首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 28 毫秒
1.
The effect of dietary sucrose, fructose and glucose on the intestinal absorption of fructose and glucose was investigated in adult rats in vivo: Glucose absorption was not affected by the type of dietary carbohydrate, while the absorption of fructose was increased by the ingestion of the sucrose or fructose diet, as compared with the glucose diet. An almost maximal increase of fructose absorption was already observed when the quarter of the total dietary carbohydrates was replaced by fructose. Faecal fructose elimination declined during the feeding experiment. The enhanced intestinal absorption of the fructose load in rats fed the fructose diet was manifested by higher concentrations of fructose, but also of glucose and lactate in the hepatic portal blood.  相似文献   

2.
The activity of enzymes implicated in the metabolic pathway of fructose to glucose conversion was shown in rat liver and intestine. In rats on normal diet, the specific activity of glucose-6-phosphatase, fructokinase, fructose-1,6-diphosphatase and triokinase was low in the intestine confirming that sugar conversion is not operative in this organ. In rats on a fructose diet, all the specific enzymatic activities tested were increased except for the hepatic triokinase and triose phosphate isomerase and for the intestinal triose phosphate isomerase. The intestine acquires the possibility to transform fructose to glucose by modifying the activities of enzymes implicated in the same metabolic pathway as that intervening in the liver.  相似文献   

3.
The hypothesis was tested that dietary fructose vs glucose lowers copper solubility in the digesta in the small intestine of rats, which in turn causes a decreased copper absorption. Male rats were fed adequate-copper (5 mg Cu/kg) diets containing either fructose or glucose (709.4 g monosaccharide/kg) for a period of 5 wk. Fructose vs glucose significantly lowered copper concentrations in plasma and the liver, but did not alter hepatic copper mass. Fructose feeding resulted in a significantly lesser intestinal solubility of copper as based on either a smaller soluble fraction of copper in the liquid phase of small intestinal contents or a lower copper concentration in the liquid phase. The latter fructose effect can be explained by the observed fructose-induced increase in volume of liquid phase of intestinal digesta. After administration of a restricted amount of diet extrinsically labeled with64Cu, rats fed fructose also had significantly lower soluble64Cu fraction in the digesta of the small intestine. Although this study shows that fructose lowered intestinal copper solubility, only a slight reduction of apparent copper absorption was observed. It is suggested that the fructose-induced lowering of copper status in part counteracted the fructose effect on copper absorption at the level of the intestinal lumen.  相似文献   

4.
The effect of various dietary sugars on the uptake of 1 mM leucine and 1 mM lysine by intestinal cells isolated from stock-fed and sucrose-fed rats was determined. Leucine uptake was activated by 10 mM fructose and inhibited by 10 mM glucose or 20 mM sucrose on both diets. The major dietary effect noted was a significant increase in the inhibition of leucine by glucose in the sucrose-fed rats. The uptake of lysine was minimally affected by the sugars irrespective of the diet fed. These results demonstrate an important dichotomy in the properties of glucose and fructose transport in the intestine and suggest that dietary fructose may increase the transport of certain amino acids.  相似文献   

5.
Because reduced nutrient absorption may contribute to malnourishment in the elderly, age and diet modulate fructose uptake in mice, and alterations in fructose uptake may be paralleled by changes in the abundance of fructose transporters, the objectives of this study were to determine 1) the effects of aging on fructose absorption in rats, 2) the effect of feeding diets enriched with saturated fatty acids (SFA) vs. polyunsaturated fatty acids (PUFA), and 3) the mechanisms of these age-and diet-associated changes. Male Fischer 344 rats aged 1, 9, and 24 mo received isocaloric diets enriched with SFA or PUFA. The uptake of (14)C-labeled D-fructose was determined in vitro using the intestinal sheet method. Northern and Western blot analyses and immunohistochemistry were used to determine the abundance of sodium-independent glucose and fructose transporters (GLUT)2 and GLUT5. When expressed on the basis of mucosal surface area, jejunal fructose uptake was increased in 9 and 24 mo compared with 1-mo-old animals fed SFA. PUFA-fed animals demonstrated increased fructose uptake at 24 mo compared with younger animals. Ileal fructose uptake was increased with SFA vs. PUFA in 9-mo-old rats but was reduced with SFA in 1- and 24-mo-old rats. Variations in GLUT2 and GLUT5 abundance did not parallel changes in uptake. These results indicate that 1) age increases fructose uptake when expressed on the basis of mucosal surface area, 2) age influences the adaptive response to dietary lipid modifications, and 3) alterations in fructose uptake are not explained by variations in GLUT2 or GLUT5.  相似文献   

6.
The influences of PO2 of the incubating medium on glucose, 3-O-methylglucose and fructose transport by everted small intestine sacs in semistarved and rats fed ad libitum (controls) was investigated. Moreover fructose uptake and conversion to glucose by intestinal sacs was also studied. The results showed that intestinal sacs from semistarved rats transported larger amounts of glucose and 3-O-methylglucose and took up more fructose than controls, when PO2 of the incubating medium was 150 mm Hg. There was greater fructose conversion to glucose in the intestine of semistarved rats than in controls at all PO2's considered. The greater functional capacity of intestinal tissue of semistarved rats in comparison to controls has been related to larger O2 availability in their intestinal wall.  相似文献   

7.
Rajasekar P  Anuradha CV 《Life sciences》2007,80(13):1176-1183
High fructose feeding (60 g/100 g diet) in rodents induces alterations in both glucose and lipid metabolism. The present study was aimed to evaluate whether intraperitoneal carnitine (CA), a transporter of fatty acyl-CoA into the mitochondria, could attenuate derangements in carbohydrate metabolizing enzymes and glucose overproduction in high fructose-diet fed rats. Male Wistar rats of body weight 150-160 g were divided into 4 groups of 6 rats each. Groups 1 and 4 animals received control diet while the groups 2 and 3 rats received high fructose-diet. Groups 3 and 4 animals were treated with CA (300 mg/Kg body weight/day, i.p.) for 30 days. At the end of the experimental period, levels of carnitine, glucose, insulin, lactate, pyruvate, glycerol, triglycerides and free fatty acids in plasma were determined. The activities of carbohydrate metabolizing enzymes and glycogen content in liver and muscle were assayed. Hepatocytes isolated from liver were studied for the gluconeogenic activity in the presence of substrates such as pyruvate, lactate, glycerol, fructose and alanine. Fructose-diet fed animals showed alterations in glucose metabolizing enzymes, increased circulating levels of gluconeogenic substrates and depletion of glycogen in liver and muscle. There was increased glucose output from hepatocytes of animals fed fructose-diet alone with all the gluconeogenic substrates. The abnormalities associated with fructose feeding such as increased gluconeogenesis, reduced glycogen content and other parameters were brought back to near normal levels by CA. Hepatocytes from these animals showed significant inhibition of glucose production from pyruvate (74.3%), lactate (65.4%), glycerol (69.6%), fructose (56.2%) and alanine (63.6%) as compared to CA untreated fructose-fed animals. The benefits observed could be attributed to the effect of CA on fatty acyl-CoA transport.  相似文献   

8.
1. The inclusion of sucrose in the diet of rats led to an increase in hepatic fatty acid synthetase activity compared with that of rats fed with starch as the sole carbohydrate. The higher activity occurred within 18h of the introduction of sucrose and persisted with fluctuations for the 30 days of the experiment. Reversal of the diets in some rats after 21 days led to changes in the enzyme activity to values appropriate to the second diet. The plasma triglyceride concentration followed a similar pattern. 2. A comparison of the effects of diets with starch, glucose, maltose, sucrose or fructose showed that fructose gave the highest values of triglyceride content and of fatty acid synthetase activity in liver, but the lowest values of the synthetase activity in adipose tissue and the lowest values of plasma insulin concentration. These effects may perhaps be attributed to the low insulin response to fructose and to the high affinity of the liver for this sugar. 3. When the diet contained fructose or sucrose there was a correlation between hepatic synthetase activity and plasma triglyceride concentration. Neither of these, however, was related to plasma insulin concentration. On the other hand, there was a correlation between plasma insulin concentration and fatty acid synthetase activity in adipose tissue. 4. When rats were starved and then re-fed the differences in enzyme activities induced by fructose or glucose were minimized. This, together with the varying degree of difference during the course of the experiments, may explain why other workers, using the starvation-re-feeding technique and making measurements on one day only, have failed to observe differences in the activities of lipogenic enzymes in animals fed with either fructose or glucose.  相似文献   

9.
This study was designed to examine the relationship between the fructose-copper interaction and tissue sorbitol concentrations. Weanling male rats were provided with a diet which contained 62.7% fructose and 0.6 microg copper/g (F-Cu) for 4 weeks. At this time, rats were changed to either a fructose diet which contained 6.0 microg copper/g or to a starch diet with or without copper for 2 weeks. When compared with the other dietary groups, it was found that rats fed the F-Cu diet grew poorly; had altered relative liver, pancreatic, heart, and kidney sizes; were anemic; and had higher tissue concentrations of pancreatic and heart glucose, liver, pancreatic, heart, and kidney fructose, and liver, pancreatic, and kidney sorbitol. When rats were changed from the F-Cu diet to one containing copper or to a starch diet with or without copper, weight gain, relative liver, pancreatic and heart sizes, and hematocrit improved significantly. In general, there was a reduction in pancreatic and heart glucose; liver, pancreatic, heart, and kidney fructose; and pancreatic and kidney sorbitol concentrations when rats were changed from the F-Cu diet to any of the other diets. We conclude that the fructose-copper interaction may have a common biochemical basis related to the metabolism of glucose, fructose, and sorbitol.  相似文献   

10.
The purpose of the study was to assess the influence of dietary iron content on lipid and carbohydrate metabolism and on zinc and copper status in rats fed with a diet high in fat, fructose, and salt. Wistar rats were fed with diets high in fat, fructose, and salt, containing differing amounts of iron, namely, deficit, normal, and high levels. After 6 weeks, the animals were weighed and killed. The liver, heart, and pancreas were collected, as were blood samples. The total cholesterol, triglycerides, fasting glucose, and insulin levels in the serum were measured. The iron, zinc, and copper concentrations in tissues and serum were determined. It was found that in rats fed with the iron-deficit diet, cholesterol and glucose profiles improved. Both deficit and excess iron in the diet decreased insulin concentration in rats and disturbed iron, zinc, and copper status. High-iron level in the diet decreased the relative mass of the pancreas. In conclusion, the decrease in serum insulin concentration observed in rats fed with the modified diet high in iron was associated with iron and copper status disorders, and also, with a relatively diminished pancreas mass. A deficit of iron in the diet improved lipid and carbohydrate metabolism in rats.  相似文献   

11.
The reproductive performance, including survival, growth and mature egg production, of Moniliformis moniliformis was studied experimentally during primary infections in rats given 10 cystacanths each. Four isoenergetic purified diets containing either 1, 3, 6 or 12% fructose (w/w) were used and the amounts of fructose in the intestinal lumen of rats fed on these diets were measured. It was concluded that, while dietary composition had no effect on parasite establishment, there were associations between diet and the survival, growth and fecundity of the parasite. The host diet containing 3% fructose was considered to be more favourable for the worms than the others; 12% fructose was associated with a curtailment of survival time without any compensatory production of eggs. Female worms from rats fed on diets containing 3 or 6% fructose grew larger, and consistently carried more ovaries and produced more eggs than those from rats fed on the 1% fructose diet. It was concluded that these and other findings might be mediated not only through the amount of available fructose in the intestine for worm metabolism, but also by the responses of the host's intestinal physiology to the varying concentrations of fructose in the diet.  相似文献   

12.
13.
Protein feeding is known to decrease hunger and subsequent food intake in animals and humans. It has also been suggested that glucose appearance into portal vein, as occurring during meal assimilation, may induce comparable effects. Here, we connect these previous observations by reporting that intestinal gluconeogenesis (i.e., de novo synthesis of glucose) is induced during the postabsorptive time (following food digestion) in rats specifically fed on protein-enriched diet. This results in glucose release into portal blood, counterbalancing the lowering of glycemia resulting from intestinal glucose utilization. Comparable infusions into the portal vein of control postabsorptive rats (fed on starch-enriched diet) decrease food consumption and activate the hypothalamic nuclei regulating food intake. Similar hypothalamic activation occurs on protein feeding. All these effects are absent after denervation of the portal vein. Thus, portal sensing of intestinal gluconeogenesis may be a novel mechanism connecting the macronutrient composition of diet to food intake.  相似文献   

14.
L-type pyruvate kinase is an enzyme of the glycolytic pathway whose activity and mRNA levels fluctuate in the small intestine according to dietary status. Both the enzyme activity and mRNA concentration decline during fasting and increase upon refeeding either a glucose-rich or a fructose-rich diet. Using a single-strand M 13 phage complementary to L-type pyruvate kinase mRNA as probe, we determined the level of the mRNA in the small intestine of normal, adrenalectomized, thyroidectomized, diabetic and glucagon-treated or cAMP-treated animals refed either a glucose-rich or a fructose-rich diet. The specific mRNA is present in the small intestine of normal fasted rats and increases twofold and threefold on refeeding glucose and fructose respectively. However, the hormonal control of the gene expression differs according to the dietary carbohydrate. The L-type pyruvate kinase mRNA increase, induced by glucose feeding, is hormone-dependent and requires the presence of thyroid hormones and insulin. In fructose-fed rats a certain level of mRNA increase occurs regardless of the hormonal status of the animals, but the full induction of the mRNA by fructose requires the presence of glucocorticoids, thyroid hormones and insulin. Thus, the hormonal regulation of L-type pyruvate kinase gene expression in the small intestine is largely similar to that described in normal rat liver but the basal mRNA level and the stimulation of the mRNA increase by fructose are higher in the small intestine.  相似文献   

15.
1. The activity of citrate-cleavage enzyme declines in alloxan-diabetes. 2. The administration of insulin elevates the activity of the enzyme in livers of normal and diabetic animals. Diets high in glucose or fructose elevate the activity of citrate-cleavage enzyme in normal animals, whereas only the diet high in fructose does so in diabetic animals. These observations parallel the effects of insulin, glucose and fructose on fatty acid synthesis in normal and diabetic animals. The effect of fructose is brought into play more rapidly and is larger than the effect of glucose. 3. With one exception acetate thiokinase shows similar changes at a lower level of activity. 4. The results indicate that insulin acts by increasing glucose utilization, and not by exerting a direct effect on citrate-cleavage enzyme or acetate thiokinase.  相似文献   

16.
17.
18.
19.
The effects of low zinc, high fructose diet on growth and adipocyte metabolism were examined in rats. At 28 days of age, animals were assigned to diets either adequate in zinc (30 ppm) with water (AZW) or fructose solution (AZF), or low in zinc (5 ppm) with water (LZW) or fructose solution (LZF). Body weight and food and fructose solution intake were measured three times a week. Blood samples were collected at baseline, 4 weeks, and 8 weeks, and energy expenditure was measured. The rats were killed at 12 weeks. Adipocytes were cultured in medium containing C14-glucose and physiological insulin concentrations. The animals in the LZF group consumed less energy and gained less weight than the other groups. Serum zinc concentrations were lower in the LZF than the AZF group. Energy expenditure over a 24-h period did not differ between groups; however, the respiratory quotient in the fed state was higher in the groups consuming fructose solution than in those consuming water. The mesenteric adipocytes from the animals in the LZF group utilized more glucose. Thus, the addition of fructose to a LZ diet reduced energy intake and growth and altered adipocyte fuel metabolism in young growing rats. Dr. Havel’s research program receives support from NIH Grants: HL-075675, AT-002599, AT-002993, AT-003645 and the American Diabetes Association.  相似文献   

20.
Expression of rat glucose transporter-5 (GLUT5) is tightly regulated during development. Expression and activity are low throughout the suckling and weaning stages, but perfusion of the small intestinal lumen with fructose solutions during weaning precociously enhances GLUT5 activity and expression. Little is known, however, about the signal transduction pathways involved in the substrate-induced precocious GLUT5 development. We found that wortmannin and LY-294002, inhibitors of phosphatidylinositol 3-kinase (PI3-kinase) specifically inhibited the increase in fructose uptake rate and brush-border GLUT5 protein abundance but not GLUT5 mRNA abundance. Perfusion of EGF, an activator of PI3-kinase, also resulted in a marked wortmannin-inhibitable increase in fructose uptake. Perfusion of fructose for 4 h increased cytosolic immunostaining of phosphatidylinositol-3,4,5-triphosphate (PIP(3)), the primary product of PI3-kinase, mainly in the mid- to upper-villus regions in which the brush-border membrane also stained strongly with GLUT5. Perfusion of glucose for 4 h had little effect on fructose or glucose uptake and PIP(3) or GLUT5 staining. SH-5, an Akt inhibitor, prevented the increase in fructose uptake and GLUT5 protein induced by fructose solutions, and had no effect on glucose uptake. The PI3-kinase/Akt signaling pathway may be involved in the synthesis and/or recruitment to the brush border of GLUT5 transporters by luminal fructose in the small intestine of weaning rats. Increases in fructose transport during the critical weaning period when rats are shifting to a new diet may be modulated by several signaling pathways whose cross talk during development still needs to be elucidated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号