首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the hemolymph of Melanoplus sanguinipes, a high molecular weight juvenile hormone binding protein (JHBP) was identified by photoaffinity labelling and found to have a Mr of 480,000. The JHBP, purified using native gel electrophoresis followed by electroelution, has an equilibrium dissociation constant for JH III of 2.1 nM and preferentially binds JH III over JH I. Antibody raised against JHBP recognized only the 480,000 band. Under denaturing conditions the native JHBP gave a single band with a Mr 78,000. The antibody against native JHBP recognized only the 78,000 protein in SDS-treated hemolymph samples, indicating that JHBP is a hexamer in this species. The concentration of JHBP fluctuates in both the sexes during nymphal and adult development in parallel with total protein content of hemolymph. © 1995 Wiley-Liss, Inc.  相似文献   

2.
Juvenile hormone binding proteins (JHBPs) serve as specific carriers of juvenile hormone (JH) in insect hemolymph. As shown in this report, Galleria mellonella JHBP is encoded by a cDNA of 1063 nucleotides. The pre-protein consists of 245 amino acids with a 20 amino acid leader sequence. The concentration of the JHBP mRNA reaches a maximum on the third day of the last larval instar, and decreases five-fold towards pupation. Comparison of amino acid sequences of JHBPs from Bombyx mori, Heliothis virescens, Manduca sexta and G. mellonella shows that 57 positions out of 226 are occupied by identical amino acids. A phylogeny tree was constructed from 32 proteins, which function could be associated to JH. It has three major branches: (i) ligand binding domains of nuclear receptors, (ii) JHBPs and JH esterases (JHEs), and (iii) hypothetical proteins found in Drosophila melanogaster genome. Despite the close positioning of JHEs and JHBPs on the tree, which probably arises from the presence of a common JH binding motif, these proteins are unlikely to belong to the same family. Detailed analysis of the secondary structure modeling shows that JHBPs may contain a beta-barrel motif flanked by alpha-helices and thus be evolutionary related to the same superfamily as calycins.  相似文献   

3.
The synthesis of the first iodinated juvenile hormone (JH) in enantiomerically enriched form is reported. This chiral compound, 12-iodo-JH I, has an iodine atom replacing a methyl group of the natural insect juvenile hormone, JH I, which is important in regulating morphogenesis and reproduction in the Lepidoptera. The unlabeled compound shows approximately 10% of the relative binding affinity for the larval hemolymph JH binding protein (JHBP) of Manduca sexta, which specifically binds natural 3H-10R,11S-JH I (labeled at 58 Ci/mmol) with a KD of 8 X 10(-8) M. It is also approximately one-tenth as biologically active as JH I in the black Manduca and epidermal commitment assays. The 12-hydroxy and 12-oxo compounds are poor competitors and are also biologically inactive. The radioiodinated [125I]12-iodo-JH I can be prepared in low yield at greater than 2500 Ci/mmol by nucleophilic displacement using no-carrier-added 125I-labeled sodium iodide in acetone; however, synthesis using sodium iodide carrier to give the approximately 50 Ci/mmol radioiodinated ligand proceeds in higher radiochemical yield with fewer by-products and provides a radioligand which is more readily handled in binding assays. The KD of [125I]12-iodo-JH I was determined for hemolymph JHBP of three insects: M. sexta, 795 nM; Galleria mellonella, 47 nM; Locusta migratoria, 77 nM. The selectivity of 12-iodo-JH I for the 32-kDa JHBP of M. sexta was demonstrated by direct autoradiography of a native polyacrylamide gel electrophoresis gel of larval hemolymph incubated with the radioiodinated ligand. Thus, the in vitro and in vivo activity of 12-iodo-JH I indicate that it can serve as an important new gamma-emitting probe in the search for JH receptor proteins in target tissues.  相似文献   

4.
Juvenile hormone (JH) binding components from the fat body of the African migratory locust were analyzed in a search for a potential nuclear JH receptor. Biosynthetically prepared 10R[3H]JH III gave a high proportion of specific binding to isolated nuclei and extracted proteins; data obtained with the JH analogs, [3H]methoprene and [3H]pyriproxyfen, on the other hand, were obscured by abundant non-specific binding. The vast majority of the high affinity JH III binding activity present in cytosolic and nuclear extracts was due to a high molecular weight JH binding protein (JHBP) which has previously been identified in locust hemolymph. This protein has several chromatographic forms which interfered in the search for a nuclear JH receptor. When specific antiserum was used to remove JHBP from nuclear extracts, a novel JH binding activity (NBP) was detected. NBP could be separated from JHBP by precipitation with ammonium sulfate. NBP displayed a high affinity for JH III (Kd = 0.25 nM) and JH I and JH II competed strongly for JH III binding, whereas methoprene and pyriproxyfen showed apparent competition when present in 1,000-fold excess. NBP was present in nuclear extracts at approximately 25,000 sites per cell; levels were similar in male and female locusts and were not greatly affected by the presence or absence of JH. The characteristics of NPB make it a strong candidate for a nuclear JH receptor. © 1995 Wiley-Liss, Inc.  相似文献   

5.
《Insect Biochemistry》1989,19(3):327-335
The juvenile hormone binding protein (JHBP) from the cytosol of Drosophila melanogaster Kc cells has been purified with the use of a juvenile hormone photoaffinity analog, 10,11-epoxy (2E, 6E) farnesyl diazoacetate (EFDA). The purification procedure consists of five chromatographic steps and the end product of the purification procedure showed homogeneity by means of both native and SDS polyacrylamide gel electrophoresis. Furthermore, using a racemic mixture of the natural hormone, [3H]juvenile hormone III (JH III), as the radioligand in this purification procedure, we demonstrate that the purified protein is likely the authentic intracellular JHBP.  相似文献   

6.
The larval haemolymph of the sheep blowfly Lucilia cuprina (Weidemann) contains a juvenile hormone binding protein with a Kd for racemic JH III of 33 ± 6 nM. The density of the binding sites is 212 ± 33 pmol/mg haemolymph protein. The binding protein is equally specific for JH III and methyl farnesoate. Some natural juvenoids were ranked for their ability to displace [3H]JH III with JH III > JH II > JH I > JH III > JH III diol > JHB3 = no detectable displacement. These data, together with displacement studies for 14 synthetic juvenoids, indicate some characteristics of the JH binding cleft. The binding protein is a high density lipophorin (density = 1.15 g/ml) and has subunit molecular weights of 228 kDa (apolipophorin I) and 70 kDa (apolipophorin II). The N-terminal amino acid sequences of the subunits have no discernible homology to any previously sequenced protein. Lipophorin-specific immunocytochemical staining occurs in a subset of fat body cells.  相似文献   

7.
The high molecular weight, high affinity juvenile hormone binding protein from the hemolymph of Diploptera punctata was identified as a lipophorin by gradient KBr ultracentrifugation and SDS gradient PAGE. This juvenile hormone binding lipophorin (JHBL) was composed of two subunits, apolipoprotein I (230 kDa mol. wt) and apolipoprotein II (80 kDa mol. wt). The density of the native protein was 1.15 g/ml. Photoaffinity labeling using the JH analog [3H]EFDA demonstrated that the JH binding site resides on apolipoprotein I. The amino acid composition of both native lipophorin and its two subunits was determined and the N-terminal sequence of the 80 kDa apolipoprotein described for 19 of the first 21 amino acids. This sequence did not have similarity to any known protein. The N-terminus of the 230 kDa apolipoprotein was blocked. The specificity of a monoclonal antibody to purified native JHBL was also demonstrated. We show that the monoclonal antibody was specific to the 230 kDa subunit and did not recognize the 80 kDa apolipoprotein.  相似文献   

8.
Abstract  By using charcocal binding assay, the juvenile hormone binding protein (JHBP) was determined in the ovaries of houseflies. This ovarian JHBP possesses high affinity with juvenile hormone III (JH III) and has a Kd of 2.1 III 10--8 M. The binding of 3H-juvenile hormone III (3H-JH III) to this protein was inhibited by unlablled JH III, but not by juvenile hormone analog ZR 512 or ZR 515. The level of this ovarian JHBP reached the highest in houseflies 48 h after emergence, and was 6. 5-fold and 15. 5-fold higher than that in housefIies 60 h and 72 h after emergence, respectively. No binding activity was detected in the ovaries of houseflies 24 h or 36 h after emergence. The absence of JHBP in the ovaries of houseflies 36 h after emergence could be reversed by applying JH III to newly emerged houseflies. The data suggest that the fluctuation of the JHBP concentration might associate with the action of juvenile hormone (JH) on housefly vitellogenesis.  相似文献   

9.
Low molecular weight juvenile hormone binding proteins (JHBPs) are specific carriers of juvenile hormone (JH) in the hemolymph of butterflies and moths. As hormonal signal transmitters, these proteins exert a profound effect on insect development. The crystal structure of JHBP from Galleria mellonella shows an unusual fold consisting of a long α-helix wrapped in a highly curved antiparallel β-sheet. JHBP structurally resembles the folding pattern found in tandem repeats in some mammalian lipid-binding proteins, with similar organization of one cavity and a disulfide bond between the long helix and the β-sheet. JHBP reveals, therefore, an archetypal fold used by nature for hydrophobic ligand binding. The JHBP molecule possesses two hydrophobic cavities. Several lines of experimental evidence conclusively indicate that JHBP binds JH in only one cavity, close to the N- and C-termini, and that this binding induces a structural change. The second cavity, located at the opposite end of the molecule, could bind another ligand.  相似文献   

10.
Galleria mellonella juvenile hormone binding protein (JHBP) is a single chain glycoprotein with two disulfide bonds and a molecular mass of 25,880 Da. This report describes the expression of JHBP in bacteria and yeast cells (Pichia pastoris). The expression in bacteria was low and the protein was rapidly degraded upon cell lysis. The expression of His8-tagged rJHBP (His8-rJHBP) in P. pastoris was high and the non-degraded protein was purified to homogeneity with high yield in a one-step immobilized Ni++ affinity chromatography. His8-rJHBP from P. pastoris contains one JH III binding site with KD of 3.7 +/- 1.3x10(-7) M. The results suggest that P. pastoris is the preferred system for expression of His8-rJHBP in non-degraded fully active form.  相似文献   

11.
A juvenile hormone binding protein (JHBP) has been isolated from Bombyx mori hemolymph by gel filtration, ion-exchange chromatography, chromatofocusing and hydroxyapatite column chromatography. Gel electrophoresis indicates that the isolated protein is homogeneous in the presence or absence of a denaturing agent. The JHBP in question has a relative molecular mass of 32 kDa, determined by denaturing gel electrophoresis. Chromatofocusing analysis indicated that the JHBP is an acidic protein with pI 4.9. The protein exhibits a dissociation constant of 9.0 × 10−8 M for JH I, 1.14 × 10−7 M for JH II and 3.9 × 10−7 M for JH III, and thus its affinity for JH analogues is in the order of JHI >JHII >JHIII. Its amino acid composition indicates that the protein consists of 297 residues of 18 kinds of amino acids. The sequence of the N-terminus of the polypeptide chain was determined for 34 of the first 36 residues: Asp-Gln-Asp-Ala-Leu-Leu-Lys-Pro-?-Lys-Leu-Gly-Asp-Met-Gln-Ser-Leu-Ser-Ser-Ala-Thr-Gln-Gln-Phe-Leu-Glu- Lys-Thr-Ser-Lys-Gly-Ile-Pro-?-Tyr-His-.  相似文献   

12.
《Insect Biochemistry》1988,18(7):661-666
Hemolymph juvenile hormone-binding protein (JHBP) is synthesized and secreted from fat body in the adult female cockroach, Leucophaea maderae. The data in this paper suggest it is initially secreted from the fat body as a larger peptide whereas data in the accompanying paper demonstrate that JHBP is apolipophorin I. Using media from cultures of fat body maintained in vitro, a JH-binding component was found that is JH III saturable, has a KD of 1.5 × 10−8 M, binds JH III > JH II > JH I, and has a sedimentation value of 6.5S on high salt sucrose gradients. Each of these properties is identical to those of the JHBP extracted from the hemolymph. To identify the protein that bound JH, media proteins were photoaffinity labeled with 10-[10,11-3H]epoxyfarnesyl diazoacetate ([3H]EFDA). The results revealed that two media proteins bound [3H]EFDA in the absence of JH III, but not in the presence of 100-fold excess JH III. The molecular weights of the two media peptides were estimated by SDS-PAGE to be 275,000 and 220,000.To determine if the JHBP found in media of fat body cultures was due to hemolymph contamination of fat body, incorporation of [3H]leucine into newly synthesized and secreted fat body proteins during a 48 h culture period was monitored. During the culture period, linear increases in the concentrations of radiolabeled 275 and 220 kD JHBP were observed. Monoclonal antibodies specific for the 220 kD hemolymph JHBP were found to recognize both the 275 and 220 kD JHBPs in the media.To investigate the possibility that the 275 kD protein is a precursor to the 220 kD protein and that components of the hemolymph process or modify the precursor, hemolymph was introduced into fat body cultures and relative concentrations of the 275 and 220 kD media JHBPs were determined. Addition of hemolymph to these organ cultures resulted in an increase in the concentration of radiolabeled 220 kD JHBP and a proportional decrease in the concentration of radiolabeled 275 kD JHBP, suggesting that the 275 kD protein is a precursor to the 220 kD hemolymph JHBP. The mechanism of processing or modification remains undetermined.  相似文献   

13.
The larval fat body of newly eclosed adults of Drosophila melanogaster was found to contain a single major binding protein specific for juvenile hormone (JH). Binding to this protein was saturable, of high affinity, and specific for JH III. The protein has a subunit molecular weight (Mr) of 85,000, as determined by photoaffinity labeling. The same or similar JH-binding protein was found in larval fat body and cuticle of third instar larvae and in male accessory glands and heads of newly eclosed adults. It was not found in several other tissues in adults. Male accessory gland cytosol from wild-type flies was found to contain a single binder with a dissociation constant (KD) of 6.7 nM for JH III; a binder in similar preparations from the methoprene-tolerant (Met) mutant had a KD value 6-fold higher. JH III stimulated protein synthesis in glands cultured in vitro, but this effect was reduced in Met flies as compared to wild-type flies, establishing a correlation between JH binding and biological activity of the hormone. In addition, glandular protein accumulation during the first 2 days of adult development was less in Met flies than in wild-type flies. These results strongly suggest that the binding protein we have identified mediates this JH effect in male accessory glands and thus is acting as a JH receptor.  相似文献   

14.
Juvenile hormone (JH) is essential for multiple physiological processes: it controls larval development, metamorphosis and adult reproduction. In insect hemolymph more than 99 % of JH is bound to juvenile hormone binding protein (JHBP), which protects JH from degradation by nonspecific hydrolases and serves as a carrier to supply the hormone to the target tissues. In Galleria mellonella hemolymph, JHBP is found in a complex with lipid-binding high molecular weight proteins (HMWP) and this interaction is enhanced in the presence of JH. In this report, we present studies on the interaction of JHBP with low molecular weight proteins (LMWP) in the hemolymph. Using ligand blotting we found that JHBP interacts with a protein of about 44 kDa. To identify the protein that preferentially binds JHBP, a LMWP fraction was applied to a Sepharose-bound JHBP and, after washing, the column was eluted with free JHBP acting as a specific competitor or with carbonic anhydrase as a negative control. The eluted proteins were separated by SDS/PAGE and analyzed by mass spectrometry. Isocitrate dehydrogenase was identified as a component of the supramolecular complex of JHBP with hemolymph proteins.  相似文献   

15.
Two molecular forms of juvenile hormone binding proteins were identified in the larval hemolymph of Bombyx mori by photoaffinity labeling. One form having an Mr of 33 kDa was present constantly in the hemolymph of the third to the fifth instar larvae while the other form having an Mr of 35 kDa was detected in the hemolymph until in the early fifth instar larvae but not in the prewandering larvae and prepupae. A 33 kDa binding protein was purified by hydrophobic interaction chromatography, gel filtration, and native PAGE. Antiserum against 33 kDa binding protein cross-reacted with 35 kDa binding protein on Western blots, suggesting that these binding proteins shared the same epitopes. From the results of saturation binding assays, it was inferred that 33 and 35 kDa binding proteins had a similar binding affinity for JH 1. It was revealed that one of these binding proteins, 35 kDa binding protein, was produced in the fat body in a stage-specific manner: fat body of the early fifth instar larvae synthesized both 33 and 35 kDa binding proteins while that of prewandering larvae synthesized only 33 kDa binding protein. © 1996 Wiley-Liss, Inc.  相似文献   

16.
Juvenile hormone (JH) regulates insect development. JH present in the hemolymph is bound to a specific glycoprotein, juvenile hormone binding protein (JHBP), which serves as a carrier to deploy the hormone to target tissues. In this report structural changes of JHBP from Galleria mellonella induced by guanidine hydrochloride have been investigated by a combination of size-exclusion chromatography, protein activity measurements, and spectroscopic methods. Molecules of JHBP change their conformation from a native state via two unstable intermediates to a denatured state. The first intermediate appears in a compact state, because it slightly changes its molecular size and preserves most of the JHBP secondary structure of the native state. Although the second intermediate also preserves a substantial part of the secondary structure, it undergoes a change into a noncompact state changing its Stokes radius from approximately 30 to 39 A. Refolding experiments showed that JHBP molecules recover their full protein structure, as judged from the CD spectrum, fluorescence experiments, and JH binding activity measurements. The free energy of unfolding in the absence of the denaturant, DeltaG(D-N), is calculated to be 4.1 kcal mol(-1).  相似文献   

17.
The juvenile hormone binding protein (JHBP) of larval Manduca sexta was labeled by a photoaffinity analog of JH II and purified by preparative IEF and ion-exchange HPLC. The purified [3H]EHDA-labeled JHBP was selectively cleaved by CNBr and by endoproteinases Lys-C and Glu-C. The radioactive peptides were separated by tricine SDS-PAGE and sequenced after blotting to a PVDF membrane. The sequence revealed that Ala184-Asn226 contained a primary binding site of [3H]EHDA. Furthermore, peptide mapping indicated that Asp1-Glu34 also contained a second covalent attachment site of [3H]EHDA. Labeling of the N-terminal region increased when the photolysis was performed at lower temperature. Since Ala184-Asn226 is predicted to be a hydrophobic beta-sheet region, it may participate in the recognition of lipophilic backbone of JH. Five out of six cysteines are located in these two regions, consistent with a model in which the two binding regions connected by disulfide bridges provide a two-sided binding pocket for juvenile hormone.  相似文献   

18.
Juvenile hormone (JH) controls insect development, metamorphosis and reproduction. In insect hemolymph a significant proportion of JH is bound to juvenile hormone binding protein (JHBP), which serves as a carrier supplying the hormone to the target tissues. To shed some light on JHBP passage within insect tissues, the interaction of this carrier with other proteins from Galleria mellonella (Lepidoptera) was investigated. Our studies revealed the presence of JHBP within the tracheal epithelium and fat body cells in both the membrane and cytoplasmic sections. We found that the interaction between JHBP and membrane proteins occurs with saturation kinetics and is specific and reversible. ATP synthase was indicated as a JHBP membrane binding protein based upon SPR-BIA and MS analysis. It was found that in G. mellonella fat body, this enzyme is present in mitochondrial fraction, plasma membranes and cytosol as well. In the model system containing bovine F1 ATP synthase and JHBP, the interaction between these two components occurs with Kd = 0.86 nM. In hemolymph we detected JHBP binding to apolipophorin, arylphorin and hexamerin. These results provide the first demonstration of the physical interaction of JHBP with membrane and hemolymph proteins which can be involved in JHBP molecule traffic.  相似文献   

19.
The roles of juvenile hormone III (JH III) on phase changes and pheromone production were examined in laboratory-reared gregarious desert locust, Schistocerca gregaria (Forskal). The hormone was applied to 5th instar nymphs and newly emerged adult locusts. Generally, the 5th instar nymphs exhibited a higher sensitivity to hormone treatments than the adults. Hormone applications inhibited pheromone production (as measured by the amounts of phenylacetonitrile released). In addition, JH III had a significant effect on the external colouration and absorbance ratios of the haemolymph pigments. It is concluded that the effects of exogenous JH III on gregarious locusts represent a shift towards the solitarious phase.  相似文献   

20.
The hemolymph juvenile hormone binding protein (JHBP) from Galleria mellonella contains two disulphide bridges/molecule and no free Cys residues. An alignment of primary structures of other Lepidopteran JHBPs indicates that Cys residues, equivalent to Cys10,17,151,195 in G. mellonella JHBP, maybe involved in -S-S- bridge formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号