首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The small microchiropteran bat, Chalinolobus gouldii, undergoes large daily fluctuations in metabolic rate, body temperature, and breathing pattern. These alterations are accompanied by changes in surfactant composition, predominantly an increase in cholesterol relative to phospholipid during torpor. Furthermore, the surface activity changes, such that the surfactant functions most effectively at that temperature which matches the animal's activity state. Here, we examine the surface activity of surfactant from bats during arousal from torpor. Bats were housed at 24 degrees C on an 8:16h light:dark cycle and their surfactant was collected during arousal (28相似文献   

2.
The costs of arousal from induced torpor were measured in the striped-faced dunnart (Sminthopsis macroura; ca. 25 g) under two experimental ambient temperature cycles. The sinusoidal-type temperature cycles were designed to evaluate the effects of passive, ambient temperature heating during arousal from torpor in these insectivorous marsupials. It was hypothesised that diel ambient temperature cycles may offer significant energy savings during arousal in animals that employ daily torpor in summer as a response to unpredictable food availability. The cost of arousal in animals in which passive, exogenous heating occurred was significantly lower than that in animals not exposed to an ambient temperature cycle. The total cost of all three phases of torpor (entry, maintenance and arousal) was almost halved when animals were exposed to an ambient heating cycle from 15 °C to 25 °C over a 24-h period. In all animals, irrespective of the experimental ambient temperature cycle employed, the minimum torpor body temperature was 17–18 °C. The body temperature (Tb) of animals exposed to exogenous heating increased from the torpor Tb minimum to a mean value of 22.59 °C before endogenous heat production commenced. This relatively small increase in Tb of ca. 5 °C through `free' passive heating was sufficient to account for the significant ca. three-fold decrease in the cost of arousal and may represent an important energetic aid to free-ranging animals. Accepted: 4 October 1998  相似文献   

3.
Seasonal cold temperatures require mammals to use morphological, behavioural, or physiological traits to survive periods of extreme cold and food shortage. Torpor is a physiological state that minimizes energy requirements by decreasing resting metabolic rate (MR) and body temperature (Tb). Many rodent species are capable of torpor, however, evidence in northern and southern flying squirrels (Glaucomys sabrinus and Glaucomys volans, respectively) has remained anecdotal. We experimentally attempted to induce torpor in wild-caught flying squirrels by lowering ambient temperature (Ta) and measuring MR using open-flow respirometry. We also studied seasonal differences in MR and Tb at various Ta. Both MR and Tb provided evidence for torpor in flying squirrels, but only infrequent, shallow torpor. MR decreased infrequently and any decreases were rarely sustained for longer than one hour. We found a significant positive relationship between Ta and Tb only in G. volans, which suggests that G. volans is more susceptible to low Ta compared with G. sabrinus, possibly due to their small body size. We observed no substantive seasonal or interspecific differences in the relation between MR and Ta, with the exception that northern flying squirrels expended more energy at cold Ta during warm season trials than other species-season combinations. The infrequency of torpor use in our experiments suggests that other energy-saving strategies, such as social thermoregulation, may limit the reliance on torpor in this lineage.  相似文献   

4.
Dietary cholesterol can affect both body lipid composition and steroid hormone concentration. We investigated whether a diet rich in cholesterol influences torpor patterns of hibernating chipmunks (Tamias amoenus) and, if so, whether these changes are better explained by diet-induced changes in body lipid composition or the concentration of testosterone, which at high levels inhibits torpor. Two groups of chipmunks were maintained either on a cholesterol diet (rodent chow containing 10% cholesterol) or a control diet (rodent chow) during pre-hibernation fattening and throughout the hibernation season. Torpid chipmunks on the cholesterol diet had significantly lower minimum body temperatures (−0.2 ± 0.2 vs +0.6 ± 0.2 °C), lower metabolic rates (0.029 ± 0.002 ml O2 g−1h−1 vs 0.035 ± 0.001 ml O2 g−1h−1), and longer torpor bouts at −1 °C (6.8 ± 0.5 vs 4.1 ± 1.0 days) than chipmunks on the control diet. Dietary cholesterol resulted in a significant increase in blood plasma cholesterol (sevenfold), liver cholesterol content (6.9-fold) and liver triglyceride content (3.5-fold) in comparison to controls. In contrast, dietary cholesterol had no detectable effect on the concentration of plasma testosterone, which was very low in both groups. Since torpor was deeper and longer in animals on the cholesterol diet our study suggests that torpor patterns of chipmunks were either directly affected by the dietary cholesterol or via changes in body lipid composition. Accepted: 22 January 1997  相似文献   

5.
Thermoregulation, energetics and patterns of torpor in the pygmy mouse lemur, Microcebus myoxinus, were investigated under natural conditions of photoperiod and temperature in the Kirindy/CFPF Forest in western Madagascar. M. myoxinus entered torpor spontaneously during the cool dry season. Torpor only occurred on a daily basis and torpor bout duration was on average 9.6 h, and ranged from 4.6 h to 19.2 h. Metabolic rates during torpor were reduced to about 86% of the normothermic value. Minimum body temperature during daily torpor was 6.8 °C at an ambient temperature of 6.3 °C. Entry into torpor occurred randomly between 2000 and 0620 hours, whereas arousals from torpor were clustered around 1300 hours within a narrow time window of less than 4 h. Arousal from torpor was a two-step process with a first passive climb of body temperature to a mean of 27 °C, carried by the daily increase of ambient temperature when oxygen consumption remained more or less constant, followed by a second active increase of oxygen consumption to further raise the body temperature to normothermic values. In conclusion, daily body temperature rhythms in M. myoxinus further reduce the energetic costs of daily torpor seen in other species: they extend to unusually low body temperatures and consequently low metabolic rates in torpor, and they employ passive warming to reduce the energetic costs of arousal. Thus, these energy-conserving adaptations may represent an important energetic aid to the pygmy mouse lemur and help to promote their individual fitness. Accepted: 2 November 1999  相似文献   

6.
Heterothermic mammals increase the proportion of polyunsaturated fatty acids (PUFA) in their body fats prior to entering torpor. Because PUFA have low melting points, it is thought that they play an important role in maintaining the fluidity of depot fats and membrane phospholipids at low body temperatures. However, PUFA are more prone to autoxidation when exposed to reactive oxygen species (ROS) during torpor and during the periodic arousals that characterize hibernation. A lack of PUFA or an excess of PUFA may constrain the use of torpor by heterothermic mammals. We performed a mixed model meta-analysis of 17 controlled-feeding studies to test the effect of dietary PUFA on the depth and expression of torpor by daily heterotherms and hibernators. We also reviewed the literature on the PUFA content of the diet and depot fats of heterothermic mammals to address two principal topics: (1) Do low dietary levels of PUFA reduce the expression of torpor under laboratory conditions and, if so, are free-ranging animals constrained by a lack of PUFA? (2) Do high dietary levels of PUFA result in a reduction in the use, depth, and duration of torpor and, if so, do free-ranging animals seek to optimize rather than maximize PUFA intake? Low-PUFA diets consistently increase the lower setpoint for body temperature and minimum metabolic rate for both hibernators and daily heterotherms. Above the lower setpoint, low-PUFA diets usually increase body temperature and metabolic rate and decrease the duration of torpor bouts and this effect is similar for hibernators and daily heterotherms. Free-ranging rodent hibernators have dietary PUFA intakes that are far higher than those of the low-PUFA diets offered in controlled-feeding experiments, so these hibernators may never experience the constraints associated with a lack of PUFA. Diets of free-ranging insectivorous bats and echidnas have PUFA levels that are less than half as high as those offered in experimental low-PUFA diets, yet they exhibit deep and extended bouts of torpor. We argue that alternate mechanisms exist for maintaining the fluidity of body fats and that high-PUFA intake may not be a prerequisite for deep and extended bouts of torpor. Four studies indicate that animals that were fed high-PUFA diets are reluctant to enter torpor and show shallower and shorter torpor bouts. Although authors attribute this response to autoxidation, these animals did not have a higher PUFA content in their depot fats than animals where PUFA was shown to enhance torpor. We suggest that these contradictory results indicate inter-specific or inter-individual variation in the ability to control ROS and limit autoxidation of PUFA. High dietary levels of PUFA will constrain the expression of torpor only when the oxidative challenge exceeds the capacity of the antioxidant defence system. Studies of diet selection indicate that insectivorous species with low dietary PUFA levels seek to maximize PUFA intake. However, herbivorous species that have access to plants and plant parts of high-PUFA content do not appear to maximize PUFA intake. These data suggest that animals attempt to optimize rather than maximize PUFA intake. The effect of PUFA should be viewed in the light of a cost-benefit trade-off, where the benefit of high-PUFA intake is an easier access to low body temperatures and the cost is increased risk of autoxidation.  相似文献   

7.
Physiological variables of torpor are strongly temperature dependent in placental hibernators. This study investigated how changes in air temperature affect the duration of torpor bouts, metabolic rate, body temperature and weight loss of the marsupial hibernator Burramys parvus (50 g) in comparison to a control group held at a constant air temperature of 2°C. The duration of torpor bouts was longest (14.0±1.0 days) and metabolic rate was lowest (0.033±0.001 ml O2·g-1·h-1) at2°C. At higher air temperatures torpor bouts were significantly shorter and the metabolic rate was higher. When air temperature was reduced to 0°C, torpor bouts also shortened to 6.4±2.9 days, metabolic rate increased to about eight-fold the values at 2°C, and body temperature was maintained at the regulated minimum of 2.1±0.2°C. Because air temperature had such a strong effect on hibernation, and in particular energy expenditure, a change in climate would most likely increase winter mortality of this endangered species.Abbreviationst STP standard temperature and pressure - T a air temperature - T b body temperature - VO2 rate of oxygen consumption  相似文献   

8.
Colies are one of the phylogenetically oldest groups among the modern birds; the earliest finds are from about 35 million years ago. In states of energy deficiency they can undergo torpor during the night when metabolic rate and body temperature are decreased drastically to save energy (up to 90%). Here, we report the first measurements of heart rate (HR) by long-term telemetry, in seven individuals of blue-naped mousebirds (Urocolius macrourus); simultaneously and continuously metabolic rate (MR) was determined. HR at night was about 20% below the range of expected values (246/310 bpm). Mean oxygen pulse (O2 output/stroke) in normothermic birds was in a range of 0.019–0.020 ml O2/stroke; during torpor nights this value decreased significantly to 0.0086. Mean cardiac output ranged from 724 to 1214 ml blood/kg per min; in torpid birds this value fell to 400 ml blood/kg per min. Cardiac regulation of metabolic demand within an activity phase (day or night) is mainly achieved by chronotropy. Inotropy contributes at most 25% to the differences in MR between day and night (ca. 40%). Entry into torpor is brought about mainly by changes in HR (decrease from 240 to 90 bpm); after torpor levels have been reached, there is an increase in HR (to 200 bpm) and a sharp decrease (−53%) in stroke volume. This regulation by inotropy is also characteristic of arousal from torpor.  相似文献   

9.
Hibernation and daily torpor involve substantial decreases in body temperature and metabolic rate, allowing birds and mammals to cope with cold environments and/or limited food. Regulated suppression of mitochondrial metabolism probably contributes to energy savings: state 3 (phosphorylating) respiration is lower in liver mitochondria isolated from mammals in hibernation or daily torpor compared to normothermic controls, although data on state 4 (non-phosphorylating) respiration are equivocal. However, no suppression is seen in skeletal muscle, and there is little reliable data from other tissues. In both daily torpor and hibernation, liver state 3 substrate oxidation is suppressed, especially upstream of electron transport chain complex IV. In hibernation respiratory suppression is reversed quickly in arousal even when body temperature is very low, implying acute regulatory mechanisms, such as oxaloacetate inhibition of succinate dehydrogenase. Respiratory suppression depends on in vitro assay temperature (no suppression is evident below ~30 degrees C) and (at least in hibernation) dietary polyunsaturated fats, suggesting effects on inner mitochondrial membrane phospholipids. Proton leakiness of the inner mitochondrial membrane does not change in hibernation, but this also depends on dietary polyunsaturates. In contrast proton leak increases in daily torpor, perhaps limiting reactive oxygen species production.  相似文献   

10.
The physiological signal for torpor initiation appears to be related to fuel availability. Studies on metabolic fuel inhibition in placental heterotherms show that glucose deprivation via the inhibitor 2-deoxy-D-glucose (2DG) initiates a torpor-like state, whereas fatty acid deprivation via mercaptoacetate (MA) does not. As previous studies using inhibitors were limited to quantifying body temperature in placentals, we investigated whether inhibition of glucose or fatty acids for cellular oxidation induces torpor in the marsupial hibernator Cercartetus nanus, and how the response of metabolic rate is related to body temperature. Glucoprivation initiated a torpor-like state in C. nanus, but animals had much higher minimum body temperatures and metabolic rates than those of torpid food-deprived animals and arousal rates were slower. Moreover, 2DG-treated animals were thermoregulating at ambient temperatures of 20 and 12 °C, whereas food-deprived torpid animals were thermo-conforming. We suggest that glucoprivation reduces the hypothalamic body temperature set point, but only by about 8 °C rather than the approximately 28 °C during natural torpor. Reduced fatty acid availability via MA also induced a torpor-like state in some C. nanus, with physiological variables that did not differ from those of torpid food-deprived animals. We conclude that reduced glucose availability forms only part of the physiological trigger for torpor initiation in C. nanus. Reduced fatty acid availability, unlike for placental heterotherms, may be an important cue for torpor initiation in C. nanus, perhaps because marsupials lack functional brown adipose tissue.Abbreviations BAT brown adipose tissue - BMR basal metabolic rate - 2DG 2-deoxy-D-glucose - FD food deprived - GLM general linear models - MA mercaptoacetate - MR metabolic rate - RQ respiratory quotient - Ta ambient temperature - Tb body temperature - Tset body temperature set pointCommunicated by I.D. Hume  相似文献   

11.
The fragment of the skull of Orce attributed to the genusHomo is compared with fossil and extant mammals. The anatomical analysis supports the idea of ascribing it to an infantile individual of the genusHomo, close to the primitive Turkana specimens.  相似文献   

12.
The circadian master clocks in the brains of mammals and insects are compared in respect to location, organization and function. They show astonishing similarities. Both clocks are anatomically and functionally connected to the optic system and possess multiple output pathways allowing synchronization with the environmental light-dark cycles as well as the control of diverse endocrine, autonomic and behavioral functions. Both circadian master clocks are composed of multiple neurons, which are organized in populations with different morphology, physiology and neurotransmitter content and appear to subserve different functions. In the hamster and in the cockroach, the master clock consists of a core region that gets input from the eyes, and a shell region from which the majority of output projections originate. Communication between core and shell, between all other populations of clock neurons as well as between the master clocks of both brain hemispheres is a prerequisite of normal rhythmic function. Phenomena like rhythm splitting and internal desynchronization can be observed under constant light conditions and are caused by the uncoupling of the master clocks of both brain hemispheres.  相似文献   

13.
The aim of this study was to compare the effects of small-sided soccer games (SSSGs) and traditional warm-up (TWU) routines on physical fitness qualities in soccer players. Following a between-subject, randomized design, amateur-level soccer players were assigned to a SSSG warm-up (n = 10; age: 19.3 ± 2.8 years) or TWU group (n = 10; age: 19.3 ± 2.4 years). Players completed multiple trials of 10-m and 30-m linear sprints, change-of-direction speed (CODS) tests, and countermovement jumps (CMJ) prior to and following the warm-up routine. Separate mixed ANOVAs were performed to assess group effects (SSSG vs. TWU), time effects within each group (pre- vs. post-warm-up), and their interaction for each physical fitness quality. No significant interaction effects were observed for any dependent variable. Significant improvements were evident between baseline and follow-up measurements for 10-m sprint time (p = 0.002, Hedges’ g effect size [g] = 0.59) and CMJ variables (height: p = 0.016, g = 0.20; power: p = 0.003, g = 0.19; force: p = 0.002, g = 0.14) in the TWU group and for CODS performance time (p = 0.012, g = 0.51) and CMJ variables (height: p < 0.001, g = 0.46; power: p = 0.002, g = 0.35; force: p = 0.001, g = 0.27) in the SSSG warm-up group. Both SSSG and TWU protocols improved selected physical fitness qualities with SSSG more effective at improving CODS and CMJ performance, and TWU more effective at improving linear speed. Soccer coaches may choose between SSSG or traditional warm-up activities according to player needs and preferences; however, the superior effects of SSSG suggest it might offer greater benefits than TWU in preparing players for optimal physical output.  相似文献   

14.
The effects of cold hypoxia were examined during a time-course at 2 °C on levels of glycolytic metabolites: glycogen, glucose, glucose-1-phosphate, glucose-6-phosphate, fructose-6-phosphate, fructose-1,6-bisphosphate, phosphoenolpyruvate, pyruvate, lactate and energetics (ATP, ADP, AMP) of livers from rats and columbian ground squirrels. Responses of adenylate pools reflected the energy imbalance created during cold hypoxia in both rat and ground squirrel liver within minutes of organ isolation. In rat, ATP levels and energy charge values for freshly isolated livers were 2.54 mol·g-1 and 0.70, respectively. Within 5 min of cold hypoxia, ATP levels had dropped well below control values and by 8 h storage, ATP, AMP, and energy charge values were 0.21 mol·g-1, 2.01 mol·g-1, and 0.17, respectively. In columbian ground squirrels the patterns of rapid ATP depletion and AMP accumulation were similar to those found in rat. In rat liver, enzymatic regulatory control of glycolysis appeared to be extremely sensitive to the decline in cellular energy levels. After 8 h cold hypoxia levels of fructose-6-phosphate decreased and fructose-1,6-bisphosphate increased, thus reflecting an activation of glycolysis at the regulatory step catalysed by phospho-fructokinase fructose-1,6-bisphosphatase. Despite an initial increase in flux through glycolysis over the first 2 min (lactate levels increased 3.7 mol·g-1), further flux through the pathway was not permitted even though glycolysis was activated at the phosphofructokinase/fructose-1,6-bisphosphatase locus at 8 h, since supplies of phosphorylated substrate glucose-1-phosphate or glucose-6-phosphate remained low throughout the duration of the 24-h period. Conversely, livers of Columbian ground squirrels exhibited no activation or inactivation of two key glycolytic regulatory loci, phosphofructokinase/fructose-1,6-bisphosphatase and pyruvate kinase/phosphoenolpyruvate carboxykinase and pyruvate carboxylase. Although previous studies have shown similar allosteric sensitivities to adenylates to rat liver phospho-fructokinase, there was no evidence of an activation of the pathway as a result of decreasing high energy adenylate, ATP or increasing AMP levels. The lack of any apparent regulatory control of glycosis during cold hypoxia may be related to hibernator-specific metabolic adaptations that are key to the survival of hypothermia during natural bouts of hibernation.Abbreviations DHAP dihydroxyacetonephosphate - EC energy charge - F1,6P2 fructose-1,6-bisphosphate - F2,6P2 fructose-2,6-bisphosphate - F6P fructose-6-phosphate - FBP fructose-1,6-bisphosphatase - G1P glucose-1-phosphate - G6P glucose-6-phosphate - GAP glyceraldehyde-3-phosphate - GAPDH glyceraldehyde-3-phosphate dehydrogenase - L/R lactobionate/raffinose-based solution - MR metabolic rate - PDH pyruvate dehydrogenase - PEP phosphoenolpyruvate - PEPCK & PC phosphoenolpyruvate carboxykinase and pyruvate carboxylase - PFK phosphofructokinase; PK, pyruvate kinase - Q 10 the effect of a 10 °C drop in temperature on reaction rates (generally, Q 10=2–3) - TA total adenylates - UW solution University of Wisconsin solution (L/R-based)  相似文献   

15.
Contrary to much supposition, recent studies, typically at global and continent-wide scales, have documented a positive relationship between spatial variations in human density and species richness of selected groups of vertebrates. How widely this pattern generalises remains unknown, and particularly how well it extends to analyses at the extent of a country and at reasonably fine spatial resolution, and to regions with well-developed mechanised agricultural infrastructure. Here, we demonstrate that there is a positive relationship between human density and mammal species richness across Mexico, and that this appears to follow from similar patterns between spatial environmental variation (particularly net primary productivity, precipitation and temperature) and both human density and mammal species richness. These results have some potentially important implications for conservation planning in the region, particularly given that optimal complementary sets of areas to represent all mammal species in Mexico tend to lie in areas of disproportionately high human density.  相似文献   

16.
The transition from wakefulness to sleep is marked by pronounced changes in brain activity. The brain rhythms that characterize the two main types of mammalian sleep, slow‐wave sleep (SWS) and rapid eye movement (REM) sleep, are thought to be involved in the functions of sleep. In particular, recent theories suggest that the synchronous slow‐oscillation of neocortical neuronal membrane potentials, the defining feature of SWS, is involved in processing information acquired during wakefulness. According to the Standard Model of memory consolidation, during wakefulness the hippocampus receives input from neocortical regions involved in the initial encoding of an experience and binds this information into a coherent memory trace that is then transferred to the neocortex during SWS where it is stored and integrated within preexisting memory traces. Evidence suggests that this process selectively involves direct connections from the hippocampus to the prefrontal cortex (PFC), a multimodal, high‐order association region implicated in coordinating the storage and recall of remote memories in the neocortex. The slow‐oscillation is thought to orchestrate the transfer of information from the hippocampus by temporally coupling hippocampal sharp‐wave/ripples (SWRs) and thalamocortical spindles. SWRs are synchronous bursts of hippocampal activity, during which waking neuronal firing patterns are reactivated in the hippocampus and neocortex in a coordinated manner. Thalamocortical spindles are brief 7–14 Hz oscillations that may facilitate the encoding of information reactivated during SWRs. By temporally coupling the readout of information from the hippocampus with conditions conducive to encoding in the neocortex, the slow‐oscillation is thought to mediate the transfer of information from the hippocampus to the neocortex. Although several lines of evidence are consistent with this function for mammalian SWS, it is unclear whether SWS serves a similar function in birds, the only taxonomic group other than mammals to exhibit SWS and REM sleep. Based on our review of research on avian sleep, neuroanatomy, and memory, although involved in some forms of memory consolidation, avian sleep does not appear to be involved in transferring hippocampal memories to other brain regions. Despite exhibiting the slow‐oscillation, SWRs and spindles have not been found in birds. Moreover, although birds independently evolved a brain region—the caudolateral nidopallium (NCL)—involved in performing high‐order cognitive functions similar to those performed by the PFC, direct connections between the NCL and hippocampus have not been found in birds, and evidence for the transfer of information from the hippocampus to the NCL or other extra‐hippocampal regions is lacking. Although based on the absence of evidence for various traits, collectively, these findings suggest that unlike mammalian SWS, avian SWS may not be involved in transferring memories from the hippocampus. Furthermore, it suggests that the slow‐oscillation, the defining feature of mammalian and avian SWS, may serve a more general function independent of that related to coordinating the transfer of information from the hippocampus to the PFC in mammals. Given that SWS is homeostatically regulated (a process intimately related to the slow‐oscillation) in mammals and birds, functional hypotheses linked to this process may apply to both taxonomic groups.  相似文献   

17.
Most studies on animal physiology and behaviour are conducted in captivity without verification that data are representative of free-ranging animals. We provide the first quantitative comparison of daily torpor, thermal biology and activity patterns, conducted on two groups of sugar gliders (Petaurus breviceps, Marsupialia) exposed to similar thermal conditions, one in captivity and the other in the field. Our study shows that activity in captive gliders in an outdoor aviary is restricted to the night and largely unaffected by weather, whereas free-ranging gliders omit foraging on cold/wet nights and may also forage in the afternoon. Torpor occurrence in gliders was significantly lower in captivity (8.4% after food deprivation; 1.1% for all observations) than in the field (25.9%), mean torpor bout duration was shorter in captivity (6.9 h) than in the field (13.1 h), and mean body temperatures during torpor were higher in captivity (25.3°C) than in the field (19.6°C). Moreover, normothermic body temperature as a function of air temperature differed between captive and free-ranging gliders, with a >3°C difference at low air temperatures. Our comparison shows that activity patterns, thermal physiology, use of torpor and patterns of torpor may differ substantially between the laboratory and field, and provides further evidence that functional and behavioural data on captive individuals may not necessarily be representative of those living in the wild.  相似文献   

18.
19.
Opportunistic parasite species, capable of exploiting several different host species, do not achieve the same abundance on all these hosts. Parasites achieve maximum abundance on their principal host species, and lower abundances on their auxiliary host species. Taxonomic relatedness between the principal and auxiliary host species may determine what abundance a parasite can achieve on its auxiliary hosts, as relatedness should reflect similarities among host species in ecological, physiological and/or immunological characters. We tested this hypothesis with fleas (Siphonaptera) parasitic on small Holarctic mammals. We determined whether the abundance of a flea in its auxiliary hosts decreases with increasing taxonomic distance of these hosts from the principal host. Using data on 106 flea species from 23 regions, for a total of 194 flea-locality combinations, we found consistent support for this relationship, both within and across regions, and even after controlling for the potentially confounding effect of flea phylogeny. These results are most likely explained by a decrease in the efficiency of the parasite's evasive mechanisms against the host's behavioural and immune defences with increasing taxonomic distance from the principal host. Our findings suggest that host switching over evolutionary time may be severely constrained by the coupling of parasite success with the relatedness between new hosts and the original host.  相似文献   

20.
Most animal toxins are short proteins that appear in venom and vary in sequence, structure and function. A common characteristic of many such toxins is their apparent structural stability. Sporadic instances of endogenous toxin-like proteins that function in non-venom context have been reported. We have utilized machine learning methodology, based on sequence-derived features and guided by the notion of structural stability, in order to conduct a large-scale search for toxin and toxin-like proteins. Application of the method to insect and mammalian sequences revealed novel families of toxin-like proteins. One of these proteins shows significant similarity to ion channel inhibitors that are expressed in cone snail and assassin bug venom, and is surprisingly expressed in the bee brain. A toxicity assay in which the protein was injected to fish induced a strong yet reversible paralytic effect. We suggest that the protein may function as an endogenous modulator of voltage-gated Ca(2+) channels. Additionally, we have identified a novel mammalian cluster of toxin-like proteins that are expressed in the testis. We suggest that these proteins might be involved in regulation of nicotinic acetylcholine receptors that affect the acrosome reaction and sperm motility. Finally, we highlight a possible evolutionary link between venom toxins and antibacterial proteins. We expect our methodology to enhance the discovery of additional novel protein families.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号