首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Koch's postulates were derived from Robert Koch's work on infectious diseases, such as anthrax and tuberculosis, which still engage us to this day. These guidelines were an attempt to establish a standard for identifying the specific causation of an infectious disease and to convince sceptics that microorganisms could cause disease. They were also established to encourage an increasing number of novice microbiologists to use more rigorous criteria before claiming a causal relationship between a microorganism and a disease.  相似文献   

2.
Causation and Disease: The Henle-Koch Postulates Revisited   总被引:23,自引:0,他引:23       下载免费PDF全文
The Henle-Koch postulates are reviewed in terms of their full validity in Koch's day and in light of subsequent developments. The changing guidelines developed for viral diseases, for viruses in relation to cancer and to chronic central nervous system infection, and for causative agents in chronic diseases are discussed chronologically. A set of guidelines for both acute infectious and chronic diseases is presented. The need for recognizing the role of the host and the spectrum of host responses, for sound biologic sense in evaluating causal roles of agents in disease, and for flexibility in adapting our guidelines to new knowledge are emphasized.  相似文献   

3.
HIV-1 and parasitic infections co-circulate in many populations, and in a few well-studied examples HIV-1 co-infection is known to amplify parasite transmission. There are indications that HIV-1 interacts significantly with many other parasitic infections within individual hosts, but the population-level impacts of co-infection are not well-characterized. Here we consider how alteration of host immune status due to HIV-1 infection may influence the emergence of novel parasite strains. We review clinical and epidemiological evidence from five parasitic diseases (malaria, leishmaniasis, schistosomiasis, trypanosomiasis and strongyloidiasis) with emphasis on how HIV-1 co-infection alters individual susceptibility and infectiousness for the parasites. We then introduce a simple modelling framework that allows us to project how these individual-level properties might influence population-level dynamics. We find that HIV-1 can facilitate invasion by parasite strains in many circumstances and we identify threshold values of HIV-1 prevalence that allow otherwise unsustainable parasite strains to invade successfully. Definitive evidence to test these predicted effects is largely lacking, and we conclude by discussing challenges in interpreting available data and priorities for future studies.  相似文献   

4.
Seasonality and the dynamics of infectious diseases   总被引:8,自引:1,他引:7  
Seasonal variations in temperature, rainfall and resource availability are ubiquitous and can exert strong pressures on population dynamics. Infectious diseases provide some of the best-studied examples of the role of seasonality in shaping population fluctuations. In this paper, we review examples from human and wildlife disease systems to illustrate the challenges inherent in understanding the mechanisms and impacts of seasonal environmental drivers. Empirical evidence points to several biologically distinct mechanisms by which seasonality can impact host–pathogen interactions, including seasonal changes in host social behaviour and contact rates, variation in encounters with infective stages in the environment, annual pulses of host births and deaths and changes in host immune defences. Mathematical models and field observations show that the strength and mechanisms of seasonality can alter the spread and persistence of infectious diseases, and that population-level responses can range from simple annual cycles to more complex multiyear fluctuations. From an applied perspective, understanding the timing and causes of seasonality offers important insights into how parasite–host systems operate, how and when parasite control measures should be applied, and how disease risks will respond to anthropogenic climate change and altered patterns of seasonality. Finally, by focusing on well-studied examples of infectious diseases, we hope to highlight general insights that are relevant to other ecological interactions.  相似文献   

5.
Genetic structure in host species is often used to predict disease spread. However, host and pathogen genetic variation may be incongruent. Understanding landscape factors that have either concordant or divergent influence on host and pathogen genetic structure is crucial for wildlife disease management. Devil facial tumour disease (DFTD) was first observed in 1996 and has spread throughout almost the entire Tasmanian devil geographic range, causing dramatic population declines. Whereas DFTD is predominantly spread via biting among adults, devils typically disperse as juveniles, which experience low DFTD prevalence. Thus, we predicted little association between devil and tumour population structure and that environmental factors influencing gene flow differ between devils and tumours. We employed a comparative landscape genetics framework to test the influence of environmental factors on patterns of isolation by resistance (IBR) and isolation by environment (IBE) in devils and DFTD. Although we found evidence for broad‐scale costructuring between devils and tumours, we found no relationship between host and tumour individual genetic distances. Further, the factors driving the spatial distribution of genetic variation differed for each. Devils exhibited a strong IBR pattern driven by major roads, with no evidence of IBE. By contrast, tumours showed little evidence for IBR and a weak IBE pattern with respect to elevation in one of two tumour clusters we identify herein. Our results warrant caution when inferring pathogen spread using host population genetic structure and suggest that reliance on environmental barriers to host connectivity may be ineffective for managing the spread of wildlife diseases. Our findings demonstrate the utility of comparative landscape genetics for identifying differential factors driving host dispersal and pathogen transmission.  相似文献   

6.
Recent advances in ecology have improved our understanding of the role of parasites in the dynamics of wildlife populations. However, conditions that prevail in many wildlife systems, such as host movement, contact with livestock, and heterogeneity in the environment of the parasite outside of the host, have largely been ignored in existing models of macroparasite transmission. We need to refine these models if we are to stand a chance of developing effective parasite control strategies. New quantitative approaches enable us to address key complexities and make better use of scarce data, and these should enhance our efforts to understand and control emerging problems of interspecific parasite transmission.  相似文献   

7.
Koch's postulates have shaped our understanding of infectious diseases; however, one of the tangential consequences of them has been the emergence of a predominantly monomicrobial perspective concerning disease aetiology. This orthodoxy has been undermined by the growing recognition that some important infectious diseases have a polymicrobial aetiology. A significant new development in our understanding of polymicrobial infections is the recognition that they represent functional ecosystems and that to understand such systems and the outcome and impact of therapeutic interventions requires an understanding of how these communities arise and develop. Therefore, it is timely to explore what we can learn from other fields. In particular, ecological theory may inform our understanding of how polymicrobial communities assemble their structure and their dynamics over time. Such work may also offer insights into how such communities move from stable to unstable states, as well as the role of invasive pathogens in the progression of the disease. Ecological theory offers a theoretical framework around which testable hypotheses can be developed to clarify the polymicrobial nature and dynamics of such infections in the face of environmental change and therapeutic interventions.  相似文献   

8.
Changes in species distributions open novel parasite transmission routes at the human–wildlife interface, yet the strength of biotic and biogeographical factors that prevent or facilitate parasite host shifting are not well understood. We investigated global patterns of helminth parasite (Nematoda, Cestoda, Trematoda) sharing between mammalian wildlife species and domestic mammal hosts (including humans) using >24,000 unique country‐level records of host–parasite associations. We used hierarchical modelling and species trait data to determine possible drivers of the level of parasite sharing between wildlife species and either humans or domestic animal hosts. We found the diet of wildlife species to be a strong predictor of levels of helminth parasite sharing with humans and domestic animals, followed by a moderate effect of zoogeographical region and minor effects of species’ habitat and climatic niches. Combining model predictions with the distribution and ecological profile data of wildlife species, we projected global risk maps that uncovered strikingly similar patterns of wildlife parasite sharing across geographical areas for the different domestic host species (including humans). These similarities are largely explained by the fact that widespread parasites are commonly recorded infecting several domestic species. If the dietary profile and position in the trophic chain of a wildlife species largely drives its level of helminth parasite sharing with humans/domestic animals, future range shifts of host species that result in novel trophic interactions may likely increase parasite host shifting and have important ramifications for human and animal health.  相似文献   

9.
Andrew J. Sanders  Brad W. Taylor 《Oikos》2018,127(10):1399-1409
A key characteristic of host–parasite interactions is the theft of host nutrients by the parasite, yet we lack a general framework for understanding and predicting the interplay of host and parasite nutrition that applies across biological levels of organization. The elemental nutrients (C, N, P, Fe, etc.), and ecological stoichiometry provide a framework for understanding host–parasite interactions and their relation to ecosystem functioning. Here we use the ecological stoichiometry framework to develop hypotheses and predictions regarding the relationship between elemental nutrients and host–parasite interactions. We predict that a suite of host and parasite traits, stoichiometric homeostasis, host diet stoichiometry, and biogeochemical cycling are related to disease dynamics, host immunity and resistance, and bacterial growth form determination. We show that ecological stoichiometry is capable of expanding our understanding of host–parasite interactions, and complementing other approaches such as population and community ecology, and molecular biology, for studying infectious diseases.  相似文献   

10.
Climate change stressors will place different selective pressures on both parasites and their hosts, forcing individuals to modify their life‐history strategies and altering the distribution and prevalence of disease. Few studies have investigated whether parasites are able to respond to host stress and respond by varying their reproductive schedules. Additionally, multiple environmental stressors can limit the ability of a host to respond adaptively to parasite infection. This study compared both host and parasite life‐history parameters in unstressed and drought‐stressed environments using the human parasite, Schistosoma mansoni, in its freshwater snail intermediate host. Snail hosts infected with the parasite demonstrated a significant reproductive burst during the prepatent period (fecundity compensation), but that response was absent in a drought‐stressed environment. This is the first report of the elimination of host fecundity compensation to parasitism when exposed to additional environmental stress. More surprisingly, we found that infections in drought‐stressed snails had significantly higher parasite reproductive outputs than infections in unstressed snails. The finding suggests that climate change may alter the infection dynamics of this human parasite.  相似文献   

11.
This paper examines the debate over the human immunodeficiency virus (HIV) as the cause of acquired immunodeficiency syndrome (AIDS) from an historical perspective. The changing criteria for proving the link between putative pathological agents and diseases are discussed, beginning with Robert Koch's research on anthrax in the late nineteenth century. Various versions of 'Koch's postulates' are analyzed in relation to the necessity and sufficiency arguments of logical reasoning. In addition, alterations to Koch's postulates are delineated, specifically those required by the discovery of rickettsiae and viruses in the early twentieth century and by the immunological testing developed after mid-century to demonstrate the links between elusive viral agents and two diseases, hepatitis B and infectious mononucleosis. From this perspective, an examination of the AIDS debate is constructed. Molecular biologist Peter Duesberg's argument that HIV is not the cause of AIDS is analyzed in light of his contention that a version of Koch's postulates has not been satisfied. Additional research findings through 1990 relating to the etiology of AIDS are also noted.  相似文献   

12.
The consequences of wildlife emerging diseases are global and profound with increased burden on the public health system, negative impacts on the global economy, declines and extinctions of wildlife species, and subsequent loss of ecological integrity. Examples of health threats to wildlife include Batrachochytrium dendrobatidis, which causes a cutaneous fungal infection of amphibians and is linked to declines of amphibians globally; and the recently discovered Pseudogymnoascus (Geomyces) destructans, the etiologic agent of white nose syndrome which has caused precipitous declines of North American bat species. Of particular concern are the novel pathogens that have emerged as they are particularly devastating and challenging to manage. A big science approach to wildlife health research is needed if we are to make significant and enduring progress in managing these diseases. The advent of new analytical models and bench assays will provide us with the mathematical and molecular tools to identify and anticipate threats to wildlife, and understand the ecology and epidemiology of these diseases. Specifically, new molecular diagnostic techniques have opened up avenues for pathogen discovery, and the application of spatially referenced databases allows for risk assessments that can assist in targeting surveillance. Long-term, systematic collection of data for wildlife health and integration with other datasets is also essential. Multidisciplinary research programs should be expanded to increase our understanding of the drivers of emerging diseases and allow for the development of better disease prevention and management tools, such as vaccines. Finally, we need to create a National Fish and Wildlife Health Network that provides the operational framework (governance, policies, procedures, etc.) by which entities with a stake in wildlife health cooperate and collaborate to achieve optimal outcomes for human, animal, and ecosystem health.  相似文献   

13.
Since current protocols were found to be inadequate for the identification of bacteria pathogenic toGracilaria gracilis, an assay was developed which made use of axenic algae in order to attribute disease symptoms directly to the presence of a specific bacterial isolate. However, this assay proved to be as unreliable as existing procedures and failed to satisfy Koch's postulates. A second pathogenicity assay was developed which proved more reliable in that each bacterial strain consistently induced a particular symptom in the infected algal thallus. The bacterial strain LS2i was identified as a possible pathogen ofG. gracilis using this assay. However, this assay did not satisfy Koch's criteria for establishing an unequivocal link between the observed disease symptoms and strain LS2i, since significant bacterial contamination of the test alga occurred. A third protocol generated consistent results and satisfied Koch's postulates, enabling the identification of six pathogens ofG. gracilis. All the pathogenic bacterial strains were agarolytic.  相似文献   

14.
Many studies have suggested that ecosystem conservation protects human and wildlife populations against infectious disease. We tested this hypothesis using data on primates and their parasites. First, we tested for relationships between species' resilience to human disturbance and their parasite richness, prevalence and immune defences, but found no associations. We then conducted a meta‐analysis of the effects of disturbance on parasite prevalence, which revealed no overall effect, but a positive effect for one of four types of parasites (indirectly transmitted parasites). Finally, we conducted intraspecific analyses of malaria prevalence as a function of mammalian species richness in chimpanzees and gorillas, and an interspecific analysis of geographic overlap and parasite species richness, finding that higher levels of host richness favoured greater parasite risk. These results suggest that anthropogenic effects on disease transmission are complex, and highlight the need to define the conditions under which environmental change will increase or decrease disease transmission.  相似文献   

15.
The mammalian intestine harbors a complex microbial community that provides numerous benefits to its host. However, the microbiota can also include potentially virulent species, termed pathobiont, which can cause disease when intestinal homeostasis is disrupted. The molecular mechanisms by which pathobionts cause disease remain poorly understood. Here we describe a sepsis-like disease that occurs upon gut injury in antibiotic-treated mice. Sepsis was associated with the systemic spread of a specific multidrug-resistant Escherichia coli pathobiont that expanded markedly in the microbiota of antibiotic-treated mice. Rapid sepsis-like death required a component of the innate immune system, the Naip5-Nlrc4 inflammasome. In accordance with Koch's postulates, we found the E. coli pathobiont was sufficient to activate Naip5-Nlrc4 and cause disease when injected intravenously into unmanipulated mice. These findings reveal how sepsis-like disease can result from recognition of pathobionts by the innate immune system.  相似文献   

16.
The loss of genetic variation in host populations is thought to increase host susceptibility to parasites. However, few data exist to test this hypothesis in natural populations. Bighorn sheep (Ovis canadensis) populations occasionally suffer disease-induced population declines, allowing us to test for the associations between reduced genetic variation and parasitism in this species. Here, we show that individual mean heterozygosity for 15 microsatellite loci is associated with lungworm abundance (Protostrongylus spp.) in a small, recently bottlenecked population of bighorn sheep (linear regression, r2=0.339, p=0.007). This association remains significant for seven microsatellites located in genes (p=0.010), but not for eight neutral microsatellites (p=0.306). Furthermore, heterozygotes at three of four microsatellites located within disease-related genes had lower lungworm burdens. This study corroborates theoretical findings that increased parasitism and disease may be a consequence of reduced heterozygosity in wild populations, and that certain individual loci influence parasite resistance. The results illustrate the usefulness of using genomic information, strong candidate genes and non-invasive sampling for monitoring both genetic variation and fitness-related traits, such as parasite resistance, in natural populations.  相似文献   

17.
Microorganisms and autoimmunity: making the barren field fertile?   总被引:1,自引:0,他引:1  
Microorganisms induce strong immune responses, most of which are specific for their encoded antigens. However, microbial infections can also trigger responses against self antigens (autoimmunity), and it has been proposed that this phenomenon could underlie several chronic human diseases, such as type 1 diabetes and multiple sclerosis. Nevertheless, despite intensive efforts, it has proven difficult to identify any single microorganism as the cause of a human autoimmune disease, indicating that the 'one organism-one disease' paradigm that is central to Koch's postulates might not invariably apply to microbially induced autoimmune disease. Here, we review the mechanisms by which microorganisms might induce autoimmunity, and we outline a hypothesis that we call the fertile-field hypothesis to explain how a single autoimmune disease could be induced and exacerbated by many different microbial infections.  相似文献   

18.
Individuals naturally vary in the severity of infectious disease when exposed to a parasite. Dissecting this variation into genetic and environmental components can reveal whether or not this variation depends on the host genotype, parasite genotype or a range of environmental conditions. Complicating this task, however, is that the symptoms of disease result from the combined effect of a series of events, from the initial encounter between a host and parasite, through to the activation of the host immune system and the exploitation of host resources. Here, we use the crustacean Daphnia magna and its parasite Pasteuria ramosa to show how disentangling genetic and environmental factors at different stages of infection improves our understanding of the processes shaping infectious disease. Using compatible host-parasite combinations, we experimentally exclude variation in the ability of a parasite to penetrate the host, from measures of parasite clearance, the reduction in host fecundity and the proliferation of the parasite. We show how parasite resistance consists of two components that vary in environmental sensitivity, how the maternal environment influences all measured aspects of the within-host infection process and how host-parasite interactions following the penetration of the parasite into the host have a distinct temporal component.  相似文献   

19.
Identifying patterns and drivers of infectious disease dynamics across multiple scales is a fundamental challenge for modern science. There is growing awareness that it is necessary to incorporate multi‐host and/or multi‐parasite interactions to understand and predict current and future disease threats better, and new tools are needed to help address this task. Eco‐phylogenetics (phylogenetic community ecology) provides one avenue for exploring multi‐host multi‐parasite systems, yet the incorporation of eco‐phylogenetic concepts and methods into studies of host pathogen dynamics has lagged behind. Eco‐phylogenetics is a transformative approach that uses evolutionary history to infer present‐day dynamics. Here, we present an eco‐phylogenetic framework to reveal insights into parasite communities and infectious disease dynamics across spatial and temporal scales. We illustrate how eco‐phylogenetic methods can help untangle the mechanisms of host–parasite dynamics from individual (e.g. co‐infection) to landscape scales (e.g. parasite/host community structure). An improved ecological understanding of multi‐host and multi‐pathogen dynamics across scales will increase our ability to predict disease threats.  相似文献   

20.
The rapid pace of environmental change is driving multi-faceted shifts in abiotic factors that influence parasite transmission. However, cumulative effects of these factors on wildlife diseases remain poorly understood. Here we used an information-theoretic approach to compare the relative influence of abiotic factors (temperature, diurnal temperature range, nutrients and pond-drying), on infection of snail and amphibian hosts by two trematode parasites (Ribeiroia ondatrae and Echinostoma spp.). A temperature shift from 20 to 25 °C was associated with an increase in infected snail prevalence of 10–20%, while overall snail densities declined by a factor of 6. Trematode infection abundance in frogs was best predicted by infected snail density, while Ribeiroia infection specifically also declined by half for each 10% reduction in pond perimeter, despite no effect of perimeter on the per snail release rate of cercariae. Both nutrient concentrations and Ribeiroia infection positively predicted amphibian deformities, potentially owing to reduced host tolerance or increased parasite virulence in more productive environments. For both parasites, temperature, pond-drying, and nutrients were influential at different points in the transmission cycle, highlighting the importance of detailed seasonal field studies that capture the importance of multiple drivers of infection dynamics and the mechanisms through which they operate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号