首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dichroism was measured in films of air-dried and, consequently, flattened chromatophores of Chromatium vinosum, Rhodopseudomonas sphaeroides and Rhodospirillum rubrum. The values (deltaA/A) of dichroism in C. vinosum were found to be -1.05 at 590 nm and 0.75 in the near infrared region. The values of dichroism in R. sphaeroides were -0.70 at 590 nm and 0.80 at 870 nm. The values of dichroism in R. rubrum were -1.45 at 590 nm and 0.97 at 870 nm.  相似文献   

2.
We have performed X-ray diffraction studies on photosynthetic units of Rhodospirillum rubrum and solubilized *B800 + B890 complex from chromatophores of Chromatium vinosum, to investigate the homology of their molecular structures. The native chromatophores of Chromatium vinosum, which contain other bacteriochlorophyll forms, were examined by an X-ray diffraction technique, in order to assess the interactions between the complexes as well as the molecular structures of the bacteriochlorophyll forms. The subchromatophore particles, solubilized by Triton X-100 from cells of Chromatium vinosum, exhibit a major absorption maximum at 881 nm and a minor one at 804 nm, consisting of bacteriochlorophyll form *B800 + B890. The near-IR absorption spectrum of the particle is very similar to that of chromatophores of Rhodospirillum rubrum although the major absorption maximum is shifted slightly. The X-ray diffraction pattern of the subchromatophore particles is very similar to that of chromatophores of Rhodospirillum rubrum. Thus, the subchromatophore particles are considered to be the "photoreaction unit" of Rhodospirillum rubrum. Since the bacteriochlorophyll form, *B800 + B890, is common in the purple bacteria, it is strongly suggested that the photoreaction unit is the basic and common structure existing in the photosynthetic units of purple bacteria. Chromatium vinosum cells exhibit different near-IR absorption spectra, depending on the culture media and also on the intensity of the illumination during culture. The chromatophores from these cells give different equatorial X-ray diffraction patterns. These patterns are much broader than that of solubilized subchromatophore particles, though they have common features. Thus, the molecular structures in the photosynthetic units are different, depending on their constituent bacteriochlorophyll forms.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
We studied UV-induced photodestruction of the native forms of bacteriochlorophyll a (Bchl a) from chromatophores and light harvesting complexes (LHC) of the sulphur photosynthetic bacterium Chromatium minutissimum. Irradiation of chromato- phores with 365-nm light (Soret band) or 280-nm light (absorption region of aromatic amino acids) led to the destruction of all long-wavelength forms of Bchl a. The quantum yields of photodestruction produced by the 280-nm light was higher than that produced by the 365-nm light. For the spectral forms of Bchl a absorbing at 850 nm and 890 nm, the difference was about one order of magnitude, and for the form absorbing at 800 nm the difference was almost two orders of magnitude. Similar UV sensitivity was observed for the Bchl a forms from isolated LHC. As a rule, the quantum yields of photodestruction induced by UV irradiation at 280 nm were about 100-1000 times higher (approximately 10(-3)-10(-4)) than that upon red light irradiation (approximately 10(-6)-10(-7)). We found that irradiation of chromatophores at 280 nm resulted in a crosslink between the core and peripheral LHC.  相似文献   

4.
It is shown that illumination of chromatophores of sulfur bacterium Chromatium minutissimum at Eh of the medium --200 mV divided by --620 mV (when the photooxidation of pigment P890 is completely inhibited) induces a decrease in bacteriochlorophyll fluorescence yield, reversible in the dark. Under these conditions a reversible photoreduction of bacteriopheophytin is detected (bleaching of absorption bands at 543 and 760 nm and development of a band at 650 nm), which is accompanied by a blue shift of the absorption band at 8 nm. As a possible interpretation of these effects the suggestion is made on the function of bacteriopheophytin as a primary electron acceptor in reaction centers of bacteria. The bacteriopheophytin photoreduction, followed by a decrease in fluorescence yield, is also observed in other sulfur bacteria, Thiocapsa roseopersicina and Ectothiorodospira shaposhnikovii, but it is not detected in nonsulfur bacteria, Rhodospirillum rubrum and Rhodopseudomonas spheroides. This is considered as an evidence for the difference in the functional organization of the reaction centers of these two groups of bacteria,  相似文献   

5.
Experimental evidence for electron transfer, photosensitized by bacteriochlorophyll, from cytochrome c to a pigment complex P-760 (involving bacteriopheophytin-760 and also bacteriochlorophyll-800) in the reaction centers of Chromatium minutissimum has been described. This photoreaction occurs between 77 and 293 degrees K at a redox potential of the medium between -250 and -530 mV. Photoreduction of P-760 is accompanied by development of a wide absorption band at 650 nm and of an EPR signal with g=2.0025+/-0.0005 and linewidth of 12.5+/-0.5 G, which are characteristic of the pigment radical anion. It is suggested that the photoreduction of P-760 occurs under the interaction of reduced cytochrome c with the reaction center state P+-890-P--760 which is induced by light. The existence of short-lived state P+-890-P--760 is indicated by the recombination luminescence with activation energy of 0.12 eV and t 1/2 less than or equal to 6 ns. This luminescence is exicted and emitted by bacteriochlorophyll and disappears when P-760 is reduced. At low redox potentials, the flash-induced absorbance changes related to the formation of the carotenoid triplet state with t 1/2 = 6 mus at 20 degreesC are observed. This state is not formed when P-760 is reduced at 293 and 160 degrees K. It is assumed that this state is formed from the reaction center state P+-890---760, which appears to be a primary product of light reaction in the bacterial reaction centers and which is probably identical with the state PF described in recent works.  相似文献   

6.
The absorption and circular dichroism spectra of the B800-850 complex from Chromatium minutissimum before and after the Triton X-100 treatment were simulated by means of standard exciton theory, taking into account inhomogeneous broadening. To explain the spectral changes of the B800-850 complex treated with Triton X-100, we have assumed that all bacteriochlorophyll pigments absorbing at 850 nm exhibit the same additional rotation of approximately 20 degrees around the axis perpendicular to the membrane plane. This has been sufficient to fit the transformation in absorption and circular dichroism spectra induced by detergent treatment of the B800-850 complex.  相似文献   

7.
The orientation of flavin mononucleotide (FMN) in model membranes and the directions of the transition moments of the first three bands in the electronic absorption spectrum of the oxidized form of the isoalloxazine ring have been determined by means of linear dichroism and polarized fluorescence spectroscopy. Measured counterclockwise relative to the axis connecting the two nitrogens in the central ring (considered positive when going in the direction from -CN less than to greater than or equal to N), these angles are 58 +/- 4 degrees (450-nm band), 97 +/- 3 degrees (350-nm band), and 119 +/- 2 degrees (260-nm band).  相似文献   

8.
The effect of diethyl pyrocarbonate on chromatophores and isolated pigment--protein complexes of Chromatium minutissimum was studied. It is shown that modification of histidine residues results in the destruction of the core antenna LHI (B880) and in a spectral shift from 850 to 830 nm in the peripheral antenna LHII (B800-850). In the purple sulfur bacterium Chromatium minutissimum the pigment--protein complexes B800-B850 (peripheral antenna, LHII) and B880 (core antenna, LHI) collect and transmit the absorbed light energy to the reaction centers. The composition of pigments and proteins as well as primary structure of the majority of polypeptides in both types of complexes from various photosynthetic bacteria have been determined.  相似文献   

9.
The linear dichroism spectrum of rhodopsin in sonicated bovine disk membranes was measured 30, 60, 170, and 600 ns after room temperature photolysis with a linearly polarized, 7-ns laser pulse (lambda = 355 or 477 nm). A global exponential fitting procedure based on singular value decomposition was used to fit the linear dichroism data to two exponential processes which differed spectrally from one another and whose lifetimes were 42 +/- 7 ns and 225 +/- 40 ns. These results are interpreted in terms of a sequential model where bathorhodopsin (BATHO, lambda max = 543 nm) decays toward equilibrium with a blue shifted intermediate (BSI, lambda max = 478 nm). BSI then decays to lumirhodopsin (LUMI, lambda max = 492 nm). It has been suggested that two bathorhodopsins decay in parallel to their products. However, a Monte Carlo simulation of partial photolysis of solid-state visual pigment samples shows that one mechanism which creates populations of BATHO having different photolysis rates at 77 K may not be responsible for the two decay rates reported here at room temperature. The angle between the cis band and 498-nm band transition dipoles of rhodopsin is determined to be 38 degrees. The angles between both these transition dipoles and those of the long-wave-length bands of BATHO, BSI, and LUMI are also determined. It is shown that when BATHO is formed its transition dipole moves away from the original cis band transition dipole direction. The transition dipole then moves roughly twice as much towards the original cis band direction when BSI appears. Production of LUMI is associated with return of the transition dipole almost to the original orientation relative to the cis band, but with some displacement normal to the plane which contains the previous motions. The correlation between the lambda max of an intermediate and its transition dipole direction is discussed.  相似文献   

10.
In some Rhodospirillaceae, the primary light-harvesting (LH I) antenna absorbs near-infrared light around 870 nm, whereas LH II (holochrome B800-860) has a major absorption band between 850 and 860 nm (B860) and a minor absorbancy around 800 nm (B800). Results show that, unlike LH I, holochrome B800-860 (LH II) exhibits unstable light absorption properties in whole cells. This was observed in Rhodopseudomonas capsulata grown anaerobically in light in weakly buffered carbohydrate medium; cultures lost both carotenoid-dependent brown-yellow pigmentation and LH II absorbancy. The whole cell spectrophotometric changes were attributed to mild acid conditions generated during sugar metabolism. LH II absorbancy was also destroyed in both R. capsulata and Rhodopseudomonas gelatinosa when cultures growing at neutral pH were acidified to a pH value around 5.0 with HCl. In contrast, during the same time period of exposure to pH 5.0, only a 50% decrease in Rhodopseudomonas sphaeroides LH II B800 absorbancy was measured. At neutral pH, LH II absorbancy in suspensions of nongrowing Rhodopseudomonas spp. was also sensitive to O2 exposure and to incubation at 30 to 40 degrees C. During treatment with O2, the rate of LH II B800 absorption decrease in R. gelatinosa and R. sphaeroides was 60 and 40% per h, respectively, compared with their absorbancy maximum around 860 nm. Both 860-nm absorbancy and the total bacteriochlorophyll content of the cells remained unchanged. On the other hand, no significant decrease in B800 if LH II in R. capsulata occurred during O2 exposure, but a 20% absorption decay rate per h of B800 was observed in cells incubated anaerobically at 40 degrees C. These B800 LH II spectral changes Rhodopseudomonas spp. were prevented by maintaining cells at neutral pH and at 10 degrees C. The near-infrared absorption spectrum of Rhodospirillum rubrum, which does not form LH II, was not significantly influenced by these different pH, aerobic, or temperature conditions.  相似文献   

11.
The absorbance, polarized absorbance and linear dichroism spectra of single crystals of the B800–850 light-harvesting complex from Rhodopseudomonas acidophila strain 10050 taken at room (298 K) and low (85 K) temperatures are presented. The spectra are compared and contrasted with random phase solution spectra from the same complex. The single crystal spectra display a spectral narrowing at low temperatures in the BChl Qx (550–650 nm) and carotenoid (450–550 nm) regions similar to that observed from the random phase solution. The single crystal absorption spectra in the BChl Qy (750–900 nm) region are broader than the solution spectra and remain broad as the temperature is lowered. It is suggested that this broadening is the result of specific exciton interactions between the BChl chromophore Qy transition dipoles and is a molecular feature which occurs only in the crystalline complex.  相似文献   

12.
Flash-induced formation of an electric potential difference (delta psi) was monitored by a direct method in chromatophores associated with the collodion phospholipid membrane. In Rhodospirillum rubrum and Rhodopseudomonas sphaeriodes chromatophores, the kinetics of delta psi generation exhibit fast (tau less than or equal to 0.3 microseconds) and slow (tau congruent to 200 microseconds) phases, the latter observed in the presence of exogenous quinones. Comparison of the kinetic and potentiometric characteristics of the process with those of electron transport reactions suggests that the fast phase of delta psi rise is due to charge separation between the primary electron donor, P870, and primary electron acceptor QIFe; the slow phase, which is inhibited by o-phenanthroline, is due to electron donation from QIFe to the secondary acceptor, quinone QII. The kinetics of delta psi decay include components arising form the recombination of primary separated charges (tau congruent to 30 ms) and from the passive discharge of the membrane (tau congruent to 400 ms; tau congruent to 1400 ms). From a redox titration of the photo-induced electric signal and the photo-induced absorption changes of P870 at different pH meanings, the value of pK for the primary acceptor FeQI was found to be 7.4 in Rps. sphaeroides chromatophores. In Chromatium minutissimum, a phase ( tau congruent to 20 microseconds) was observed in addition to those seen in Rps. sphaeroids and R. rubrum which was explained by the reduction of P890+ from the high potential cytochrome c555. Possible distribution of the electron transport components in the chromatophore membrane are discussed.  相似文献   

13.
Magnetophotoselection (MPS) techniques have been used to study the triplet state observed by electron paramagnetic resonance (epr) in photosynthetic bacteria. Intact R.rubrum chromatophores and systems in which the effects of energy transfer via antenna chlorophyll molecules have been minimized were examined. These preliminary results indicate that there is order in the bacteriochlorophyll antenna system, that the optical transition at 890 nm appears to be along the triplet y axis of the bacteriochlorophyll special pair (Bchlsp), and that the resultant transition moment associated with 800 nm is approximately parallel to the long wavelength transition moment of the Bchlsp.  相似文献   

14.
Chromatophores from Rhodopseudomonas sphaeroides were oriented by allowing aqueous suspensions to dry on glass plates. Orientation of reaction center pigments was investigated by studying the linear dichroism of chromatophores in which the absorption by antenna bacteriochlorophyll had been attenuated through selective oxidation. Alternatively the light-induced absorbance changes, in the ranges 550-650 and 700-950nm, were studied in untreated chromatophores. The long wave transition moment of reaction center bacteriochlorophyll (P-870) was found to be nearly parallel to the plane of the membrane, whereas the long wave transition moments of bacteriopheophytin are polarized out of this plane. For light-induced changes the linear dichroic ratios, defined as deltaav/deltaah, are nearly the same for untreated and for oxidized chromatophores. Typical values are 1.60 at 870 nm, 0.80 at 810nm, 1.20 at 790 nm, 0.70 at 765 nm, 0.30 at 745 nm , and 0.50 at 600 nm. The different values for the absorbance decrease at 810 nm (0.80) and the increase at 790 nm (1.20) are incompatible with the hypothesis that these changes are due to the blue-shift of a single band. We propose that the decreases at 870 and 810 nm reflect bleaching of the two components of a bacteriochlorophyll dimer, the "special pair" that shares in the photochemical donation of a single electron. The increase at 790 nm then represents the appearance of a monomer band in place of the dimer spectrum, as a result of electron donation. This hypothesis is consistent with available data on circular dichroism. It is confirmed by the presence of a shoulder at 810 nm in the absorption spectrum of reaction centers at low temperature; this band disappears upon photooxidation of the reaction centers. For the changes near 760 nm, associated with bacteriopheophytin, the polarization and the shape of the "light-dark" difference spectrum (identical to the first derivative of the absorption spectrum) show that the 760 nm band undergoes a light-induced shift to greater wavelengths.  相似文献   

15.
The electric dichroism of alpha-chymotrypsin has been measured in a buffer containing 0.1 M Na(+), 10 mM Mg(2+) and 25 mM Tris-cacodylate pH 7.2. The reduced dichroism as a function of the electric field strength can be represented by the orientation function for permanent dipoles and is not consistent with the orientation function for induced dipoles. After correction for the internal directing field, the dipole moment is 1.1 x 10(-27) Cm (+/- 10%), corresponding to 340 D, at 20 degrees C. The assignment of the permanent dipole moment is confirmed by the shape of the dichroism rise curves, which require two exponentials with amplitudes of opposite sign for fitting. The dichroism decay time constants measured in the range of temperatures between 2 and 30 degrees C indicate a temperature induced change of the structure, which is equivalent to an increase of the hydrodynamic radius from r = 26.6 A at 2 degrees C to 28.5 A at 30 degrees C. Our results demonstrate that electrooptical investigations of proteins with a high time resolution can be extended to physiological salt concentrations without serious problems by use of appropriate instruments.  相似文献   

16.
A detailed comparison with the three-dimensional protein structure provides a stringent test of the models and parameters commonly used in determining the orientation of the alpha-helices from the linear dichroism of the infrared amide bands, particularly in membranes. The order parameters of the amide vibrational transition moments are calculated for the transmembrane alpha-helices of bacteriorhodopsin by using the crystal structure determined at a resolution of 1.55 A (PDB accession number 1C3W). The dependence on the angle delta(M) that the transition moment makes with the peptide carbonyl bond is fit by the expression ((3)/(2)S(alpha) cos(2) alpha)cos(2)(delta(M) + beta) - 1/2S(alpha), where S(alpha) (0.91) is the order parameter of the alpha-helices, alpha (13 degrees ) is the angle that the peptide plane makes with the helix axis, and beta (11 degrees ) is the angle that the peptide carbonyl bond makes with the projection of the helix axis on the peptide plane. This result is fully consistent with the model of nested axial distributions commonly used in interpreting infrared linear dichroism of proteins. Comparison with experimental infrared dichroic ratios for bacteriorhodopsin yields values of Theta(A) = 33 +/- 1 degree, Theta(I) = 39.5 +/- 1 degree, and Theta(II) = 70 +/- 2 degrees for the orientation of the transition moments of the amide A, amide I, and amide II bands, respectively, relative to the helix axis. These estimates are close to those found for model alpha-helical polypeptides, indicating that side-chain heterogeneity and slight helix imperfections are unlikely to affect the reliability of infrared measurements of helix orientations.  相似文献   

17.
In order to obtain information on the organization of the pigment molecules in chlorophyll (Chl) a/b/c-containing organisms, we have carried out circular dichroism (CD), linear dichroism (LD) and absorption spectroscopic measurements on intact cells, isolated thylakoids and purified light-harvesting complexes (LHCs) of the prasinophycean alga Mantoniella squamata. The CD spectra of the intact cells and isolated thylakoids were predominated by the excitonic bands of the Chl a/b/c LHC. However, some anomalous bands indicated the existence of chiral macrodomains, which could be correlated with the multilayered membrane system in the intact cells. In the red, the thylakoid membranes and the LHC exhibited a well-discernible CD band originating from Chl c, but otherwise the CD spectra were similar to that of non-aggregated LHC II, the main Chl a/b LHC in higher plants. In the Soret region, however, an unusually intense (+) 441 nm band was observed, which was accompanied by negative bands between 465 and 510 nm. It is proposed that these bands originate from intense excitonic interactions between Chl a and carotenoid molecules. LD measurements revealed that the Q(Y) dipoles of Chl a in Mantoniella thylakoids are preferentially oriented in the plane of the membrane, with orientation angles tilting out more at shorter than at longer wavelengths (9 degrees at 677 nm, 20 degrees at 670 nm and 26 degrees at 662 nm); the Q(Y) dipole of Chl c was found to be oriented at 29 degrees with respect to the membrane plane. These data and the LD spectrum of the LHC, apart from the presence of Chl c, suggest an orientation pattern of dipoles similar to those of higher plant thylakoids and LHC II. However, the tendency of the Q(Y) dipoles of Chl b to lie preferentially in the plane of the membrane (23 degrees at 653 nm and 30 degrees at 646 nm) is markedly different from the orientation pattern in higher plant membranes and LHC II. Hence, our CD and LD data show that the molecular organization of the Chl a/b/c LHC, despite evident similarities, differs significantly from that of LHC II.  相似文献   

18.
Putidaredoxin (Pdx) is an 11,400-Da iron-sulfur protein that sequentially transfers two electrons to the cytochrome P450cam during the enzymatic cycle of the stereospecific camphor hydroxylation. We report two transitions in the Pdx UV-VIS absorption and circular dichroism (CD) temperature dependencies, occurring at 16.3+/-0.5 degrees C and 28.4+/-0.5 degrees C. The 16.3 degrees C transition is attributed to the disruption of the hydrogen bonding of the active center bridging sulfur atom with cysteine 45 and alanine 46. The transition at 28.4 degrees C occurs exclusively in the Pdx(ox) at very nearly the same temperature as the earlier reported biphasicity in the redox potential. The formal potential temperature slope constancy reflects the relative stability of the concentration ratio of both oxidation states. The lower temperature transition affects both Pdx(red) and Pdx(ox) to a comparable extent, and their concentration ratio remains constant. In contrast, the 28.4 degrees C transition preferentially destabilizes Pdx(ox) thereby accelerating the formal potential negative shift and lower redox reaction entropy. There is evidence to suggest that disrupting hydrogen bonding of the iron ligating cysteines 45, 39 with residues threonine 47, serine 44, glycine 41, and serine 42 causes the 28.4 degrees C transition. The sensitivity of the UV-VIS absorption and CD spectroscopy to subtle structural protein backbone transitions is demonstrated.  相似文献   

19.
H.H. Ang  T.H. Ngai  T.H. Tan 《Phytomedicine》2003,10(6-7):590-593
The effects of Eurycoma longifolia Jack were studied on the sexual qualities of middle aged male rats after dosing them with 0.5 g/kg of various fractions of E. longifolia whilst the control group received 3 ml/kg of normal saline daily for 12 weeks. Results showed than E. longifolia Jack enhanced the sexual qualities of the middle aged male rats by decreasing their hesitation time as compared to controls with various fractions of E. longifolia Jack produced 865-916 (91-96), 860-914 (92-98), 850-904 (93-99), 854-890 (95-99), 844-880 (94-98), 840-875 (94-98), 830-870 (94-98), 825-860 (94-98), 820-850 (96-99), 800-840 (93-98), 750-795 (94-99) and 650-754 sec (82-95%) in contrast to controls which produced 950 (100), 934 (100), 910 (100), 900 (100), 895 (100), 890 (100), 885 (100), 880 (100), 855 (100), 860 (100), 800 (100) and 790 sec (100%) throughout the investigation period. Besides these, there was a transient increase in the % of the male rats responding to the right choice after chronic administration of 0.5 g/kg E. longifolia Jack, with more than 50% of the male rats scored right choice after 2 weeks post-treatment and the effect was more prominent at the dose of the observation period. However, there was no sexual enhancement of the middle aged male rats which consumed normal saline since only 45-55% of the male rats responded to right choice throughout the investigation period. Hence, this study shows that E. longifolia Jack enhanced the sexual qualities of the middle aged male rats, further supports the folkuse of E. longifolia Jack as an aphrodisiac.  相似文献   

20.
Chromatophores from Rhodopseudomonas sphaeroides were oriented by allowing aqueous suspensions to dry on glass plates. Orientation of reaction center pigments was investigated by studying the linear dichroism of chromatophores in which the absorption by antenna bacteriochlorophyll had been attenuated through selective oxidation. Alternatively the light-induced absorbance changes, in the ranges 550–650 and 700–950 nm, were studied in untreated chromatophores. The long wave transition moment of reaction center bacteriochlorophyll (P-870) was found to be nearly parallel to the plane of the membrane, whereas the long wave transition moments of bacteriopheophytin are polarized out of this plane. For light-induced changes the linear dichroic ratios, defined as Δavah, are nearly the same for untreated and for oxidized chromatophores. Typical values are 1.60 at 870 nm, 0.80 at 810 nm, 1.20 at 790 nm, 0.70 at 765 nm, 0.30 at 745 nm, and 0.50 at 600 nm. The different values for the absorbance decrease at 810 nm (0.80) and the increase at 790 nm (1.20) are incompatible with the hypothesis that these changes are due to the blue-shift of a single band. We propose that the decreases at 870 and 810 nm reflect bleaching of the two components of a bacteriochlorophyll dimer, the “special pair” that shares in the photochemical donation of a single electron. The increase at 790 nm then represents the appearance of a monomer band in place of the dimer spectrum, as a result of electron donation. This hypothesis is consistent with available data on circular dichroism. It is confirmed by the presence of a shoulder at 810 nm in the absorption spectrum of reaction centers at low temperature; this band disappears upon photooxidation of the reaction centers. For the changes near 760 nm, associated with bacteriopheophytin, the polarization and the shape of the “light-dark” difference spectrum (identical to the first derivative of the absorption spectrum) show that the 760 nm band undergoes a light-induced shift to greater wavelengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号