terminal polymerization domain, an unstructured linker region and a C-terminal conserved region. To better understand substrate selection by ClpXP, we engineered FtsZ mutant proteins containing amino acid substitutions or deletions near the FtsZ C-terminus. We identified two discrete regions of FtsZ important for degradation of both FtsZ monomers and polymers by ClpXP in vitro. One region is located 30 residues away from the C-terminus in the unstructured linker region that connects the polymerization domain to the C-terminal region. The other region is near the FtsZ C-terminus and partially overlaps the recognition sites for several other FtsZ-interacting proteins, including MinC, ZipA and FtsA. Mutation of either region caused the protein to be more stable and mutation of both caused an additive effect, suggesting that both regions are important. We also observed that in vitro MinC inhibits degradation of FtsZ by ClpXP, suggesting that some of the same residues in the C-terminal site that are important for degradation by ClpXP are important for binding MinC.  相似文献   

20.
Here we report the characterization of a human mRNA encoding a novel protein denoted C1orf9 (chromosome 1 open reading frame 9). The cDNA sequence, derived from a testis cDNA library, contains 5700 bp which encodes an open reading frame of 1254 amino acids. The deduced protein contains a putative N-terminal signal peptide and one putative transmembrane region, indicating membrane localization. No significant homology was found with known characterized proteins. However, a 150 amino acid region has significant homology to deduced protein sequences from other organisms, including Caenorhabditis elegans (43% identity), Saccharomyces cerevisiae (47% identity), Schizosaccharomyces pombe (48% identity), and two proteins from Arabidopsis thaliana (42% and 40% identity), suggesting a novel family of conserved domains. The C1orf9 gene was assigned to chromosome 1q24. The gene spans approximately 78.7 kb and is organized into at least 24 exons. Expression analysis revealed a single C1orf9 mRNA species of approximately 6.0 kb with a predominant expression in pancreas and testis, and only low levels of expression in other tissues examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号