首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
α-L-Arabinofuranosidase from the hyperthermophilic bacterium Thermotoga maritima (Tm-AFase) is an extremely thermophilic enzyme belonging to glycoside hydrolase family 51. It can catalyze the transglycosylation of a novel glycosyl donor, 4,6-dimethoxy-1,3,5-triazin-2-yl (DMT)-β-D-xylopyranoside. In this study we determined the crystal structures of Tm-AFase in substrate-free and complex forms with arabinose and xylose at 1.8-2.3 ? resolution to determine the architecture of the substrate binding pocket. Subsite -1 of Tm-AFase is similar to that of α-L-arabinofuranosidase from Geobacillus stearothermophilus, but the substrate binding pocket of Tm-AFase is narrower and more hydrophobic. Possible substrate binding modes were investigated by automated docking analysis.  相似文献   

2.
Xue Y  Shao W 《Biotechnology letters》2004,26(19):1511-1515
A thermostable beta-xylosidase from a hyperthermophilic bacterium, Thermotoga maritima, was over-expressed in Escherichia coli using the T7 polymerase expression system. The expressed beta-xylosidase was purified in two steps, heat treatment and immobilized metal affinity chromatography, and gave a single band on SDS-PAGE. The maximum activity on p-nitrophenyl beta-D-xylopyranoside was at 90 degrees C and pH 6.1. The purified enzyme had a half-life of over 22-min at 95 degrees C, and retained over 57% of its activity after holding a pH ranging from 5.4 to 8.5 for 1 h at 80 degrees C. Among all tested substrates, the purified enzyme had specific activities of 275, 50 and 29 U mg(-1) on pNPX, pNPAF, and pNPG, respectively. The apparent Michaelis constant of the beta-xylosidase was 0.13 mM for p NPX with a V (max) of 280 U mg(-1). When the purified beta-xylosidase was added to xylanase, corncob xylan was hydrolized completely to xylose.  相似文献   

3.
4.
A putative -glucosidase clone has been isolated from a cDNA library constructed from mRNA of barley aleurones treated with gibberellin A3 (GA). The clone is 2752 bp in length and has an uninterrupted open reading frame encoding a polypeptide of 877 amino acids. A 680 amino acid region is 43% identical to human lysosomal -glucosidase and other glycosyl hydrolases. In isolated aleurones, the levels of the corresponding mRNA increase strongly after the application of GA, similar to the pattern exhibited by low-pI -amylase mRNA. High levels are also observed in the aleurone and scutellum after germination, while low levels are found in developing seeds. The genome contains a single form of this -glucosidase gene and two additional sequences that may be related genes or pseudogenes.Names are necessary to report factually on available data; however, the USDA neither guarantees nor warrants the standard of the product, and the use of the name by USDA implies no approval of the product to the exclusion of others that may also be suitable.  相似文献   

5.
A -glucosidase of the hyperthermophilic bacterium Thermotoga maritima has been purified from a recombinant Escherichia coli clone expressing the corresponding gene. The enzyme was found to be a dimer with an apparent molecular mass of approximately 95 kDa as determined by size exclusion chromatography. It was composed of two apparently identical subunits of about 47 kDa (determined by sodium dodecyl sulphate-polyacrylamide gel electrophoresis). The enzyme had a bbroadsubstrate specificity and attacked -glucoside, -galactoside, -fucoside, and, to a very small extent, also -xyloside substrates. -Glycosidic bonds were not hydrolysed. Kinetic measurement of the hydrolysis of o-nitrophenyl--d-glucopyranoside (oNPGlc) and o-nitrophenyl--d-galactopyranoside (oNPGal) in the concentration ranges 0.05–20 mm and 0.1–10 mm, respectively, at 75°C resulted in non-linear Lineweaver-Burk and Eadie-Hofstee 3lots whereas cellobiose and lactose did not induce this type of effect. Lactose caused substrate inhibition above 350 mm. The enzyme was optimally active at about pH 6.1. The T. maritima -glucosidase represents the most thermostable -glucosidase described to date. In 50 mm sodium phosphate buffer, pH 6.2, at an enzyme concentration of 50 g/ml, the pure enzyme without additives retained more than 60% of its initial activity after a 6-h incubation at 95°C. Correspondence to: W. Liebl  相似文献   

6.
Enzymes for use in the sugar industry are preferred to be thermotolerant. In this study, a synthetic codon-optimized gene encoding a highly thermostable β-fructosidase (BfrA, EC 3.2.1.26) from the bacterium Thermotoga maritima was expressed in the yeast Pichia pastoris. The gradual increase of the transgene dosage from one to four copies under the control of the constitutive glyceraldehyde 3-phosphate dehydrogenase promoter had an additive effect on BfrA yield without causing cell toxicity. Maximal values of cell biomass (115 g/l, dry weight) and overall invertase activity (241 U/ml) were reached at 72 h in fed-batch fermentations using cane sugar as the main carbon source for growth. Secretion driven by the Saccharomyces cerevisiae α-factor signal peptide resulted in periplasmic retention (44 %) and extracellular release (56 %) of BfrA. The presence of N-linked oligosaccharides did not influence the optimal activity, thermal stability, kinetic properties, substrate specificity, and exo-type action mode of the yeast-secreted BfrA in comparison to the native unglycosylated enzyme. Complete inversion of cane sugar at initial concentration of 60 % (w/v) was achieved by periplasmic BfrA in undisrupted cells reacting at pH 5.5 and 70 °C, with average productivity of 4.4 g of substrate hydrolyzed per grams of biomass (wet weight) per hour. The high yield of fully active glycosylated BfrA here attained by recombinant P. pastoris in a low-cost fermentation process appears to be attractive for the large-scale production of this thermostable enzyme useful for the manufacture of inverted sugar syrup.  相似文献   

7.
β-Catenin is an evolutionarily conserved molecule that functions as a crucial effector in both cell-to-cell adhesion and Wnt signaling. To gain a better understanding of its role in the development of hair follicles, we cloned the cDNA sequence of the β-catenin gene from the skin of Aohan fine-wool sheep and performed a variety of bioinformatics analyses. We obtained the full-length sequence, which was 4573-bp long and contained a 2346-bp open reading frame encoding a protein of 781 amino acids. The protein had a predicted molecular weight of 85.4 kDa and a theoretical isoelectric point of 5.57. Domain architecture analysis of the β-catenin protein revealed an armadillo repeat region, which is a common feature of β-catenin in other species. The ovine β-catenin gene shares 97.91%, 94.25%, 94.59%, 83.89%, and 89.39% sequence identity with its homologs in Bos taurus, Homo sapiens, Sus scrofa, Gallus gallus, and Mus musculus, respectively, while the amino acid sequence is more than 99% identical with each of these species. The expression of β-catenin mRNA was detected in the heart, liver, spleen, lung, kidney, skin, muscle, and adipose tissue. Expression levels were maximal in the lung and minimal in the muscle, and the difference in expression in these tissues was significant (P < 0.01). Western blot analysis revealed the presence of the β-catenin protein in all tissues examined; expression was lowest in the skin and adipose tissues.  相似文献   

8.
A novel gene (amyZ) encoding a cold-active and salt-tolerant α-amylase (AmyZ) was cloned from marine bacterium Zunongwangia profunda (MCCC 1A01486) and the protein was expressed in Escherichia coli. The gene has a length of 1785 bp and encodes an α-amylase of 594 amino acids with an estimated molecular mass of 66 kDa by SDS-PAGE. The enzyme belongs to glycoside hydrolase family 13 and shows the highest identity (25 %) to the characterized α-amylase TVA II from thermoactinomyces vulgaris R-47. The recombinant α-amylase showed the maximum activity at 35 °C and pH 7.0, and retained about 39 % activity at 0 °C. AmyZ displayed extreme salt tolerance, with the highest activity at 1.5 M NaCl and 93 % activity even at 4 M NaCl. The catalytic efficiency (k cat/K m) of AmyZ increased from 115.51 (with 0 M NaCl) to 143.30 ml mg?1 s?1 (with 1.5 M NaCl) at 35 °C and pH 7.0, using soluble starch as substrate. Besides, the thermostability of the enzyme was significantly improved in the presence of 1.5 M NaCl or 1 mM CaCl2. AmyZ is one of the very few α-amylases that tolerate both high salinity and low temperatures, making it a potential candidate for research in basic and applied biology.  相似文献   

9.
10.
Critical to the use of solution NMR to describe the structure and flexibility of membrane proteins is the thorough understanding of the degree of perturbation induced by the detergent or other membrane mimetic. To develop a deeper understanding of the interaction between membrane proteins and micelles or bicelles, we will investigate the differences in structure and flexibility of a model membrane protein TM0026 from Thermotoga maritima using solution NMR. A comparison of the structural differences between TM0026 solubilized in different detergent combinations will provide important insight into the degree of modulation of membrane proteins by detergent physical properties. Here we report the nearly complete backbone and Cβ resonance assignments of the two transmembrane helical model protein TM0026. These assignments are the first step to using TM0026 to elucidate the interaction between membrane proteins and membrane mimetics.  相似文献   

11.
12.
A halophilic α-amylase (EAMY) gene from Escherichia coli JM109 was overexpressed in E. coli XL10-Gold and the recombinant protein was purified and characterized. The activity of the EAMY depended on the presence of both Na+ and Cl?, and had maximum activity in 2 M NaCl at 55 °C and pH 7.0. When 2 % (w/v) soluble starch was used as substrate, the specific activity was about 1,090 U mg?1 protein. This is the first report on identifying a halophilic α-amylase with high specific activity from non-halophilic bacteria.  相似文献   

13.
Two β-glucosidases (BGLs 1 and 2) were purified to homogeneity from the extracellular enzyme preparations of the ethanol-fermenting Mucor circinelloides NBRC 4572 statically grown on rice straw. BGLs 1 and 2 are monomeric glycoproteins whose apparent molecular masses (Ms) are around 78 kDa, which decreased by approximately 10 kDa upon enzymatic deglycosylation. Both BGLs showed similar enzyme characteristics in optimal temperature and pH, stability, and inhibitors. They were active against a wide range of aryl-β-glucosides and β-linked glucose oligosaccharides. Their amino acid sequences shared 81 % identity and exhibited less than 60 % identity with the known family-3 BGLs. Considering properties such as reduced inhibition by ethanol, glucose, and cellobiose, low transglucosylation activity, wider substrate range, less binding affinity to lignocellulosic materials, and abundant expression, BGL1 is likely to be more suitable for bioethanol production than BGL2 via simultaneous saccharification and fermentation of rice straw with M. circinelloides.  相似文献   

14.
Kim M  Kwon T  Lee HJ  Kim KH  Chung DK  Ji GE  Byeon ES  Lee JH 《Biotechnology letters》2003,25(15):1211-1217
A DNA fragment, which complemented the growth of E. coli both on M9 medium containing raffinose and on LB medium containing ampicillin, IPTG and 5-bromo-4-chloro-3-indoxyl--d-galactoside, was isolated from the genomic library of Bifidobacterium longum SJ32, which had been digested with EcoRI. In the cloned DNA fragment, a gene encoding a sucrose phosphorylase (splP) and a partially cloned putative sucrose regulator gene (splR) were identified using the deletion analysis and sequence analysis. A 56 kDa protein was synthesized in E. coli and partially purified by DEAE-ion exchange chromatography. The partially purified enzyme did not react with melibiose, melezitoze and raffinose but did with sucrose. It had transglucosylation activity in addition to hydrolytic activity.  相似文献   

15.
16.
Liu K  Luo HL  Yue DB  Ge SY  Yuan F  Yan LY  Jia HN 《Gene》2012,494(2):225-230
The α-tocopherol transfer protein (α-TTP) is a ~ 32 kDa protein that exhibits a marked ligand specificity and selectively recognizes of α-tocopherol, which is the most active form of vitamin E. The α-TTP gene has been cloned and its physiological functions have been studied in numbers of species, however, the understanding of sheep α-TTP is still in his infancy. In this study, the full-length cDNA of sheep α-TTP gene was cloned from sheep liver by using of rapid amplification of complementary DNA ends (RACE). As a result, the sheep α-TTP gene was 1098 bp in nucleotide which contained 23 bp 5'-untranslated region (UTR), 226 bp 3'-UTR and 849 bp open reading frame (ORF) that encoded a basic protein of 282 amino acids. Further bioinformatic analysis indicated that the sheep α-TTP gene had a high homologous of both nucleotide and amino acid sequences compared with that of other species and had a Sec14p-like lipid-binding domain which called the CRAL-TRIO domain. Moreover, the expression of sheep α-TTP mRNA and protein in response to different vitamin E supplemented levels were observed according to quantitative real-time PCR (qRT-PCR) and Western blotting analysis. The results showed that dietary vitamin E levels did not affect α-TTP mRNA expression significantly while the low vitamin E supplemented level groups of sheep had significantly higher α-TTP protein compared to high-vitamin E groups.  相似文献   

17.
Nicotinamide adenine dinucleotide phosphate-dependent 7α-hydroxysteroid dehydrogenase (7α-HSDH) and 7β-hydroxysteroid dehydrogenases (7β-HSDH) from Clostridium absonum catalyze the epimerization of primary bile acids through 7-keto bile acid intermediates and may be suitable as biocatalysts for the synthesis of bile acids derivatives of pharmacological interest. C. absonum 7α-HSDH has been purified to homogeneity and the N-terminal sequence has been determined by Edman sequencing. After PCR amplifications of a gene fragment with degenerate primers, cloning of the complete gene (786?nt) has been achieved by sequencing of C. absonum genomic DNA. The sequence coding for the 7β-HSDH (783?nt) has been obtained by sequencing of the genomic DNA region flanking the 5' termini of 7α-HSDH gene, the two genes being contiguous and presumably part of the same operon. After insertion in suitable expression vectors, both HSDHs have been successfully produced in recombinant form in Escherichia coli, purified by affinity chromatography and submitted to kinetic analysis for determination of Michaelis constants (K (m)) and specificity constants (k (cat)/K (m)) in the presence of various bile acids derivatives. Both enzymes showed a very strong substrate inhibition with all the tested substrates. The lowest K (S) values were observed with chenodeoxycholic acid and 12-ketochenodeoxycholic acid as substrates in the case of 7α-HSDH, whereas ursocholic acid was the most effective inhibitor of 7β-HSDH activity.  相似文献   

18.
The α-glucosidase II (GII) is a heterodimer of α- and β-subunits and important for N-glycosylation processing and quality control of nascent glycoproteins. Although high concentration of α-glucosidase inhibitors from mulberry leaves accumulate in silkworms (Bombyx mori) by feeding, silkworm does not show any toxic symptom against these inhibitors and N-glycosylation of recombinant proteins is not affected. We, therefore, hypothesized that silkworm GII is not sensitive to the α-glucosidase inhibitors from mulberry leaves. However, the genes for B. mori GII subunits have not yet been identified, and the protein has not been characterized. Therefore, we isolated the B. mori GII α- and β-subunit genes and the GII α-subunit gene of Spodoptera frugiperda, which does not feed on mulberry leaves. We used a baculovirus expression system to produce the recombinant GII subunits and identified their enzyme characteristics. The recombinant GII α-subunits of B. mori and S. frugiperda hydrolyzed p-nitrophenyl α-d-glucopyranoside (pNP-αGlc) but were inactive toward N-glycan. Although the B. mori GII β-subunit was not required for the hydrolysis of pNP-αGlc, a B. mori GII complex of the α- and β-subunits was required for N-glycan cleavage. As hypothesized, the B. mori GII α-subunit protein was less sensitive to α-glucosidase inhibitors than was the S. frugiperda GII α-subunit protein. Our observations suggest that the low sensitivity of GII contributes to the ability of B. mori to evade the toxic effect of α-glucosidase inhibitors from mulberry leaves.  相似文献   

19.
20.
A cDNA (zmEF1A) and the corresponding genomic clone (zmgEF1A) of a member of the gene family encoding the subunit of translation elongation factor 1 (EF-1) have been isolated from maize. The deduced amino acid sequence is 447 residues long interrupted by one intron. Southern blot analysis reveals that the cloned EF-1 gene is one member out of a family consisting of at least six genes. As shown by northern hybridizations in leaves the mRNA level increases at low temperature whereas time-course experiments over 24 h at 5°C show that in roots the overall mRNA level of EF-1 is transiently decreased. These results indicate that the expression of EF-1 is differently regulated in leaves and roots under cold stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号