首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Serum amyloid A (SAA) is an acute-phase protein, the serum levels of which can increase up to 1000-fold during inflammation. SAA has a pathogenic role in amyloid A-type amyloidosis, and increased serum levels of SAA correlate with the risk for cardiovascular diseases. IL-1β is a key proinflammatory cytokine, and its secretion is strictly controlled by the inflammasomes. We studied the role of SAA in the regulation of IL-1β production and activation of the inflammasome cascade in human and mouse macrophages, as well as in THP-1 cells. SAA could provide a signal for the induction of pro-IL-1β expression and for inflammasome activation, resulting in secretion of mature IL-1β. Blocking TLR2 and TLR4 attenuated SAA-induced expression of IL1B, whereas inhibition of caspase-1 and the ATP receptor P2X(7) abrogated the release of mature IL-1β. NLRP3 inflammasome consists of the NLRP3 receptor and the adaptor protein apoptosis-associated speck-like protein containing CARD (a caspase-recruitment domain) (ASC). SAA-mediated IL-1β secretion was markedly reduced in ASC(-/-) macrophages, and silencing NLRP3 decreased IL-1β secretion, confirming NLRP3 as the SAA-responsive inflammasome. Inflammasome activation was dependent on cathepsin B activity, but it was not associated with lysosomal destabilization. SAA also induced secretion of cathepsin B and ASC. In conclusion, SAA can induce the expression of pro-IL-1β and activation of the NLRP3 inflammasome via P2X(7) receptor and a cathepsin B-sensitive pathway. Thus, during systemic inflammation, SAA may promote the production of IL-1β in tissues. Furthermore, the SAA-induced secretion of active cathepsin B may lead to extracellular processing of SAA and, thus, potentially to the development of amyloid A amyloidosis.  相似文献   

3.
4.
Cytokines interleukin (IL)-12 and IL-23 are implicated in the pathogenesis of psoriasis. IL-12 causes differentiation of CD4+ T cells to interferon-gamma (IFN-gamma)-producing T helper 1 (Th1) cells, while IL-23 induces differentiation to IL-17-producing pathogenic Th17 cells. The effects of the monoclonal antibody to IL-12/23 p40 subunit (CNTO 1275) on IL-12 receptor (IL-12R) expression, markers associated with skin homing, activation, and cytokine secretion were investigated in vitro using human peripheral blood mononuclear cells (PBMCs) from healthy donors. PBMCs were activated in the presence or absence of recombinant human (rh) IL-12 or rhIL-23, with or without CNTO 1275. CNTO 1275 inhibited upregulation of CLA, IL-12R, IL-2Ralpha and CD40L expression and also inhibited IL-12- and IL-23-induced IFN-gamma, IL-17A, tumor necrosis factor (TNF)-alpha, IL-2, and IL-10 secretion. Thus, the therapeutic effect of CNTO 1275 may be attributed to the IL-12/23 neutralization, resulting in decreased expression of skin homing and activation markers, and IL-12- and IL-23-induced cytokine secretion.  相似文献   

5.
IL-23 induces IL-17 production in activated CD4+ T cells and participates in host defense against many encapsulated bacteria. However, whether the IL-23/IL-17 axis contributes to a Mycoplasma pneumoniae (Mp)-induced lung inflammation (e.g., neutrophils) has not been addressed. Using an acute respiratory Mp infection murine model, we found significantly up-regulated lung IL-23p19 mRNA in the early phase of infection (4h), and alveolar macrophages were an important cell source of Mp-induced IL-23. We further showed that Mp significantly increased IL-17 protein levels in bronchoalveolar lavage (BAL). Lung gene expression of IL-17, IL-17C and IL-17F was also markedly up-regulated by Mp in vivo. IL-17 and IL-17F were found to be derived mainly from lung CD4+ T cells, and were increased upon IL-23 stimulation in vitro. In vivo blocking of IL-23p19 alone or in combination with IL-23/IL-12p40 resulted in a significant reduction of Mp-induced IL-17 protein and IL-17/IL-17F mRNA expression, which was accompanied by a trend toward reduced lung neutrophil recruitment, BAL neutrophil activity, and Mp clearance. However, IL-23 neutralization had no effect on Mp-induced lung IL-17C mRNA expression. These results demonstrate that IL-17/IL-17F production is IL-23-dependent in an acute Mp infection, and contributes to neutrophil recruitment and activity in the lung defense against the infection.  相似文献   

6.
IL-23, a heterodimeric cytokine composed of the p40 subunit of IL-12 and a novel p19 subunit, has been shown to be a key player in models of autoimmune chronic inflammation. To investigate the role of IL-23 in host resistance during chronic fungal infection, wild-type, IL-12- (IL-12p35-/-), IL-23- (IL-23p19-/-), and IL-12/IL-23- (p40-deficient) deficient mice on a C57BL/6 background were infected with Cryptococcus neoformans. Following infection, p40-deficient mice demonstrated higher mortality than IL-12p35-/- mice. Reconstitution of p40-deficient mice with rIL-23 prolonged their survival to levels similar to IL-12p35-/- mice. IL-23p19-/- mice showed a moderately reduced survival time and delayed fungal clearance in the liver. Although IFN-gamma production was similar in wild-type and IL-23p19-/- mice, production of IL-17 was strongly impaired in the latter. IL-23p19-/- mice produced fewer hepatic granulomata relative to organ burden and showed defective recruitment of mononuclear cells to the brain. Moreover, activation of microglia cells and expression of IL-1beta, IL-6, and MCP-1 in the brain was impaired. These results show that IL-23 complements the more dominant role of IL-12 in protection against a chronic fungal infection by an enhanced inflammatory cell response and distinct cytokine regulation.  相似文献   

7.
The interleukin-12 (IL-12) family of cytokines which includes IL-12, IL-23, and IL-27 play critical roles in T cell differentiation and are important modulators of multiple sclerosis and experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis. Previously, we demonstrated that peroxisome proliferator-activated receptor (PPAR) -α agonists suppress the development of EAE. The present studies demonstrated that the PPAR-α agonist fenofibrate inhibited the secretion of IL-12p40, IL-12p70 (p35/p40), IL-23 (p19/p40), and IL-27p28 by lipopolysaccharide-stimulated microglia. The cytokines interferon-γ and tumor necrosis factor-α also stimulated IL-12 p40 and IL-27 p28 expression by microglia, which was suppressed by fenofibrate. Furthermore, fenofibrate inhibited microglial expression of CD14 which plays a critical role in TLR signaling, suggesting a mechanism by which this PPAR-α agonist regulates the production of these pro-inflammatory molecules. In addition, fenofibrate suppressed the secretion of IL-12p40, IL-23, and IL-27p28 by lipopolysaccharide-stimulated astrocytes. Importantly, fenofibrate suppression of EAE was associated with decreased expression of IL-12 family cytokine mRNAs as well as mRNAs encoding TLR4, CD14, and MyD88 known to play critical roles in MyD88-dependent TLR signaling. These novel observations suggest that PPAR-α agonists including fenofibrate may modulate the development of EAE, at least in part, by suppressing the production of IL-12 family cytokines and MyD88-dependent signaling.  相似文献   

8.
Cutting edge: TLR2 is a functional receptor for acute-phase serum amyloid A   总被引:2,自引:0,他引:2  
Induced secretion of acute-phase serum amyloid A (SAA) is a host response to danger signals and a clinical indication of inflammation. The biological functions of SAA in inflammation have not been fully defined, although recent reports indicate that SAA induces proinflammatory cytokine expression. We now show that TLR2 is a functional receptor for SAA. HeLa cells expressing TLR2 responded to SAA with potent activation of NF-kappaB, which was enhanced by TLR1 expression and blocked by the Toll/IL-1 receptor/resistance (TIR) deletion mutants of TLR1, TLR2, and TLR6. SAA stimulation led to increased phosphorylation of MAPKs and accelerated IkappaBalpha degradation in TLR2-HeLa cells, and results from a solid-phase binding assay showed SAA interaction with the ectodomain of TLR2. Selective reduction of SAA-induced gene expression was observed in tlr2-/- mouse macrophages compared with wild-type cells. These results suggest a potential role for SAA in inflammatory diseases through activation of TLR2.  相似文献   

9.
10.
11.
IL-23 is a heterodimeric cytokine composed of a p19 subunit and the p40 subunit of IL-12. IL-23 has proinflammatory activity, inducing IL-17 secretion from activated CD4(+) T cells and stimulating the proliferation of memory CD4(+) T cells. We investigated the pathogenic role of IL-23 in CD4(+) T cells in mice lacking the IL-1R antagonist (IL-1Ra(-/-)), an animal model of spontaneous arthritis. IL-23 was strongly expressed in the inflamed joints of IL-1Ra(-/-) mice. Recombinant adenovirus expressing mouse IL-23 (rAd/mIL-23) significantly accelerated this joint inflammation and joint destruction. IL-1beta further increased the production of IL-23, which induced IL-17 production and OX40 expression in splenic CD4(+) T cells of IL-1Ra(-/-) mice. Blocking IL-23 with anti-p19 Ab abolished the IL-17 production induced by IL-1 in splenocyte cultures. The process of IL-23-induced IL-17 production in CD4(+) T cells was mediated via the activation of Jak2, PI3K/Akt, STAT3, and NF-kappaB, whereas p38 MAPK and AP-1 did not participate in the process. Our data suggest that IL-23 is a link between IL-1 and IL-17. IL-23 seems to be a central proinflammatory cytokine in the pathogenesis of this IL-1Ra(-/-) model of spontaneous arthritis. Its intracellular signaling pathway could be useful therapeutic targets in the treatment of autoimmune arthritis.  相似文献   

12.
Host control of Mycobacterium tuberculosis is dependent on the activation of CD4+ T cells secreting IFN-gamma and their recruitment to the site of infection. The development of more efficient vaccines against tuberculosis requires detailed understanding of the induction and maintenance of T cell immunity. Cytokines important for the development of cell-mediated immunity include IL-12 and IL-23, which share the p40 subunit and the IL-12Rbeta1 signaling chain. To explore the differential effect of IL-12 and IL-23 during M. tuberculosis infection, we used plasmids expressing IL-23 (p2AIL-23) or IL-12 (p2AIL-12) alone in dendritic cells or macrophages from IL-12p40(-/-) mice. In the absence of the IL-12/IL-23 axis, immunization with a DNA vaccine expressing the M. tuberculosis Ag85B induced a limited Ag-specific T cell response and no control of M. tuberculosis infection. Co-delivery of p2AIL-23 or p2AIL-12 with DNA85B induced strong proliferative and IFN-gamma-secreting T cell responses equivalent to those observed in wild-type mice immunized with DNA85B. This response resulted in partial protection against aerosol M. tuberculosis; however, the protective effect was less than in wild-type mice owing to the requirement for IL-12 or IL-23 for the optimal expansion of IFN-gamma-secreting T cells. Interestingly, bacillus Calmette-Guérin immune T cells generated in the absence of IL-12 or IL-23 were deficient in IFN-gamma production, but exhibited a robust IL-17 secretion associated with a degree of protection against pulmonary infection. Therefore, exogenous IL-23 can complement IL-12 deficiency for the initial expansion of Ag-specific T cells and is not essential for the development of potentially protective IL-17-secreting T cells.  相似文献   

13.
IL-12p70 induced IFN-gamma is required to control Mycobacterium tuberculosis growth; however, in the absence of IL-12p70, an IL-12p40-dependent pathway mediates induction of IFN-gamma and initial bacteriostatic activity. IL-23 is an IL-12p40-dependent cytokine containing an IL-12p40 subunit covalently bound to a p19 subunit that is implicated in the induction of CD4 T cells associated with autoimmunity and inflammation. We show that in IL-23 p19-deficient mice, mycobacterial growth is controlled, and there is no diminution in either the number of IFN-gamma-producing Ag-specific CD4 T cells or local IFN-gamma mRNA expression. Conversely, there is an almost total loss of both IL-17-producing Ag-specific CD4 T cells and local production of IL-17 mRNA in these mice. The absence of IL-17 does not alter expression of the antimycobacterial genes, NO synthase 2 and LRG-47, and the absence of IL-23 or IL-17, both of which are implicated in mediating inflammation, fails to substantially affect the granulomatous response to M. tuberculosis infection of the lung. Despite this redundancy, IL-23 is required to provide a moderate level of protection in the absence of IL-12p70, and this protection correlates with a requirement for IL-23 in the IL-12p70-independent induction of Ag-specific, IFN-gamma-producing CD4 T cells. We also show that IL-23 is required for the induction of an IL-17-producing Ag-specific phenotype in naive CD4 T cells in vitro and that absence of IL-12p70 promotes an increase in the number of IL-17-producing Ag-specific CD4 T cells both in vitro and in vivo.  相似文献   

14.
15.
IL-23 is a heterodimeric cytokine consisting of p19 and the p40 subunit of IL-12. IL-23 has been shown to possess IL-12-like biological activities, but is different in its capacity to stimulate memory T cells in vitro. In this study, we investigated whether IL-23 could influence envelope protein 2 (E2)-specific cell-mediated immunity induced by immunization of hepatitis C virus E2 DNA. We found that IL-23 induced long-lasting Th1 and CTL immune responses to E2, which are much stronger than IL-12-mediated immune responses. Interestingly, IL-23N220L, an N-glycosylation mutant showing reduced expression of excess p40 without changing the level of IL-23, exhibited a higher ratio of IFN-gamma- to IL-4-producing CD4(+) T cell frequency than did wild-type IL-23, suggesting a negative regulatory effect of p40 on Th1-prone immune response induced by IL-23. These data suggest that IL-23, particularly IL-23N220L, would be an effective adjuvant of DNA vaccine for the induction of durable Ag-specific T cell immunity.  相似文献   

16.
Commensal flora plays important roles in the regulation of the gene expression involved in many intestinal functions and the maintenance of immune homeostasis, as well as in the pathogenesis of inflammatory bowel diseases. The microRNAs (miRNAs), a class of small, noncoding RNAs, act as key regulators in many biological processes. The miRNAs are highly conserved among species and appear to play important roles in both innate and adaptive immunity, as they can control the differentiation of various immune cells, as well as their functions. However, it is still largely unknown how microbiota regulates miRNA expression, thereby contributing to intestinal homeostasis and pathogenesis of inflammatory bowel disease. In our current study, we found that microbiota negatively regulated intestinal miR-10a expression, because the intestines, as well as intestinal epithelial cells and dendritic cells of specific pathogen-free mice, expressed much lower levels of miR-10a compared with those in germ-free mice. Commensal bacteria downregulated dendritic cell miR-10a expression via TLR-TLR ligand interactions through a MyD88-dependent pathway. We identified IL-12/IL-23p40, a key molecule for innate immune responses to commensal bacteria, as a target of miR-10a. The ectopic expression of the miR-10a precursor inhibited, whereas the miR-10a inhibitor promoted, the expression of IL-12/IL-23p40 in dendritic cells. Mice with colitis expressing higher levels of IL-12/IL-23p40 exhibited lower levels of intestinal miR-10a compared with control mice. Collectively, our data demonstrated that microbiota negatively regulates host miR-10a expression, which may contribute to the maintenance of intestinal homeostasis by targeting IL-12/IL-23p40 expression.  相似文献   

17.
In the present study, a semiquinone glucoside derivative (SQGD) isolated from a radioresistant bacterium Bacillus sp. INM-1 was evaluated for its immunostimulatory activities. Human peripheral blood mononuclear cells (PBMCs) were stimulated by different doses (30–90 μg/ml) of SQGD for different time (3–12 h) intervals at 37 °C, and IL-12p40, IL-23p19, IL-10, RelA and c-Jun gene expression analysis was carried out by qRT-PCR method. SQGD dose dependent cytokines protein expression kinetic analysis was carried out using western blotting. As the results of SQGD (30 μg/ml) stimulation for 3 h at 37 °C, significant induction in IL-12p40, IL-23p19 and RelA gene expression was observed in PBMCs compared to unstimulated control cells. However, no such induction in IL-10 and c-Jun gene expression was observed. Time dependent protein expression study indicated significant increase in IL-12p40, IL-12p35, IL-23p19 and RelA protein expression at 3–6 h, which was found decrease at 12 h upon SQGD treatment. In contrast, IL-10 protein expression was found to enhance significantly at 12 h after SQGD treatment to the PBMCs. SQGD dose dependent study showed approximately similar level of induction in IL-12p40, IL-12p35, IL-23p19 and RelA proteins expression at all tested concentration (30–90 μg/ml) compared to control. However, no significant change in the IL-10 and c-Jun protein expression was observed at any SQGD concentration. SQGD treatment (0.25 mg/kg b wt.) was also found to enhance anti-keyhole Limpet Hemocynin (KLH) IgM antibodies significantly in the mice immunized by KLH.Thus, SQGD fraction stimulates cellular immunity by inducing immunostimulatory cytokines and humoral immunity by enhancing IgM antibodies and could be a promising immunostimulant. Further studies related to molecular mechanisms offering immunostimulation is underway, will certainly helpful to unravel its mode of action in the biological system.  相似文献   

18.
Although c-Jun N-terminal kinase (JNK) plays an important role in cytokine expression, its function in IL-12 production is obscure. The present study uses human macrophages to examine whether the JNK pathway is required for LPS-induced IL-12 production and defines how JNK is involved in the regulation of IL-12 production by glutathione redox, which is the balance between intracellular reduced (GSH) and oxidized glutathione (GSSG). We found that LPS induced IL-12 p40 protein and mRNA in a time- and concentration-dependent manner in PMA-treated THP-1 macrophages, and that LPS activated JNK and p38 mitogen-activated protein (MAP) kinase, but not extracellular signal-regulated kinase, in PMA-treated THP-1 cells. Inhibition of p38 MAP kinase activation using SB203580 dose dependently repressed LPS-induced IL-12 p40 production, as described. Conversely, inhibition of JNK activation using SP600125 dose dependently enhanced both LPS-induced IL-12 p40 production from THP-1 cells and p70 production from human monocytes. Furthermore, JNK antisense oligonucleotides attenuated cellular levels of JNK protein and LPS-induced JNK activation, but augmented IL-12 p40 protein production and mRNA expression. Finally, the increase in the ratio of GSH/GSSG induced by glutathione reduced form ethyl ester (GSH-OEt) dose dependently enhanced LPS-induced IL-12 p40 production in PMA-treated THP-1 cells. GSH-OEt augmented p38 MAP kinase activation, but suppressed the JNK activation induced by LPS. Our findings indicate that JNK negatively affects LPS-induced IL-12 production from human macrophages, and that glutathione redox regulates LPS-induced IL-12 production through the opposite control of JNK and p38 MAP kinase activation.  相似文献   

19.
We studied how the interaction between human dendritic cells (DC) and Toxoplasma gondii influences the generation of cell-mediated immunity against the parasite. We demonstrate that viable, but not killed, tachyzoites of T. gondii altered the phenotype of immature DC. DC infected with viable parasites up-regulated the expression of CD40, CD80, CD86, and HLA-DR and down-regulated expression of CD115. These changes are indicative of DC activation induced by T. gondii. Viable and killed tachyzoites had contrasting effects on cytokine production. DC infected with viable T. gondii rather than DC that phagocytosed killed parasites induced secretion of high amounts of IFN-gamma by T cells from T. gondii-seronegative donors. IFN-gamma production in response to DC infected with viable parasites required CD28 and CD40 ligand (CD40L) signaling. In addition, this IFN-gamma response was dependent in part on IL-12 secretion. Production of IL-12 p70 occurred after interaction between T cells and DC infected with viable T. gondii, but not after incubation of T cells with DC plus killed tachyzoites. IL-12 synthesis was inhibited by blockade of CD40L signaling. IL-12-independent IFN-gamma production required CD80/CD86-CD28 interaction and, to a lesser extent, CD40-CD40L signaling. Taken together, T. gondii-induced activation of human DC is associated with T cell production of IFN-gamma through CD40-CD40L-dependent release of IL-12 and through CD80/CD86-CD28 and CD40-CD40L signaling that mediate IFN-gamma secretion even in the absence of bioactive IL-12.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号