首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human and rat hepatic tissue express many serotonin (5-HT) receptor subtypes, such as 5-HT1B, 5-HT2A, 5-HT2B and 5-HT7 receptors, which mediate diverse effects. 5-HT is known to regulate several key aspects of liver biology including hepatic blood flow, innervations and wound healing. 5-HT is also known to enhance net glucose uptake during glucose infusion in fasted dogs, but little is known about the ability of 5-HT to control hepatic glucose metabolism, especially glycolysis. This study addresses the potential of 5-HT to regulate PFK activity and the mechanisms related to the enzyme activity. Based on our results, we are the first to provide evidence that 5-HT up-regulates PFK in mouse hepatic tissue. Activation of the enzyme occurs through the 5-HT2A receptor and phospholipase C (PLC), resulting in PFK intracellular redistribution and favoring PFK association to the cytoskeletal f-actin-enriched fractions. Interestingly, 5-HT and insulin act in a synergistic manner, likely because of the ability of insulin to increase fructose-2,6-bisphosphate because the presence of this PFK allosteric regulator enhances the 5-HT effect on the enzyme activity. Together, these data demonstrate the ability of 5-HT to control hepatic glycolysis and present clues about the mechanisms involved in these processes, which may be important in understanding the action of 5-HT during the hepatic wound healing process.  相似文献   

2.
ARPP-21 (cyclic AMP-regulated phosphoprotein; Mr = 21,000) is a cytosolic neuronal phosphoprotein that is highly enriched in the striatum and in other dopaminoceptive regions of the brain. The state of phosphorylation of ARPP-21 is also regulated by vasoactive intestinal peptide in intact cells. We previously reported the sequence analysis of bovine ARPP-21 cDNA and have now characterized rat ARPP-21 cDNA to study further the molecular biology of this protein. The sequence of the coding region is 82 and 85% identical at the nucleotide and amino acid levels, respectively, between the two species. There are two major classes of clones, differing only in the lengths of their 3' untranslated ends, suggesting that the different ARPP-21 mRNAs are derived from the use of alternate polyadenylation sites. Both major mRNA species, 2.6 and 0.7 kb, are present at the highest concentration in the striatum, followed by the cortex, consistent with previous immunocytochemical results. Southern blot analysis reveals a simple hybridization pattern, consistent with the presence of a single rat gene encoding ARPP-21. The steady-state levels of the ARPP-21 mRNAs are developmentally regulated but, in the neonatal and mature animal, are not altered following 6-hydroxydopamine lesions of the substantia nigra or by pharmacologic treatments that up-regulate the D1- or D2-dopamine receptors.  相似文献   

3.
Rikkunshito (RKT), a Japanese traditional medicine, has been shown to stimulate food intake in rats with cisplatin-induced anorexia; however, the underlying mechanisms remain unknown. In this study, we investigated whether RKT is involved in the degradation of peripheral ghrelin. RKT inhibited decreases in plasma ghrelin level and enhanced acyl- to desacyl-ghrelin (A/D) ratio in cisplatin-treated rats. Several components of RKT demonstrated inhibitory activity against ghrelin deacylating enzymes. In addition, 10-gingerol, a component of RKT, inhibited exogenous ghrelin deacylation. Therefore, RKT may enhance plasma acyl-ghrelin level, at least in part, by inhibiting the circulating ghrelin degrading enzyme.  相似文献   

4.
An extract of the whole brain of the frog Rana ridibunda contained high concentrations of substance P-like immunoreactivity, measured with an antiserum directed against the COOH-terminal region of mammalian substance P and neurokinin B-like immunoreactivity, measured with an antiserum directed against the NH2-terminus of neurokinin B. The primary structure of the substance P-related peptide (ranakinin) was established as: Lys-Pro-Asn-Pro-Glu-Arg-Phe-Tyr-Gly-Leu-Met-NH2. Mammalian substance P was not present in the extract. The primary structure of the neurokinin B-related peptide was established as: Asp-Met-His-Asp-Phe-Phe-Val-Gly-Leu-Met-NH2. This amino acid sequence is the same as that of mammalian neurokinin B. Ranakinin was equipotent with substance P and [Sar9,Met(O2)11]substance P in inhibiting the binding of 125I-Bolton-Hunter-[Sar9,Met(O2)11]substance P, a selective radioligand for the NK1 receptor, to binding sites in rat submandibular gland membranes (IC50 1.6 +/- 0.3 nM; n = 5). It is concluded that ranakinin is a preferred agonist for the mammalian NK1 tachykinin receptor subtype.  相似文献   

5.
In pharmacological bioassays on isolated ring-shaped auricle preparations of Sepia officinalis, the action of the specific 5-hydroxytryptamine (5-HT) agonists 8-OH-DPAT (5-HT1a), CP-93129 (5-HT1b), TFMPP (5-HT1b) and RS-67333 (5-HT4) on these autonomously contractile compartments was studied. 8-OH-DPAT and CP-93129 induced mainly positive effects on frequency and tone on the isotonically suspended auricles. The positive effect of 8-OH-DPAT on frequency was blocked by the specific 5-HT1a antagonist NAN-190. The 5-HT1b agonist TFMPP caused similar effects on tone and a positive impact on the auricular amplitude. The highly specific 5-HT4 agonist RS-67333 induced an effect opposite to the action of 5-HT1 agonists inducing mainly negative effects on frequency, amplitude and tone, causing a diastolic standstill at a concentration of 10(-6) M. These negative effects were blocked by the adenylyl cyclase inhibitor SQ-22,536 in the absence of a diastolic standstill. The opposing action of 5-HT1 and 5-HT4 agonists on auricular contractile activity suggests that an antagonistic 5-HT-receptor system exists within the auricular myocardial cells of S. officinalis, probably consisting of 5-HT1- and 5-HT4-like subtypes. The results also suggest that adenylyl cyclase acts as the intracellular target enzyme of both signal transduction mechanisms.  相似文献   

6.
Development of the vertebrate central nervous system is thought to be controlled by intricate cell-cell interactions and spatio-temporally regulated gene expressions. The details of these processes are still not fully understood. We have isolated a novel vertebrate gene, CRIM1/Crim1, in human and mouse. Human CRIM1 maps to chromosome 2p21 close to the Spastic Paraplegia 4 locus. Crim1 is expressed in the notochord, somites, floor plate, early motor neurons and interneuron subpopulations within the developing spinal cord. CRIM1 appears to be evolutionarily conserved and encodes a putative transmembrane protein containing an IGF-binding protein motif and multiple cysteine-rich repeats similar to those in the BMP-associating chordin and sog proteins. Our results suggest a role for CRIM1/Crim1 in CNS development possibly via growth factor binding.  相似文献   

7.
A palmitoyl CoA-protein complex was isolated from bovine heart mitochondria and purified to homogeneity. The elution profile of the [14C]palmitoyl CoA bound protein from a hydroxyapatite column was identical to that seen when [3H]carboxyatractylate was used as the bound ligand. A sample of the palmitoyl CoA-protein complex from a peak fraction of the column appeared to be homogeneous by sodium dodecyl sulfate gel electrophoresis. The mobility of the protein bound with palmitoyl CoA was identical to the one bound with carboxyatractylate and the molecular weight was estimated to be 30,000 daltons. Compared to the stable palmitoyl CoA-protein complex, purification of the unliganded carrier from mitochondria at 22°C resulted in a disaggregated protein. These physical characteristics of the palmitoyl CoA-protein complex correspond to those identified for the ADPATP carrier. The results further confirm the specificity of the fatty acyl CoA ligand for the adenine nucleotide translocase and support the concept that it may be a physiological modulator of adenine nucleotide translocation.  相似文献   

8.
5-HT is a phylogenetically conserved monoaminergic neurotransmitter which is crucial for a number of physiological processes and is dysregulated in several disease states including depression, anxiety and schizophrenia. 5-HT neurons in the central nervous system are localized in the raphe nuclei and project to a wide range of target areas. 5-HT exerts its functions through 14 subtypes of 5-HT receptors. The tertiary structures of seven transmembrane 5-HT receptors contain several important features, including cholesterol consensus motifs, prominent intracellular loops and free C-termini. Alterations of cholesterol levels affect binding of ligands to 5-HT receptors and cholesterol-enriched microdomains in the cell membrane, termed lipid rafts, regulate 5-HT receptor internalization and signaling. The intracellular loops and the C-termini of 5-HT receptors provide binding sites for interacting adaptor proteins. Adaptor proteins affect internalization, desensitization as well as G-protein dependent and independent signaling via 5-HT receptors. We will here briefly review recent progress on the role of lipid rafts and adaptor proteins in the regulation of localization, trafficking, signaling and ligand bias of 5-HT receptors.  相似文献   

9.
Adenylate kinases (AK) play a key role in nucleotide signaling processes and energy metabolism by catalyzing the reversible conversion of ATP and AMP to 2 ADP. In the malaria parasite Plasmodium falciparum this reaction is mediated by AK1, AK2, and a GTP:AMP phosphotransferase (GAK). Here, we describe two additional adenylate kinase-like proteins: PfAKLP1, which is homologous to human AK6, and PfAKLP2. Using GFP-fusion proteins and life cell imaging, we demonstrate a cytosolic localization for PfAK1, PfAKLP1, and PfAKLP2, whereas PfGAK is located in the mitochondrion. PfAK2 is located at the parasitophorous vacuole membrane, and this localization is driven by N-myristoylation.

Structured summary of protein interactions

EXP-1 and PfAK2colocalize by fluorescence microscopy (View interaction)PfAK2 and SERPcolocalize by fluorescence microscopy (View interaction)  相似文献   

10.
Endocrine profile of ergot alkaloids.   总被引:1,自引:0,他引:1  
  相似文献   

11.
Vascular smooth muscle cell membranes from prehypertensive rats of the Milan hypertensive strain (MHS) were used to examine adenylyl cyclase activity and its regulation by guanine nucleotide regulatory proteins (G-proteins). Basal adenylyl cyclase activity was similar in MHS and Milan normontensive strain (MNS) membranes. Forsokolin (10?4 M) produced a significantly greater stimulatory response in MHS membranes, but this was not observed with NaF (10?2 M). Isoporterenol (10?4 M) caused a significantly decreased stimulation of adenylyl cyclase activity in MHS membranes, while prostaglandin E1 (10?5 M) produced similar responses in the two strains. Gi function and GTP responses, as observed by biphasic effects of GTP on isoproterenol-stimulated membranes, were similar in both strains. The levels of Gi2α and Gqα/G11α were similar in the two strains, while the levels of Gsα (44 and 42 kDa forms) and the β-subunit were significantly reduced by ~20% in MHS membranes. The α-subunit of Gi3 was dramatically reduced by ~80% in MHS membranes. The affinities of β-adrenergic receptors for the antagonist, cyanophindolol, were similar in the two strains; however, the number of β-adrenoceptors was substantially reduced in MHS membranes. These findings may be of relevance to altered vascular reactivity and transmembrane ion distribution observed in the MHS.  相似文献   

12.
    
The gene 5 protein (g5p) of the Ff virus contains five Tyr, individual mutants of which have now all been characterized by CD spectroscopy. The protein has a dominant tyrosyl 229-nm L(a) CD band that is shown to be approximately the sum of the five individual Tyr contributions. Tyr41 is particularly important in contributing to the high cooperativity with which the g5p binds to ssDNA, and Y41F and Y41H mutants are known to differ in dimer-dimer packing interactions in crystal structures. We compared the solution structures and binding properties of the Y41F and Y41H mutants using CD spectroscopy. Secondary structures of the mutants were similar by CD analyses and close to those derived from the crystal structures. However, there were significant differences in the binding properties of the two mutant proteins. The Y41H protein had an especially low binding affinity and perturbed the spectrum of poly[d(A)] in 2 mM Na(+) much less than did Y41F and the wild-type gene 5 proteins. Moreover, a change in the Tyr 229 nm band, assigned to the perturbation of Tyr34 at the dimer-dimer interface, was absent in titrations with the Y41H mutant under low salt conditions. In contrast, titrations with the Y41H mutant in 50 mM Na(+) exhibited typical CD changes of both the nucleic acid and the Tyr 229-nm band. Thus, protein-protein and g5p-ssDNA interactions appeared to be mutually influenced by ionic strength, indicative of correlated changes in the ssDNA binding and cooperativity loops of the protein or of indirect structural constraints.  相似文献   

13.
The lymphocyte receptor CD5 influences cell activation by modifying the strength of the intracellular response initiated by antigen engagement. Regulation through CD5 involves the interaction of one or more of its three scavenger receptor cysteine-rich domains present in the extracellular region. Here, we present the 3D solution structure of a non-glycosylated double mutant of the N-terminal domain of human CD5 expressed in Escherichia coli (eCD5d1m), which has enhanced solubility compared to the non-glycosylated wild-type (eCD5d1). In common with a glycosylated form expressed in Pichia pastoris, the [15N,1H]-correlation spectra of both eCD5d1 and eCD5d1m exhibit non-uniform temperature-dependent signal intensities, indicating extensive conformational fluctuations on the micro-millisecond timescale. Although approximately one half of the signals expected for the domain are absent at 298 K, essentially complete resonance assignments and a solution structure could be obtained at 318 K. Because of the sparse nature of the experimental restraint data and the potentially important contribution of conformational exchange to the nuclear Overhauser effect peak intensity, we applied inferential structure determination to calculate the eCD5d1m structure. The inferential structure determination ensemble has similar features to that obtained by traditional simulated annealing methods, but displays superior definition and structural quality. The eCD5d1m structure is similar to other members of the scavenger receptor cysteine-rich superfamily, but the position of the lone α helix differs due to interactions with the unique N-terminal region of the domain. The availability of an experimentally tractable form of CD5d1, together with its 3D structure, provides new tools for further investigation of its function within intact CD5.  相似文献   

14.
Unfolding usually leads to the loss of the biological function of a protein. Here, we show that an unfolding reaction activates the gene-3-protein of the filamentous phage fd for its function during the infection of Escherichia coli. Before infection, the gene-3-protein is in a fully folded locked form, in which the binding site for the phage receptor TolA is buried at the domain interface. To expose this binding site, the gene-3-protein must be activated, and previously we identified the cis-to-trans isomerization at Pro213 in the hinge region between the two domains as a key step of activation. We now report that Pro213 isomerization destabilizes the protein and leads to a loss of folded structure, presumably in the hinge region. The partially unfolded form of the gene-3-protein is metastable, and trans-Pro213 arrests the protein in this activated form for an extended time, long enough to find the receptor TolA. The partial unfolding and its timing by prolyl isomerization are essential for the biological function.  相似文献   

15.
The (pro)renin receptor (PRR) is an important component of the renin-angiotensin system (RAS), which regulates blood pressure and cardiovascular function. The integral membrane protein PRR contains a large extracellular domain (∼310 amino acids), a single transmembrane domain (∼20 amino acids) and an intracellular domain (∼19 amino acids). Although short, the intracellular (IC) domain of the PRR has functionally important roles in a number of signal transduction pathways activated by (pro)renin binding. Meanwhile, together with the transmembrane domain and a small portion of the extracellular domain (∼30 amino acids), the IC domain is also involved in assembly of V0 portion of the vacuolar proton-translocating ATPase (V-ATPase). To better understand structural and multifunctional roles of the PRR-IC, we report the crystal structure of the PRR-IC domain as maltose-binding protein (MBP) fusion proteins at 2.0 Å (maltose-free) and 2.15 Å (maltose-bound). In the two separate crystal forms having significantly different unit-cell dimensions and molecular packing, MBP–PRR-IC fusion protein was found to be a dimer, which is different with the natural monomer of native MBP. The PRR-IC domain appears as a relatively flexible loop and is responsible for the dimerization of MBP fusion protein. Residues in the PRR-IC domain, particularly two tyrosines, dominate the intermonomer interactions, suggesting a role for the PRR-IC domain in protein oligomerization.  相似文献   

16.
The ubiquitous transient receptor potential canonical (TRPC) channels function as non-selective, Ca2+-permeable channels. TRPC channels are activated by stimulation of Gαq-PLC-coupled receptors. Here, we report that TRPC4/TRPC5 can be activated by Gαi. We studied the essential role of Gαi subunits in TRPC4 activation and investigated changes in ion selectivity and pore dilation of the TRPC4 channel elicited by the Gαi2 subunit. Activation of TRPC4 by Gαi2 increased Ca2+ permeability and Ca2+ influx through TRPC4 channels. Co-expression of the muscarinic receptor (M2) and TRPC4 in HEK293 cells induced TRPC4-mediated Ca2+ influx. Moreover, both TRPC4β and the TRPC4β-Gαi2 signaling complex induced inhibition of neurite growth and arborization in cultured hippocampal neurons. Cells treated with KN-93, a CaMKII inhibitor, prevented TRPC4- and TRPC4-Gαi2Q205L-mediated inhibition of neurite branching and growth. These findings indicate an essential role of Gαi proteins in TRPC4 activation and extend our knowledge of the functional role of TRPC4 in hippocampal neurons.  相似文献   

17.
18.
19.
The serotonin 5-hydroxytryptamine (5-HT4) receptor is of potential interest for the treatment of Alzheimer's disease because it increases memory and learning. In this study, we investigated the effect of zinc metalloprotease inhibitors on the amyloid precursor protein (APP) processing induced by the serotonin 5-HT4 receptor in vitro. We show that secretion of the non-amyloidogenic form of APP, sAPPalpha induced by the 5-HT4(e) receptor isoform was not due to a general boost of the constitutive secretory pathway but rather to its specific effect on alpha-secretase activity. Although the h5-HT4(e) receptor increased IP3 production, inhibition of PKC did not modify its effect on sAPPalpha secretion. In addition, we found that alpha secretase activity is regulated by the cAMP-regulated guanine nucleotide exchange factor, Epac and the small GTPase Rac.  相似文献   

20.
Deubiquitination is a biochemical process that mediates the removal of ubiquitin moieties from ubiquitin-conjugated substrates. AMSH (associated molecule with the SH3 domain of STAM) is a deubiquitination enzyme that participates in the endosomal sorting of several cell-surface molecules. AMSH impairment results in missorted ubiquitinated cargoes in vitro and severe neurodegeneration in vivo, but it is not known how AMSH deficiency causes neuronal damage in the brain. Here, we demonstrate that AMSH−/− mice developed ubiquitinated protein accumulations as early as embryonic day 10 (E10), and that severe deposits were present in the brain at postnatal day 8 (P8) and P18. Interestingly, TDP-43 was found to accumulate and colocalize with glial marker-positive cells in the brain. Glutamate receptor and p62 accumulations were also found; these molecules colocalized with ubiquitinated aggregates in the brain. These data suggest that AMSH plays an important role in degrading ubiquitinated proteins and glutamate receptors in vivo. AMSH−/− mice provide an animal model for neurodegenerative diseases, which are commonly characterized by the generation of proteinaceous aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号