首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Expression of stress proteins is generally induced by a variety of stressors. To gain a better understanding of the sensing and induction mechanisms of stress responses, we studied the effects of culture temperature on responses to various stressors, since the induction of hsp70 in mammalian cells by heat shock is somehow modulated by culture temperature. Hsp70 was not induced by treatment with sodium arsenite, azetidine-2-carboxylic acid, or zinc sulfate at the level of heat shock factor (HSF) 1 activation in cells incubated at low temperature, although these treatments induced hsp70 in cells incubated at 37 degrees C. The repression of sodium arsenite or zinc sulfate-induced HSF1 activation by low temperature was not simply due to the inhibition of protein synthesis. On the other hand, heat shock and iodoacetamide induced HSF 1 activation in cells incubated at either temperature. Thus, there seem to be two kinds of stressors that induce HSF1 activation independently of or dependent on culture temperature. Furthermore, the reduction of glutathione level seemed to be essential for HSF1 activation by chemical stressors.  相似文献   

3.
4.
5.
6.
7.
8.
9.
10.
Using homologous molecular probes, we examined the influence of equivalent temperature shifts on the in vivo expression of genes coding for a constitutive heat shock protein (Hsc70), heat shock proteins (Hsps) (Hsp70 and Hsp90), and polyubiquitin, after acclimation in the American lobster, Homarus americanus. We acclimated sibling, intermolt, juvenile male lobsters to thermal regimes experienced during overwintering conditions (0.4 +/- 0.3 degrees C), and to ambient Pacific Ocean temperatures (13.6 +/- 1.2 degrees C), for 4-5 weeks. Both groups were subjected to an acute thermal stress of 13.0 degrees C, a temperature shift previously found to elicit a robust heat shock response in ambient-acclimated lobsters. Animals were examined after several durations of acute heat shock (0.25-2 hours) and after several recovery periods (2-48 hours) at the previous acclimation temperature, following a 2-hour heat shock. Significant inductions in Hsp70, Hsp90, and polyubiquitin messenger RNA (mRNA) levels were found for the ambient-acclimated group. Alternatively, for the cold-acclimated group, an acute thermal stress over an equivalent interval resulted in no induction in mRNA levels for any of the genes examined. For the ambient-acclimated group, measurements of polyubiquitin mRNA levels showed that hepatopancreas, a digestive tissue, incurred greater irreversible protein damage relative to the abdominal muscle, a tissue possessing superior stability over the thermal intervals tested.  相似文献   

11.
Induction of the heat shock proteins (HSPs) is involved in the increased resistance to cancer therapies such as chemotherapy and hyperthermia. We used two human ovarian cancer cell lines; a cisplatin (CDDP)-sensitive line A2780 and its CDDP-resistant derivative, A2780CP. The concentration of intracellular glutathione (GSH) is higher (2.7-fold increase) in A2780CP cells than in A2780 cells. A mild treatment with a heat stress (42 degrees C for 30 min) induced synthesis of both the heat shock protein 72 (Hsp72) mRNA and the HSP72 protein in A2780CP cells, but not in A2780 cells. In contrast, a severe heat stress (45 degrees C for 30 min) increased synthesis of the HSP72 protein in the two cell lines. The induced level of the HSP72 protein by the severe treatment was higher in A2780CP than in A2780 cells. The gel mobility shift assay showed that DNA binding activities of the heat shock factor (HSF) in the two cell lines were induced similarly and significantly by the mild heat stress. Immunocytochemistry using an anti HSF1 antibody also indicated that mild heat stress activated the HSF1 translocation from the cytosol to the nucleus similarly in the both cell lines. Pretreatment of CDDP-sensitive A2780 cells with N-acetyl-L-cysteine, a precursor of GSH, effectively enhanced induction of the Hsp72 mRNA by the mild heat stress. The present findings demonstrate that induction of the Hsp72 mRNA by the mild heat stress was more extensive in CDDP-resistant A2780CP cells. It is likely that the higher GSH concentration in A2780CP cells plays an important role in promoting Hsp72 gene expression induced by the mild heat stress probably through processes downstream of activation of HSF-DNA binding.  相似文献   

12.
13.
14.
15.
16.
The intracellular build-up of thermally damaged proteins following exposure to heat stress results in the synthesis of heat shock proteins (Hsps). In the present study, the upper thermal tolerance and expression of heat shock protein 70 (Hsp70) were examined in juveniles of the freshwater prawn Macrobrachium malcolmsonii that had been acclimated at two different temperatures, i.e. 20 degrees C (group A) and 30 degrees C (group B), in the laboratory for 30 days. Upper thermal tolerance was determined by a standard method. For heat-shock experiments, prawns in groups A and B were exposed to various elevated temperatures for 3 h each, followed by 1 h recovery at the acclimation temperature. Endogenous levels of Hsp70 were determined in the gill, heart, hepatopancreas and skeletal muscle tissues by Western blotting analysis of one dimensional sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). The critical thermal maximum (CT max) for prawns in groups A and B was 37.7+/-0.27 degrees C and 41.41+/-0.16 degrees C, respectively. In general, Western blotting analysis for Hsp70 revealed one band at the 70 kDa region, containing both constitutive (Hsc70) and inducible (Hsp70) isoforms, in the gill and heart tissues; these were not detected in the hepatopancreas and skeletal muscle tissues. The onset temperature for Hsp70 induction in both gill and heart tissues was 30 degrees C for prawns in group A and 34 degrees C for those in group B. The optimum induction temperatures (at which Hsp70 induction was maximum) were found to be 34 degrees C and 32 degrees C, respectively, in the gill and heart tissues of group A prawns, and 38 degrees C and 36 degrees C, respectively, for group B prawns. These results suggest that the temperature at which acclimation occurs influences both upper thermal tolerance and Hsp70 induction in M. malcolmsonii.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号