首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

There are several indications that neuropeptides, especially the opiate receptor agonists, modulate the immune response by stimulating the formation of granulation tissue and enhancing the reepithelialization. We observed that the μ-opiate receptor ligand β-endorphin stimulates the migration of cultured human foreskin keratinocytes. After 1?hour exposure to 1?µM β-endorphin, the keratinocytes experienced an increase of cell diameter by cellular elongation and stimulation of migration. Dynorphin had a lesser effect under the same condition. The opiate receptor antagonist naltrexone significantly reduced the effect of β-endorphin on keratinocyte migration. This migratory effect of μ-opiate receptor agonists in vitro indicates that the opioid peptides, released in wounds, could play a key role in the final reepithelialization and tissue regeneration in wound healing. This new knowledge will help us not only to understand the mechanism of wound healing but also to improve the therapeutic strategy in the healing of painful chronic wounds.  相似文献   

2.
c-Met is essential for wound healing in the skin   总被引:1,自引:0,他引:1       下载免费PDF全文
Wound healing of the skin is a crucial regenerative process in adult mammals. We examined wound healing in conditional mutant mice, in which the c-Met gene that encodes the receptor of hepatocyte growth factor/scatter factor was mutated in the epidermis by cre recombinase. c-Met-deficient keratinocytes were unable to contribute to the reepithelialization of skin wounds. In conditional c-Met mutant mice, wound closure was slightly attenuated, but occurred exclusively by a few (5%) keratinocytes that had escaped recombination. This demonstrates that the wound process selected and amplified residual cells that express a functional c-Met receptor. We also cultured primary keratinocytes from the skin of conditional c-Met mutant mice and examined them in scratch wound assays. Again, closure of scratch wounds occurred by the few remaining c-Met-positive cells. Our data show that c-Met signaling not only controls cell growth and migration during embryogenesis but is also essential for the generation of the hyperproliferative epithelium in skin wounds, and thus for a fundamental regenerative process in the adult.  相似文献   

3.
Keratinocyte reepithelialization is a rate-limiting event in cutaneous wound repair, which involves the migration and proliferation of keratinocytes to cover the denuded dermal surface. Transforming growth factor-β1 (TGF-β1) has the ability to induce epithelial cell migration while inhibiting proliferation, and controversial results have been generated regarding the effect of TGF-β signaling on reepithelialization. In this study, full-thickness skin wounds were made in keratinocyte-specific Smad4 knockout and the control mice. The wound closure, reepithelialization, keratinocyte proliferation, myofibroblast numbers and collagen deposition of were assessed. The results showed that the proliferation of keratinocytes increased, which accelerated the reepithelialization, and led to faster wound repair in the epidermis of Smad4 mutant mice. Upregulation of keratin 17, 14-3-3 sigma and phosphorylated AKT in the hyperproliferative epidermis may be correlated with the accelerated reepithelialization. We conclude that Smad4 plays an inhibitory role in the keratinocyte-mediated reepithelialization of wound healing.  相似文献   

4.
Matrix metalloproteinase- (MMP-9) is involved in processes that occur during cutaneous wound healing such as inflammation, matrix remodeling, and epithelialization, To investigate its role in healing, full thickness skin wounds were made in the dorsal region of MMP-9-null and control mice and harvested up to 14 days post wounding. Gross examination and histological and immunohistochemical analysis indicated delayed healing in MMP-9-null mice. Specifically, MMP-9-null wounds displayed compromised reepithelialization and reduced clearance of fibrin clots. In addition, they exhibited abnormal matrix deposition, as evidenced by the irregular alignment of immature collagen fibers. Despite the presence of matrix abnormalities, MMP-9-null wounds displayed normal tensile strength. Ultrastructural analysis of wounds revealed the presence of large collagen fibrils, some with irregular shape. Keratinocyte proliferation, inflammation, and angiogenesis were found to be normal in MMP-9-null wounds. In addition, VEGF levels were similar in control and MMP-9-null wound extracts. To investigate the importance of MMP-9 in wound reepithelialization we tested human and murine keratinocytes in a wound migration assay and found that antibody-based blockade of MMP-9 function or MMP-9 deficiency retarded migration. Collectively, our observations reveal defective healing in MMP-9-null mice and suggest that MMP-9 is required for normal progression of wound closure.  相似文献   

5.
Sheets of cultured allogeneic human keratinocytes have been used for the treatment of burns and chronic leg ulcers but there has been no animal assay for the therapeutic action of these cultures. In order to analyze the effects of frozen cultures of human keratinocytes on wound healing, we have developed such an assay based on the rate of repair of full-thickness skin wounds in immunocompetent NMR1 mice. Reepithelialization of the control wounds, originating from the murine epithelium at the edge of the wound, occurred at a constant rate of advance of 150 microm/day. When frozen cultured human epidermal sheets were thawed at room temperature for 5-10 min and applied to the surface of the wound, the murine epithelium advanced at 267 microm/day. Most wounds treated with frozen cultures completely healed after 10 days, whereas most control wounds required 16 days. The accelerated reepithelialization did not depend on the presence of proliferative human keratinocytes in the frozen cultures. The cultures also promoted early formation of granulation tissue and laminin deposition over the surface of the wound bed. This simple assay should permit quantitative analysis of the effects on healing exerted not only by cultured cells, but also by proteins and small molecules.  相似文献   

6.
In a murine model of full-thickness wounds, healing is stimulated by the application of human frozen cultured epidermal sheets. With immunofluorescence techniques, we studied, during this process, the spatial and temporal pattern of expression of: transforming growth factor-alpha (TGF-alpha); transforming growth factor-beta (TGF-beta) isoforms 1, 2, and 3; platelet-derived growth factor (PDGF); and the extracellular matrix proteins fibronectin, collagen IV, and tenascin. The growth factors, with the exception of PDGF, were found to be located in the frozen cultured sheet of keratinocytes before and after its application to the wound, whereas collagen IV and tenascin were deposited in the connective tissue under the frozen cultures. None of these factors were detected in control wound beds. Monoclonal antibodies against collagen IV and tenascin showed that both were of murine origin. We propose that the frozen cultures of human keratinocytes promote faster reepithelialization through the release of growth factors such as TGF-alpha which directly enhance migration and proliferation of murine keratinocytes, and through the stimulation of murine subepithelial cells, by TGF-beta, to secrete basement membrane proteins such as collagen IV, laminin, and tenascin, which provide a provisional substrate that improves migration of the murine epidermal cells.  相似文献   

7.
Skin wound healing in mammals is a complex, multicellular process that depends on the precise supply of oxygen. Hypoxia-inducible factor (HIF) prolyl hydroxylase 2 (PHD2) serves as a crucial oxygen sensor and may therefore play an important role during reepithelialization. Hence, this study was aimed at understanding the role of PHD2 in cutaneous wound healing using different lines of conditionally deficient mice specifically lacking PHD2 in inflammatory, vascular, or epidermal cells. Interestingly, PHD2 deficiency only in keratinocytes and not in myeloid or endothelial cells was found to lead to faster wound closure, which involved enhanced migration of the hyperproliferating epithelium. We demonstrate that this effect relies on the unique expression of β3-integrin in the keratinocytes around the tip of the migrating tongue in an HIF1α-dependent manner. Furthermore, we show enhanced proliferation of these cells in the stratum basale, which is directly related to their attenuated transforming growth factor β signaling. Thus, loss of the central oxygen sensor PHD2 in keratinocytes stimulates wound closure by prompting skin epithelial cells to migrate and proliferate. Inhibition of PHD2 could therefore offer novel therapeutic opportunities for the local treatment of cutaneous wounds.  相似文献   

8.
The peptide hormone somatostatin (SST) and its five G protein-coupled receptors (SSTR1-5) were described to be present in the skin, but their cutaneous function(s) and skin-specific signalling mechanisms are widely unknown. By using receptor specific agonists we show here that the SSTRs expressed in keratinocytes are functionally coupled to the inhibition of adenylate cyclase. In addition, treatment with SSTR4 and SSTR5/1 specific agonists significantly influences the MAP kinase signalling pathway. As epidermal hormone receptors in general are known to regulate re-epithelialization following skin injury, we investigated the effect of SST on cell counts and migration of human keratinocytes. Our results demonstrate a significant inhibition of cell migration and reduction of cell counts by SST. We do not observe an effect on apoptosis and necrosis. Analysis of signalling pathways showed that somatostatin inhibits cell migration independent of its effect on cAMP. Migrating keratinocytes treated with SST show altered cytoskeleton dynamics with delayed lamellipodia formation. Furthermore, the activity of the small GTPase Rac1 is diminished, providing evidence for the control of the actin cytoskeleton by somatostatin receptors in keratinocytes. While activation of all receptors leads to redundant effects on cell migration, only treatment with a SSTR5/1 specific agonist resulted in decreased cell counts. In accordance with reduced cell counts and impaired migration we observe delayed re-epithelialization in an ex vivo wound healing model. Consequently, our experiments suggest SST as a negative regulator of epidermal wound healing.  相似文献   

9.
Myostatin (Mstn) is a secreted growth and differentiation factor that belongs to the transforming growth factor-β (TGF-β) superfamily. Mstn has been well characterized as a regulator of myogenesis and has been shown to play a critical role in postnatal muscle regeneration. Herein, we report for the first time that Mstn is expressed in both epidermis and dermis of murine and human skin and that Mstn-null mice exhibited delayed skin wound healing attributable to a combination of effects resulting from delayed epidermal reepithelialization and dermal contraction. In epidermis, reduced keratinocyte migration and protracted keratinocyte proliferation were observed, which subsequently led to delayed recovery of epidermal thickness and slower reepithelialization. Furthermore, primary keratinocytes derived from Mstn-null mice displayed reduced migration capacity and increased proliferation rate as assessed through in vitro migration and adhesion assays, as well as bromodeoxyuridine incorporation and Western blot analysis. Moreover, in dermis, both fibroblast-to-myofibroblast transformation and collagen deposition were concomitantly reduced, resulting in a delayed dermal wound contraction. These decreases are due to the inhibition of TGF-β signaling. In agreement, the expression of decorin, a naturally occurring TGF-β suppressor, was elevated in Mstn-null mice; moreover, topical treatment with TGF-β1 protein rescued the impaired skin wound healing observed in Mstn-null mice. These observations highlight the interplay between TGF-β and Mstn signaling pathways, specifically through Mstn regulation of decorin levels during the skin wound healing process. Thus we propose that Mstn agonists might be beneficial for skin wound repair.  相似文献   

10.
Cultured keratinocytes resemble migrating keratinocytes under conditions of reepithelialization during wound healing. Such keratinocytes express urokinase-type plasminogen activator (uPA) and its specific receptor (uPA receptor). Receptor-bound uPA activates plasminogen, thus providing plasmin for pericellular proteolysis. uPA is regulated by the plasminogen activator inhibitors PAI-1 and PAI-2. As indicated by immunohistology, neither uPA nor uPA receptor is expressed in normal epidermis. Thus, the down-regulation of uPA and uPA-receptor expression in keratinocytes appears to be an important event in epidermal healing and restoration of a normal epidermal tissue architecture. We have addressed this matter by using a culture and differentiation system for keratinocytes in vitro. Keratinocytes were grown in organotypic cocultures for 4, 7, and 14 days. Frozen sections were analyzed with indirect immunofluorescence staining and overlay zymography, the latter detecting activity of plasminogen activators. While tPA and PAI-I stainings were consistently negative over the entire observation period, uPA and uPA receptor were expressed by basal keratinocytes at Days 4 and 7, but not at Day 14. Accordingly, overlay zymography revealed uPA activity at Days 4 and 7. PAI-2 was found throughout the entire observation period, but with varying distribution: at Days 4 and 7 all suprabasal keratinocytes stained positive for PAI-2. At Day 14, PAI-2-specific stainings were confined to the uppermost cells of the stratum spinosum. Our data demonstrate that uPA and uPA receptor, which are up-regulated in cultured keratinocytes, are down-regulated upon restoration of an epidermis-like structure. The distribution of PAI-2 varied over the observation period and at Day 14 resembled the distribution of PAI-2 in normal epidermis. Taken together, keratinocytes in organotypic coculture behave like keratinocytes in healing wounds in vivo with respect to the expression of the plasminogen activator system.  相似文献   

11.
The molecular mechanism underlying the promotion of wound healing by TGF-beta 1 is incompletely understood. We report that TGF-beta 1 regulates the regenerative/migratory phenotype of normal human keratinocytes by modulating their integrin receptor repertoire. In growing keratinocyte colonies but not in fully stratified cultured epidermis, TGF-beta 1: (a) strongly upregulates the expression of the fibronectin receptor alpha 5 beta 1, the vitronectin receptor alpha v beta 5, and the collagen receptor alpha 2 beta 1 by differentially modulating the synthesis of their alpha and beta subunits; (b) downregulates the multifunctional alpha 3 beta 1 heterodimer; (c) induces the de novo expression and surface exposure of the alpha v beta 6 fibronectin receptor; (d) stimulates keratinocyte migration toward fibronectin and vitronectin; (e) induces a marked perturbation of the general mechanism of polarized domain sorting of both beta 1 and beta 4 dimers; and (f) causes a pericellular redistribution of alpha v beta 5. These data suggest that alpha 5 beta 1, alpha v beta 6, and alpha v beta 5, not routinely used by keratinocytes resting on an intact basement membrane, act as "emergency" receptors, and uncover at least one of the molecular mechanisms responsible for the peculiar integrin expression in healing human wounds. Indeed, TGF-beta 1 reproduces the integrin expression pattern of keratinocytes located at the injury site, particularly of cells in the migrating epithelial tongue at the leading edge of the wound. Since these keratinocytes are inhibited in their proliferative capacity, these data might account for the apparent paradox of a TGF-beta 1-dependent stimulation of epidermal wound healing associated with a growth inhibitory effect on epithelial cells.  相似文献   

12.
Gamma-aminobutyric acid (GABA) is a non-protein amino acid. It is well known for its role as an inhibitory neurotransmitter of developing and operating nervous systems in brains. In this study, a novel function of GABA in the healing process of cutaneous wounds was presented regarding anti-inflammation and fibroblast cell proliferation. The cell proliferation activity of GABA was verified through an MTT assay using murine fibroblast NIH3T3 cells. It was observed that GABA significantly inhibited the mRNA expression of iNOS, IL-1beta, and TNF-alpha, in LPS-stimulated RAW 264.7 cells. To evaluate in vivo activity of GABA in wound healing, excisional open wounds were made on the dorsal sides of Sprague-Dawley rats under anesthesia, and the healing of the wounds was apparently assessed. The molecular aspects of the healing process were also investigated by hematoxylineosin staining of the healed skin, displaying the degrees of reepithelialization and linear alignment of the granulation tissue, and immunostaining and RT-PCR analyses of fibroblast growth factor and platelet-derived growth factor, implying extracellular matrix synthesis and remodeling of the skin. The GABA treatment was effective to accelerate the healing process by suppressing inflammation and stimulating reepithelialization, compared with the epidermal growth factor treatment. The healing effect of GABA was remarkable at the early stage of wound healing, which resulted in significant reduction of the whole healing period.  相似文献   

13.
Skin wound healing is a complex biological process that requires the regulation of different cell types, including immune cells, keratinocytes, fibroblasts, and endothelial cells. It consists of 5 stages: hemostasis, inflammation, granulation tissue formation, re-epithelialization, and wound remodeling. While inflammation is essential for successful wound healing, prolonged or excess inflammation can result in nonhealing chronic wounds. Lactoferrin, an iron-binding glycoprotein secreted from glandular epithelial cells into body fluids, promotes skin wound healing by enhancing the initial inflammatory phase. Lactoferrin also exhibits anti-inflammatory activity that neutralizes overabundant immune response. Accumulating evidence suggests that lactoferrin directly promotes both the formation of granulation tissue and re-epithelialization. Lactoferrin stimulates the proliferation and migration of fibroblasts and keratinocytes and enhances the synthesis of extracellular matrix components, such as collagen and hyaluronan. In an in vitro model of wound contraction, lactoferrin promoted fibroblast-mediated collagen gel contraction. These observations indicate that lactoferrin supports multiple biological processes involved in wound healing.  相似文献   

14.
Laminin-5 (previously known as kalinin, epiligrin, and nicein) is an adhesive protein localized to the anchoring filaments within the lamina lucida space of the basement membrane zone lying between the epidermis and dermis of human skin. Anchoring filaments are structures within the lamina lucida and lie immediately beneath the hemidesmosomes of the overlying basal keratinocytes apposed to the basement membrane zone. Human keratinocytes synthesize and deposit laminin-5. Laminin-5 is present at the wound edge during reepithelialization. In this study, we demonstrate that laminin-5, a powerful matrix attachment factor for keratinocytes, inhibits human keratinocyte migration. We found that the inhibitory effect of laminin-5 on keratinocyte motility can be reversed by blocking the α3 integrin receptor. Laminin-5 inhibits keratinocyte motility driven by a collagen matrix in a concentration-dependent fashion. Using antisense oligonucleotides to the α3 chain of laminin-5 and an antibody that inhibits the cell binding function of secreted laminin-5, we demonstrated that the endogenous laminin-5 secreted by the keratinocyte also inhibits the keratinocyte's own migration on matrix. These findings explain the hypermotility that characterizes keratinocytes from patients who have forms of junctional epidermolysis bullosa associated with defects in one of the genes encoding for laminin-5 chains, resulting in low expression and/or functional inadequacy of laminin-5 in these patients. These studies also suggest that during reepithelialization of human skin wounds, the secreted laminin-5 stabilizes the migrating keratinocyte to establish the new basement membrane zone.  相似文献   

15.
Diabetic patients are at high risk of developing delayed cutaneous wound healing. Adiponectin plays a pivotal role in the pathogenesis of diabetes and is considered to be involved in various pathological conditions associated with diabetes; however, its role in wound repair is unknown. In this study, we elucidated the involvement of adiponectin in cutaneous wound healing in vitro and in vivo. Normal human keratinocytes expressed adiponectin receptors, and adiponectin enhanced proliferation and migration of keratinocytes in vitro. This proliferative and migratory effect of adiponectin was mediated via AdipoR1/AdipoR2 and the ERK signaling pathway. Consistent with in vitro results, wound closure was significantly delayed in adiponectin-deficient mice compared with wild-type mice, and more importantly, keratinocyte proliferation and migration during wound repair were also impaired in adiponectin-deficient mice. Furthermore, both systemic and topical administration of adiponectin ameliorated impaired wound healing in adiponectin-deficient and diabetic db/db mice, respectively. Collectively, these results indicate that adiponectin is a potent mediator in the regulation of cutaneous wound healing. We propose that upregulation of systemic and/or local adiponectin levels is a potential and very promising therapeutic approach for dealing with diabetic wounds.  相似文献   

16.
Diabetic foot ulcers are a major complication of diabetes that occurs following minor trauma. Diabetes-induced hyperglycemia is a leading factor inducing ulcer formation and manifests notably through the accumulation of advanced glycation end-products (AGEs) such as N-carboxymethyl-lysin. AGEs have a negative impact on angiogenesis, innervation, and reepithelialization causing minor wounds to evolve into chronic ulcers which increases the risks of lower limb amputation. However, the impact of AGEs on wound healing is difficult to model (both in vitro on cells, and in vivo in animals) because it involves a long-term toxic effect. We have developed a tissue-engineered wound healing model made of human keratinocytes, fibroblasts, and endothelial cells cultured in a collagen sponge biomaterial. To mimic the deleterious effects induced by glycation on skin wound healing, the model was treated with 300 µM of glyoxal for 15 days to promote AGEs formation. Glyoxal treatment induced carboxymethyl-lysin accumulation and delayed wound closure in the skin mimicking diabetic ulcers. Moreover, this effect was reversed by the addition of aminoguanidine, an inhibitor of AGEs formation. This in vitro diabetic wound healing model could be a great tool for the screening of new molecules to improve the treatment of diabetic ulcers by preventing glycation.  相似文献   

17.
18.
19.
Integrins are ubiquitous transmembrane receptors that play crucial roles in cell-cell and cell-matrix interactions. In this study, we have determined the effects of the loss of beta 1 integrins in keratinocytes in vitro and during cutaneous wound repair. Flow cytometry of cultured beta 1-deficient keratinocytes confirmed the absence of beta 1 integrins and showed downregulation of alpha 6 beta 4 but not of alpha v integrins. beta 1-null keratinocytes were characterised by poor adhesion to various substrates, by a reduced proliferation rate and by a strongly impaired migratory capacity. In vivo, the loss of beta 1 integrins in keratinocytes caused a severe defect in wound healing. beta 1-null keratinocytes showed impaired migration and were more densely packed in the hyperproliferative epithelium. Surprisingly, their proliferation rate was not reduced in early wounds and even increased in late wounds. The failure in re-epithelialisation resulted in a prolonged inflammatory response, leading to dramatic alterations in the expression of important wound-regulated genes. Ultimately, beta 1-deficient epidermis did cover the wound bed, but the epithelial architecture was abnormal. These findings demonstrate a crucial role of beta 1 integrins in keratinocyte migration and wound re-epithelialisation. Movies available on-line  相似文献   

20.
Skin exposure to ionizing radiation affects the normal wound healing process and greatly impacts the prognosis of affected individuals. We investigated the effect of ionizing radiation on wound healing in a rat model of combined radiation and wound skin injury. Using a soft X-ray beam, a single dose of ionizing radiation (10-40 Gy) was delivered to the skin without significant exposure to internal organs. At 1 h postirradiation, two skin wounds were made on the back of each rat. Control and experimental animals were euthanized at 3, 7, 14, 21 and 30 days postirradiation. The wound areas were measured, and tissue samples were evaluated for laminin 332 and matrix metalloproteinase (MMP) 2 expression. Our results clearly demonstrate that radiation exposure significantly delayed wound healing in a dose-related manner. Evaluation of irradiated and wounded skin showed decreased deposition of laminin 332 protein in the epidermal basement membrane together with an elevated expression of all three laminin 332 genes within 3 days postirradiation. The elevated laminin 332 gene expression was paralleled by an elevated gene and protein expression of MMP2, suggesting that the reduced amount of laminin 332 in irradiated skin is due to an imbalance between laminin 332 secretion and its accelerated processing by elevated tissue metalloproteinases. Western blot analysis of cultured rat keratinocytes showed decreased laminin 332 deposition by irradiated cells, and incubation of irradiated keratinocytes with MMP inhibitor significantly increased the amount of deposited laminin 332. Furthermore, irradiated keratinocytes exhibited a longer time to close an artificial wound, and this delay was partially corrected by seeding keratinocytes on laminin 332-coated plates. These data strongly suggest that laminin 332 deposition is inhibited by ionizing radiation and, in combination with slower keratinocyte migration, can contribute to the delayed wound healing of irradiated skin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号