首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three Rhizobium japonicum strains and two slow-growing cowpea-type Rhizobium strains were found to remain viable and able to rapidly modulate their respective hosts after being stored in purified water at ambient temperatures for periods of 1 year and longer. Three fast-growing Rhizobium species did not remain viable under the same water storage conditions. After dilution of slow-growing Rhizobium strains with water to 10(3) to 10(5) cells ml-1, the bacteria multiplied until the viable cell count reached levels of between 10(6) and 10(7) cells ml-1. The viable cell count subsequently remained fairly constant. When the rhizobia were diluted to 10(7) cells ml-1, they did not multiply, but full viability was maintained. If the rhizobia were washed and suspended at 10(9) cells ml-1, viability slowly declined to 10(7) cells ml-1 during 9 months of storage. Scanning electron microscopy showed that no major morphological changes took place during storage. Preservation of slow-growing rhizobia in water suspensions could provide a simple and inexpensive alternative to current methods for the preservation of rhizobia for legume inoculation.  相似文献   

2.
Rhizobium meliloti B323 cells were suspended in deionized water, phosphate buffer pH 6.5 and 5.5 and these buffers supplemented with Ca2+, Mg2+ (1 mmol/l) and Fe3+ (0.1 mmol/l). Initial cell count was 1.108 cells/ml. The viable count of rhizobia suspended in buffer at pH 6.5, with and without salts, remained constant or even increased during storage. Cells suspended in buffer at pH 5.5 with salts, decreased in numbers in the first 5 months, then, until the 10th month, the count remained at 105 cells/ml. Rhizobia suspended in buffer at pH 5.5 and deionized water decreased in viability almost to zero by the 10th month. In those suspensions where viability was maintained, the symbiotic infectivity of cells was also maintained as compared with a control performed with fresh cultured rhizobia. In suspensions in deionized water and buffer at pH 5.5 where the viability diminished during the experiment, the rhizobia lost their ability to infect roots immediately after inoculation but maintained their capacity to form late nodules on the hosts.  相似文献   

3.
We report here the formation of symbiotic plasmids (pSyms), by genetic recombination between rearranged pSyms, which lack symbiotic information, and resistance plasmids carrying parts of different symbiotic plasmids (R's). This recombination was found to occur both between plasmids derived from different Rhizobium phaseoli isolates, and between plasmids derived from strains obtained from the same original isolate. We also present evidence on the formation of a functional symbiotic plasmid by recombination of an R', carrying nif and nod genes from strain CFN42, and an indigenous plasmid present in this strain (pCFN42e), which was thought to be unrelated to its symbiotic plasmid (pCFN42d). These data are discussed with respect to the stability and transfer of Rhizobium symbiotic information.  相似文献   

4.
Localization of symbiotic mutations in Rhizobium meliloti   总被引:5,自引:18,他引:5       下载免费PDF全文
A total of 5 Nod- and 57 Fix- symbiotic mutants of Rhizobium meliloti strain 41 have been isolated after either nitrosoguanidine or Tn5 transposition mutagenesis. Chromosomal locations of mutations in 1 Nod- and 11 Fix- derivatives were ascertained by transferring the chromosome (mobilized by plasmid R68.45), in eight fragments, into symbiotically effective recipients and testing the recombinants for symbiotic phenotype. Alternatively, the kanamycin resistance marker of Tn5 was mapped. In five mutants the fix alleles were localized on different chromosomal regions, but six other fix mutations and one nod mutation tested did not map onto the chromosome. It was shown that the chromosome-mobilizing ability (Cma+) of R68.45 was not involved in the mobilization of genes located extrachromosomally. Moreover, Cma- derivatives of R68.45 could mobilize regions of the indigenous plasmid pRme41b but not chromosomal genes. Thus, mobilization of a marker by Cma- R68.45 indicates its extrachromosomal location. With a 32P-labeled DNA fragment carrying Tn5 as a hybridization probe, it was shown that in five extrachromosomally located Tn5-induced fix mutants and one nod mutant Tn5 was localized on plasmid pRme41b. This is in agreement with the genetic mapping data.  相似文献   

5.
We isolated a Tn5-induced Rhizobium tropici mutant that has enhanced capacity to oxidize N,N-dimethyl-p-phenylendiamine (DMPD) and therefore has enhanced respiration via cytochrome oxidase. The mutant had increased levels of the cytochromes c(1) and CycM and a small increase in the amount of cytochrome aa(3). In plant tests, the mutant increased the dry weight of Phaseolus vulgaris plants by 20 to 38% compared with the control strain, thus showing significantly enhanced symbiotic performance. The predicted product of the mutated gene is homologous to glycogen synthases from several bacteria, and the mutant lacked glycogen. The DNA sequence of the adjacent gene region revealed six genes predicted to encode products homologous to the following gene products from Escherichia coli: glycogen phosphorylase (glgP), glycogen branching enzyme (glgB), ADP glucose pyrophosphorylase (glgC), glycogen synthase (glgA), phosphoglucomutase (pgm), and glycogen debranching enzyme (glgX). All six genes are transcribed in the same direction, and analysis with lacZ gene fusions suggests that the first five genes are organized in one operon, although pgm appears to have an additional promoter; glgX is transcribed independently. Surprisingly, the glgA mutant had decreased levels of high-molecular-weight exopolysaccharide after growth on glucose, but levels were normal after growth on galactose. A deletion mutant was constructed in order to generate a nonpolar mutation in glgA. This mutant had a phenotype similar to that of the Tn5 mutant, indicating that the enhanced respiration and symbiotic nitrogen fixation and decreased exopolysaccharide were due to mutation of glgA and not to a polar effect on a downstream gene.  相似文献   

6.
Deletion analysis of Rhizobium meliloti symbiotic promoters   总被引:24,自引:1,他引:24       下载免费PDF全文
  相似文献   

7.
Here, we provide genetic and biochemical evidence indicating that the ability of Rhizobium etli bacteria to efficiently catabolize glutamine depends on its ability to produce reduced glutathione (l-γ-glutamyl-l-cysteinylglycine [GSH]). We find that GSH-deficient strains, namely a gshB (GSH synthetase) and a gor (GSH reductase) mutant, can use different amino acids, including histidine, alanine, and asparagine but not glutamine, as sole source of carbon, energy, and nitrogen. Moreover, l-buthionine(S,R)-sulfoximine, a GSH synthesis inhibitor, or diamide that oxidizes GSH, induced the same phenotype in the wild-type strain. Among the steps required for its utilization, glutamine uptake, occurring through the two well-characterized carriers (Aap and Bra systems) but not glutamine degradation or respiration, was largely reduced in GSH-deficient strains. Furthermore, GSH-deficient mutants of R. etli showed a reduced symbiotic efficiency. Exogenous GSH was sufficient to rescue glutamine uptake or degradation ability, as well as the symbiotic effectiveness of GSH mutants. Our results suggest a previously unknown GSH-glutamine metabolic relationship in bacteria.  相似文献   

8.
Cryptosporidium parvum oocysts were stained with the fluorogenic dyes SYTO-9 and SYTO-59 and sorted by flow cytometry in order to determine whether the fluorescent staining intensity correlated with the ability of oocysts to infect neonatal CD-1 mice. Oocysts that did not fluoresce or that displayed weak fluorescent intensity when stained with SYTO-9 or SYTO-59 readily established infections in mice, whereas those oocysts that fluoresced brightly did not. Although fluorescent staining profiles varied among different batches of oocysts, a relative cutoff in fluorescent staining intensity that correlated with animal infectivity was observed for all batches.  相似文献   

9.
Initial observations showed a 100% increase in H2-uptake (Hup) activity of Rhizobium leguminosarum strain 3855 in pea root nodules (Pisum sativum L. cv Alaska) on plants growing in a baked clay substrate relative to those growing in vermiculite, and an investigation of nutrient factors responsible for the phenomenon was initiated. Significantly greater Hup activity was first measured in the clay-grown plants 24 days after germination, and higher activity was maintained relative to the vermiculite treatment until experiments were terminated at day 32. The increase in Hup activity was associated with a decrease in H2 evolution for plants with comparable rates of acetylene reduction. Analyses of the clay showed that it contained more Na+ (29 versus 9 milligrams per kilogram) and less K+ (6 versus 74 milligrams per kilogram) than the vermiculite. Analyses of plants, however, showed a large increase in Na+ concentration of clay-grown plants with a much smaller reduction in K+ concentration. In tests with the same organisms in a hydroponic system with controlled pH, 40 millimolar NaCl increased Hup activity more than 100% over plants grown in solutions lacking NaCl. Plants with increased Hup activity, however, did not have greater net carbon or total nitrogen assimilation. KCl treatments from 5 to 80 millimolar produced slight increased in Hup activity at 10 millimolar KCl, and tests with other salts in the hydroponic system indicated that only Na+ strongly promoted Hup activity. Treating vermiculite with 50 millimolar NaCl increased Na+ concentration in pea plant tissue and greatly promoted Hup activity of root nodules in a manner analogous to the original observation with the clay rooting medium. A wider generality of the phenomenon was suggested by demonstrating that exogenous Na+ increased Hup activity of other R. leguminosarum strains and promoted Hup activity of R. meliloti strain B300 in alfalfa (Medicago sativa L.).  相似文献   

10.
11.
Molecular genetics of Rhizobium Meliloti symbiotic nitrogen fixation   总被引:1,自引:0,他引:1  
The application of recombinant DNA techniques to the study of symbiotic nitrogen fixation has yielded a growing list of Rhizobium meliloti genes involved in the processes of nodulation, infection thread formation and nitrogenase activity in nodules on the roots of the host plant, Medicago sativa (alfalfa). Interaction with the plant is initiated by genes encoding sensing and motility systems by which the bacteria recognizes and approaches the root. Signal molecules, such as flavonoids, mediate a complex interplay of bacterial and plant nodulation genes leading to entry of the bacteria through a root hair. As the nodule develops, the bacteria proceed inward towards the cortex within infection threads, the formation of which depends on bacterial genes involved in polysaccharide synthesis. Within the cortex, the bacteria enter host cells and differentiate into forms known as bacteroids. Genes which encode and regulate nitrogenase enzyme are expressed in the mature nodule, together with other genes required for import and metabolism of carbon and energy sources offered by the plant.  相似文献   

12.
By using cloned Rhizobium meliloti nodulation (nod) genes and nitrogen fixation (nif) genes, we found that the genes for both nodulation and nitrogen fixation were on a plasmid present in fast-growing Rhizobium japonicum strains. Two EcoRI restriction fragments from a plasmid of fast-growing R. japonicum hybridized with nif structural genes of R. meliloti, and three EcoRI restriction fragments hybridized with the nod clone of R. meliloti. Cross-hybridization between the hybridizing fragments revealed a reiteration of nod and nif DNA sequences in fast-growing R. japonicum. Both nif structural genes D and H were present on 4.2- and 4.9-kilobase EcoRI fragments, whereas nifK was present only on the 4.2-kilobase EcoR2 fragment. These results suggest that the nif gene organizations in fast-growing and in slow-growing R. japonicum strains are different.  相似文献   

13.
14.
15.
Rhizobium japonicum strains 3I1b110 and 61A76 were mutagenized to obtain 25 independently derived mutants that produced soybean nodules defective in nitrogen fixation, as assayed by acetylene reduction. The proteins of both the bacterial and the plant portions of the nodules were analyzed by two-dimensional polyacrylamide gel electrophoresis. All of the mutants had lower-than-normal levels of the nitrogenase components, and all but four contained a prominent bacteroid protein not observed in wild-type bacteroids. Experiments with bacteria grown ex planta suggested that this protein was derepressed by the absence of ammonia. Nitrogenase component II of one mutant was altered in isoelectric point. The soluble plant fraction of the nodules of seven mutants had very low levels of heme, yet the nodules of five of these seven mutants contained the polypeptide of leghemoglobin. Thus, the synthesis of the globin may not be coupled to the content of available heme in soybean nodules. The nodules of the other two of these seven mutants lacked not only leghemoglobin but most of the other normal plant and bacteroid proteins. Ultrastructural examination of nodules formed by these two mutants indicated normal ramification of infection threads but suggested a problem in subsequent survival of the bacteria and their release from the infection threads.  相似文献   

16.
Plasmids and stability of symbiotic properties of Rhizobium trifolii.   总被引:9,自引:15,他引:9       下载免费PDF全文
A conjugal plasmid which encodes both peak nodulation genes and nitrogenase genes, and which is labeled with the transposon Tn5, was transferred to a wild-type Rhizobium trifolii strain to examine the stability and expression of the host range and fixation (Fix+) phenotypes. Transconjugates were isolated which were shown to initially form nitrogen-fixing nodules (Nod+ Fix+) on both clovers and peas. These hybrid strains were then repeatedly passaged through either pea or clover nodules or onto a solid agar medium to determine whether these broadened-host-range characteristics were stably maintained. An instability was noted in the capacity of some of these hybrids to form nitrogen-fixing nodules on all of the host plants used. The broadened nodulation ability was, however, more readily maintained. In some cases, the changes in the Nod+ Fix+ phenotype could be attributed to demonstrable changes in the plasmid profile of the hybrid strains, whereas in other cases no demonstrable plasmid alterations could be detected.  相似文献   

17.
Cultures of Rhizobium japonicum were grown in a defined medium and then placed in a transfilter-apparatus. Suspension cultures of soybean root cells were grown in Gamborg's B-5 defined medium and then were placed in a second chamber of this apparatus. The plant-cell medium was renewed under conditions shown to give partial synchrony in soybean cell cultures. Sampling of rhizobia showed that acetylene reduction activity could be obtained after approximately four days in the transfilter-apparatus. Criteria for precluding contaminations have been listed. This is the first report on the activation of Rhizobium japonicum in transfilter suspension cultures using defined media.  相似文献   

18.
Rhizobium etli CFN42 is unable to use nitrate for respiration and lacks nitrate reductase activity as well as the nap or nar genes encoding respiratory nitrate reductase. However, genes encoding proteins closely related to denitrification enzymes, the norCBQD gene cluster and a novel nirKnirVnnrRnnrU operon are located on pCFN42f. In this study, we carried out a genetic and functional characterization of the reductases encoded by the R. etli nirK and norCB genes. By gene fusion expression analysis in free-living conditions, we determined that R. etli regulates its response to nitric oxide through NnrR via the microaerobic expression mediated by FixKf. Interestingly, expression of the norC and nirK genes displays a different level of dependence for NnrR. A null mutation in nnrR causes a drastic drop in the expression of norC, while nirK still exhibits significant expression. A thorough analysis of the nirK regulatory region revealed that this gene is under both positive and negative regulation. Functional analysis carried out in this work demonstrated that reduction of nitrite and nitric oxide in R. etli requires the reductase activities encoded by the norCBQD and nirK genes. Levels of nitrosylleghemoglobin complexes in bean plants exposed to nitrate are increased in a norC mutant but decreased in a nirK mutant. The nitrate-induced decline in nitrogenase-specific activity observed in both the wild type and the norC mutant was not detected in the nirK mutant. This data indicate that bacterial nitrite reductase is an important contributor to the formation of NO in bean nodules in response to nitrate.  相似文献   

19.
Iron acquisition by symbiotic Rhizobium spp. is essential for nitrogen fixation in the legume root nodule symbiosis. Rhizobium leguminosarum 116, an ineffective mutant strain with a defect in iron acquisition, was isolated after nitrosoguanidine mutagenesis of the effective strain 1062. The pop-1 mutation in strain 116 imparted to it a complex phenotype, characteristic of iron deficiency: the accumulation of porphyrins (precursors of hemes) so that colonies emitted a characteristic pinkish-red fluorescence when excited by UV light, reduced levels of cytochromes b and c, and wild-type growth on high-iron media but low or no growth in low-iron broth and on solid media supplemented with the iron scavenger dipyridyl. Several iron(III)-solubilizing agents, such as citrate, hydroxyquinoline, and dihydroxybenzoate, stimulated growth of 116 on low-iron solid medium; anthranilic acid, the R. leguminosarum siderophore, inhibited low-iron growth of 116. The initial rate of 55Fe uptake by suspensions of iron-starved 116 cells was 10-fold less than that of iron-starved wild-type cells. Electron microscopic observations revealed no morphological abnormalities in the small, white nodules induced by 116. Nodule cortical cells were filled with vesicles containing apparently normal bacteroids. No premature degeneration of bacteroids or of plant cell organelles was evident. We mapped pop-1 by R plasmid-mediated conjugation and recombination to the ade-27-rib-2 region of the R. leguminosarum chromosome. No segregation of pop-1 and the symbiotic defect was observed among the recombinants from these crosses. Cosmid pKN1, a pLAFR1 derivative containing a 24-kilobase-pair fragment of R. leguminosarum DNA, conferred on 116 the ability to grow on dipyridyl medium and to fix nitrogen symbiotically. These results indicate that the insert cloned in pKN1 encodes an element of the iron acquisition system of R. leguminosarum that is essential for symbiotic nitrogen fixation.  相似文献   

20.
Genetic rearrangements of a Rhizobium phaseoli symbiotic plasmid.   总被引:5,自引:8,他引:5  
Different structural changes of the Sym plasmid were found in a Rhizobium phaseoli strain that loses its symbiotic phenotype at a high frequency. These rearrangements affected both nif genes and Tn5 mob insertions in the plasmid, and in some cases they modified the expression of the bacterium's nodulation ability. One of the rearrangements was more frequent in heat-treated cells, but was also found under standard culture conditions; other structural changes appeared to be related to the conjugal transfer of the plasmid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号