首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In many plant-pathogen interactions resistance to disease is controlled by the interaction of plant-encoded resistance (R) genes and pathogen-encoded avirulence (Avr) genes. The interaction between tomato and the leaf mould pathogen Cladosporium fulvum is an ideal system to study the molecular basis of pathogen perception by plants. A total of four tomato genes for resistance to C. fulvum (Cf-2, Cf-4, Cf-5 and Cf-9) have been isolated from two genetically complex chromosomal loci. Their gene products recognize specific C. fulvum-encoded avirulence gene products (Avr2, Avr4, Avr5 and Avr9) by an unknown molecular mechanism. Cf genes encode extracellular membrane-anchored glycoproteins comprised predominantly of 24 amino acid leucine-rich repeats (LRRs). Cf genes from the same locus encode proteins which are more than 90% identical. Most of the amino-acid sequence differences correspond to the solvent-exposed residues within a beta-strand/beta-turn structural motif which is highly conserved in LRR proteins. Sequence variability within this motif is predicted to affect the specificity of ligand binding. Our analysis of Cf gene loci at the molecular level has shown they comprise tandemly duplicated homologous genes, and suggests a molecular mechanism for the generation of sequence diversity at these loci. Our analysis provides further insight into the molecular basis of pathogen perception by plants and the organization and evolution of R gene loci.  相似文献   

2.
Plant leucine rich repeat (LRR) proteins have diverse functions and cellular locations. An important unresolved question involves the role of the cysteine-rich capping domains which flank the LRR domain. Such studies have been hampered by difficulties in producing recombinant LRR proteins in yields sufficient for biochemical analysis. We have used Escherichia coli to overproduce Leucine Rich Protein (LRP), a small model LRR protein from tomato containing approximately five LRRs. The LRP capping domain sequences resemble those from plant disease resistance proteins and receptor-like protein kinases. LRP was purified as a soluble, crystallizable, monomeric protein by renaturation of a GST-fusion protein. The four cysteine residues in LRP were found to form two disulfide bonds, one each in the N- and C-terminal LRR-capping domains, the presence of which is necessary to protect the LRR domain from proteolysis in vitro. Fluorescence and CD spectroscopies together with molecular modelling revealed that structural features of the N-capping domain may be destabilised on reduction. These include a tryptophan stacking interaction and a long alpha-helix of residues 30-44. LRP deletion mutants lacking the capping domains showed a propensity to aggregate and increased proteolytic sensitivity. These results have important implications for future structure-function studies of plant LRR proteins.  相似文献   

3.
Tomato leaf mould-resistance gene Cf) was amplified by PCR and cloned from the genomic DNA of a tomato ( Lycopersicon esculentum Mill. ) cultivar ("Zhongza 9'). Sequence analysis indicates that this Cf9 gene is 2 751 bp long and contains an open reading frame encoding a protein of 863 amino acids. An intron of 115 bp in length is found in the 3' untranslated region of this gene. The exon/intron borders are replicate sequences, TCCAGG(T)ATTC, which shares high homology with those of the two genes of Cf2 which is another leaf mould-resistant gene locus in tomato. Compared with the previously reported cDNA sequence of Cf9, a single change of T to C occurs at the nucleotide position of 371 in this PCR-ampliiied Cf) gene, which converts Leu 121 to Pro in the LRR region of the encoded protein.  相似文献   

4.
The gene for staphylococcal enterotoxin type E (entE) was cloned from Staphylococcus aureus into plasmid vector pBR322 and introduced into Escherichia coli. A staphylococcal enterotoxin type E-producing E. coli strain was isolated. The complete nucleotide sequence of the cloned structural entE gene and the N-terminal amino acid sequence of mature staphylococcal enterotoxin type E were determined. The entE gene contained 771 base pairs that encoded a protein with a molecular weight of 29,358 which was apparently processed to a mature extracellular form with a molecular weight of 26,425. DNA sequence comparisons indicated that staphylococcal enterotoxins type E and A are closely related. There was 84% nucleotide sequence homology between entE and the gene for staphylococcal enterotoxin type A; these genes encoded protein products that had 214 (83%) homologous amino acid residues (mature forms had 188 [82%] homologous amino acid residues).  相似文献   

5.
根据彩叶草叶片小型EST库中一条具有1个富亮氨酸重复(leucine-rich repeat,LRR)结构域的EST序列,采用RACE与文库结合的方法,克隆了1个具有5个LRR结构域的全长cDNA,SsLRP(LRR-Related Protein)(GenBank登录号FJ787729)。SsLRP cDNA全长1024bp,包含一个657bp的ORF框,编码218个氨基酸。其5’-UTR区含有2个终止子TAG,3’-UTR区具有推测的加尾信号AATAAA。SsLRP蛋白N端具有的信号肽和保守的亮氨酸拉链结构域,具有5个保守的LRR结构域,多个磷酸化位点和N-糖基化位点。多序列比对和系统进化分析表明,SsLRP与番茄SlLRP同源性最高。二级结构和三级结构预测表明,SsLRP的功能可能与保守的LRR结构域密切相关,推测该基因可能参与蛋白间的相互作用与信号识别。RT-PCR分析表明,SsLRP与番茄SlLRP具有相似的表达模式,在正常植株的根、茎、叶和花中都有表达,在受菌核病感染植株的茎和叶中表达上调。  相似文献   

6.
The tomato Cf-4 and Cf-9 genes confer resistance to infection by the biotrophic leaf mold pathogen Cladosporium. Their protein products induce a hypersensitive response (HR) upon recognition of the fungus-encoded Avr4 and Avr9 peptides. Cf-4 and Cf-9 share >91% sequence identity and are distinguished by sequences in their N-terminal domains A and B, their N-terminal leucine-rich repeats (LRRs) in domain C1, and their LRR copy number (25 and 27 LRRs, respectively). Analysis of Cf-4/Cf-9 chimeras, using several different bioassays, has identified sequences in Cf-4 and Cf-9 that are required for the Avr-dependent HR in tobacco and tomato. A 10-amino acid deletion within Cf-4 domain B relative to Cf-9 was required for full Avr4-dependent induction of an HR in most chimeras analyzed. Additional sequences required for Cf-4 function are located in LRRs 11 and 12, a region that contains only eight of the 67 amino acids that distinguish it from Cf-9. One chimera, with 25 LRRs that retained LRR 11 of Cf-4, induced an attenuated Avr4-dependent HR. The substitution of Cf-9 N-terminal LRRs 1 to 9 with the corresponding sequences from Cf-4 resulted in attenuation of the Avr9-induced HR, as did substitution of amino acid A433 in LRR 15. The amino acids L457 and K511 in Cf-9 LRRs 16 and 18 are essential for induction of the Avr9-dependent HR. Therefore, important sequence determinants of Cf-9 function are located in LRRs 10 to 18. This region contains 15 of the 67 amino acids that distinguish it from Cf-4, in addition to two extra LRRs. Our results demonstrate that sequence variation within the central LRRs of domain C1 and variation in LRR copy number in Cf-4 and Cf-9 play a major role in determining recognition specificity in these proteins.  相似文献   

7.
We have identified the tomato I gene for resistance to the Fusarium wilt fungus Fusarium oxysporum f. sp. lycopersici (Fol) and show that it encodes a membrane‐anchored leucine‐rich repeat receptor‐like protein (LRR‐RLP). Unlike most other LRR‐RLP genes involved in plant defence, the I gene is not a member of a gene cluster and contains introns in its coding sequence. The I gene encodes a loopout domain larger than those in most other LRR‐RLPs, with a distinct composition rich in serine and threonine residues. The I protein also lacks a basic cytosolic domain. Instead, this domain is rich in aromatic residues that could form a second transmembrane domain. The I protein recognises the Fol Avr1 effector protein, but, unlike many other LRR‐RLPs, recognition specificity is determined in the C‐terminal half of the protein by polymorphic amino acid residues in the LRRs just preceding the loopout domain and in the loopout domain itself. Despite these differences, we show that I/Avr1‐dependent necrosis in Nicotiana benthamiana depends on the LRR receptor‐like kinases (RLKs) SERK3/BAK1 and SOBIR1. Sequence comparisons revealed that the I protein and other LRR‐RLPs involved in plant defence all carry residues in their last LRR and C‐terminal LRR capping domain that are conserved with SERK3/BAK1‐interacting residues in the same relative positions in the LRR‐RLKs BRI1 and PSKR1. Tyrosine mutations of two of these conserved residues, Q922 and T925, abolished I/Avr1‐dependent necrosis in N. benthamiana, consistent with similar mutations in BRI1 and PSKR1 preventing their interaction with SERK3/BAK1.  相似文献   

8.
Receptor‐like kinases (RLKs) represent the largest group of cell surface receptors in plants. The monophyletic leucine‐rich repeat (LRR)‐RLK subfamily II is considered to contain the somatic embryogenesis receptor kinases (SERKs) and NSP‐interacting kinases known to be involved in developmental processes and cellular immunity in plants. There are only a few published studies on the phylogenetics of LRR‐RLKII; unfortunately these suffer from poor taxon/gene sampling. Hence, it is not clear how many and what main clades this family contains, let alone what structure–function relationships exist. We used 1342 protein sequences annotated as ‘SERK’ and ‘SERK‐like’ plus related sequences in order to estimate phylogeny within the LRR‐RLKII clade, using the nematode protein kinase Pelle as an outgroup. We reconstruct five main clades (LRR‐RLKII 1–5), in each of which the main pattern of land plant relationships re‐occurs, confirming previous hypotheses that duplication events happened in this gene subfamily prior to divergence among land plant lineages. We show that domain structures and intron–exon boundaries within the five clades are well conserved in evolution. Furthermore, phylogenetic patterns based on the separate LRR and kinase parts of LRR‐RLKs are incongruent: whereas the LRR part supports a LRR‐RLKII 2/3 sister group relationship, the kinase part supports clades 1/2. We infer that the kinase part includes few ‘radical’ amino acid changes compared with the LRR part. Finally, our results confirm that amino acids involved in each LRR‐RLKII–receptor complex interaction are located at N‐capping residues, and that the short amino acid motifs of this interaction domain are highly conserved throughout evolution within the five LRR‐RLKII clades.  相似文献   

9.
The Oenothera mitochondrial genome contains only a gene fragment for ribosomal protein S12 (rps12), while other plants encode a functional gene in the mitochondrion. The complete Oenothera rps12 gene is located in the nucleus. The transit sequence necessary to target this protein to the mitochondrion is encoded by a 5'-extension of the open reading frame. Comparison of the amino acid sequence encoded by the nuclear gene with the polypeptides encoded by edited mitochondrial cDNA and genomic sequences of other plants suggests that gene transfer between mitochondrion and nucleus started from edited mitochondrial RNA molecules. Mechanisms and requirements of gene transfer and activation are discussed.  相似文献   

10.
The Toll-like receptor (TLR) gene family consists of type 1 transmembrane receptors, which play essential roles in both innate immunity and adaptive immune response by ligand recognition and signal transduction. Using all available vertebrate TLR protein sequences, we inferred the phylogenetic tree and then characterized critical amino acid residues for functional divergence by detecting altered functional constraints after gene duplications. We found that the extracellular domain of TLR genes showed higher functional divergence than that of the cytoplasmic domain, particularly in the region between leucine-rich repeat (LRR) 10 and LRR 15 of TLR 4. Our finding supports the concept that sequence evolution in the extracellular domain may be responsible for the broad diversity of TLR ligand-binding affinity, providing a testable hypothesis for potential targets that could be verified by further experimentation.  相似文献   

11.
H Weber  S Schultze    A J Pfitzner 《Journal of virology》1993,67(11):6432-6438
The Tm-2(2) resistance gene is used in most commercial tomato cultivars for protection against infection with tobacco mosaic virus and its close relative tomato mosaic virus (ToMV). To study the mechanism of this resistance gene, cDNA clones encompassing the complete genome of a ToMV strain (ToMV-2(2)) that was able to break the Tm-2(2) resistance were generated. Chimeric full-length viral cDNA clones were constructed under the control of the cauliflower mosaic virus 35S RNA promoter, combining parts of the wild-type virus and ToMV-2(2). Using these clones in cDNA infection experiments, we showed that the 30-kDa movement protein of ToMV-2(2) is responsible for overcoming the Tm-2(2) resistance gene in the tomato. DNA sequence analysis revealed four amino acid exchanges between the 30-kDa proteins from wild-type ToMV and ToMV-2(2), Lys-130 to Glu, Gly-184 to Glu, Ser-238 to Arg, and Lys-244 to Glu. To clarify the involvement of the altered amino acid residues in the resistance-breaking properties of the ToMV-2(2) movement protein, different combinations of these amino acid exchanges were introduced in the genome of wild-type ToMV. Only one mutant strain which contained two amino acid substitutions, Arg-238 and Glu-244, was able to multiply in Tm-2(2) tomato plants. Both amino acid exchanges are found within the carboxy-terminal region of the movement protein, which displays a high variability among different tobamoviruses and has been shown to be dispensable for virus transport in tobacco plants. These observations suggest that the resistance conferred by the Tm-2(2) gene against ToMV depends on specific recognition events in this host-pathogen interaction rather than interfering with fundamental functions of the 30-kDa protein.  相似文献   

12.
A polygalacturonase inhibitor protein (PGIP) was characterized from tomato fruit. Differential glycosylation of a single polypeptide accounted for heterogeneity in concanavalin A binding and in molecular mass. Tomato PGIP had a native molecular mass of 35 to 41 kDa, a native isoelectric point of 9.0, and a chemically deglycosylated molecular mass of 34 kDa, suggesting shared structural similarities with pear fruit PGIP. When purified PGIPs from pear and tomato were compared, tomato PGIP was approximately twenty-fold less effective an inhibitor of polygalacturonase activity isolated from cultures of Botrytis cinerea. Based on partial amino acid sequence, polymerase chain reaction products and genomic clones were isolated and used to demonstrate the presence of PGIP mRNA in both immature and ripening fruit as well as cell suspension cultures. Nucleotide sequence analysis indicates that the gene, uninterrupted by introns, encodes a predicted 36.5 kDa polypeptide containing amino acid sequences determined from the purified protein and sharing 68% and 50% amino acid sequence identity with pear and bean PGIPs, respectively. Analysis of the PGIP sequences also revealed that they belong to a class of proteins which contain leucine-rich tandem repeats. Because these sequence domains have been associated with protein-protein interactions, it is possible that they contribute to the interaction between PGIP and fungal polygalacturonases.  相似文献   

13.
The nucleotide sequence of the structural gene for staphylococcal enterotoxin type C3 (entC3) was determined. This gene contains 798-base-pair open reading frame that encodes a protein of 266 amino acid residues. Sequence analysis suggests that staphylococcal enterotoxin type C3 is synthesized in a precursor form that is processed to yield a mature extracellular form of 238 amino acid residues (molecular weight, 27,438). The entC3 gene is closely related to the gene for staphylococcal enterotoxin type C1, with 98% nucleotide sequence identity. Sequence comparisons between the entC3, entC1, and entB genes suggest that an ancestral entC1-like gene was formed by recombination between the entC3 and entB genes.  相似文献   

14.
 大部分已克隆的植物抗病基因都包含有核苷酸结合位点区 (NBS)和富含亮氨酸的重复序列区 (LRR) .利用来自节节麦的抗禾谷孢囊线虫基因Cre3位点NBS区保守序列设计特异引物 ,从含有来自易变山羊草的抗禾谷孢囊线虫基因的小麦品系E 10的基因组中PCR扩增得到一条约 5 30bp的单一条带 .将扩增条带克隆和序列分析发现 ,该克隆 (Rccn4 )的编码区长 5 2 8bp ,含一个不完整的开放读码框 ,没有起始密码子、终止密码子和内含子结构 ,它编码一个 176个氨基酸残基的蛋白质 ,分子量为 2 0 4kD .Rccn4含有NBS LRR类抗病基因NBS区共有的保守模体I(V)LDD、T(T S)R、G(L S)PLA(A I L)、RCF(A L)Y ,并且与Cre3基因的NBS编码区核苷酸和氨基酸同源性分别为99 4 %和 98% .它是一个新的含NBS编码区核苷酸的抗禾谷孢囊线虫基因  相似文献   

15.
Extensins comprise a family of structural cell wall hydroxyproline-rich glycoproteins in plants. Two tomato genomic clones, Tom J-10 and Tom L-4, were isolated from a tomato genomic DNA library byin situ plaque hybridization with extensin DNA probes. Tom J-10 encoded an extensin with 388 amino acid residues and a predicted molecular mass of 43 kDa. The Tom J-10 encoded extensin lacked a typical signal peptide sequence, but contained two distinct protein domains consisting of 19 tandem repeats of Ser-Pro4-Ser-Pro-Lys-Tyr-Val-Tyr-Lys at the amino terminus which were directly followed by 8 tandem repeats of the consensus sequence Ser-Pro4-Tyr3-Lys-Ser-Pro4-Ser-Pro at the carboxy terminus. RNA blot hybridization analysis with the Tom J-10 extensin probe demonstrated the presence of a 4.0 kb tomato stem mRNA which accumulated markedly in response to wounding. Tom L-4 encoded an extensin with 322 amino acid residues and a predicted molecular mass of 35 kDa. The Tom L-4 encoded extensin contained a typical signal peptide sequence at the amino terminus and was followed by at least 3 distinct domains. These domains consisted of an amino terminal domain containing several Lys-Pro and Ser-Pro4 repeat units, a central domain with repeats of the consensus sequence Ser-Pro2–5-Thr-Pro-Ser-Tyr-Glu-His-Pro-Lys-Thr-Pro, and a carboxy terminal domain containing repeats of the consensus sequence Ser-Ser-Pro4-Ser-Pro-Ser-Pro4-Thr-Tyr1–3. RNA blot hybridization analysis with the Tom L-4 extensin probe demonstrated the presence of a 2.6 kb tomato stem mRNA which accumulated in response to wounding.  相似文献   

16.
Structure of a Bacillus subtilis endo-beta-1,4-glucanase gene.   总被引:15,自引:1,他引:14       下载免费PDF全文
The nucleotide sequence of the portion of a Bacillus subtilis (strain PAP115) 3 kb Pst I fragment which contains an endo-beta-1, 4-glucanase gene has been determined. This gene encodes a protein of 499 amino acid residues (Mr = 55,234) with a typical B. subtilis signal peptide. Escherichia coli which has been transformed with this gene produces an extracellular endoglucanase with an amino-terminus corresponding to the thirtieth encoded amino acid residue. The gene is preceded by a cryptic reading frame with a rho-independent terminator structure, and itself has such a structure in the immediate 3'-flanking region. We have also identified, in the 5'-flanking region, nucleotide sequences which resemble promoter elements recognized by Bacillus RNA polymerase E sigma 43. Comparison of the encoded amino acid sequence to other known beta-glucanases reveals a small region of similarity to the encoded protein of the Clostridium thermocellum celB gene. These similar regions may contain substrate-binding and/or catalytic sites.  相似文献   

17.
A vacuolar Na+/H+ antiporter gene was isolated from Rosa hybrida (RhNHX1). The amino acid sequence encoded by the RhNHX1 cDNA shows homology to that of the yeast NHX1. The cDNA contains 2080 nucleotides and an open reading frame of 1632 nucleotides that encodes a protein of 543 amino acids with a deduced molecular mass of 60,045 daltons. The deduced amino acid sequence of RhNHX1 is 74.1% identical to that of a vacuolar Na+/H+ antiporter of Arabidopsis thaliana, AtNHX1, and contains the consensus amiloride-binding domain. RhNHX1 suppressed the hygromycin-sensitive phenotype of the yeast nhx1 mutant. In addition, the expression of RhNHX1 in rose increased in the presence of NaCl. These results suggest that the product of RhNHX1 functions as a vacuolar Na+/H+ antiporter in rose plants.  相似文献   

18.
We have cloned and determined the DNA sequence of the cDNA of ntGRP15. The cDNA ntGRP15 represents an anther-specific, developmentally regulated gene from Nicotiana tabacum that encodes a glycine-rich protein. Northern analysis shows that the gene is specifically expressed in anthers and is stringently regulated during anther development. It appears only in anthers at the meiosis to free microspore stages of development. The encoded protein is small (12.2 kDa), has a 31% glycine content and contains a putative signal sequence. By both nucleotide and amino acid sequence alignment, the gene shows high sequence similarity to a gene previously isolated from Lycopersicon esculentum, namely, TomA92b9. High glycine content, presence of a signal sequence and similarity to the tomato TomA92b9 gene suggests the protein functions as a structural cell wall protein, possibly involved in pollen exine formation. Received: 14 September 1999 / Accepted: 24 September 1999  相似文献   

19.
Intracellular amplification of the Escherichia coli RecB and RecC proteins does not result in an increase in Exonuclease V activity unless the level of a third protein, encoded between the recB and argA genes, is also amplified. Nucleotide sequence analysis of this region reveals a 1,824 nucleotide open reading frame which would encode a protein of 608 amino acids with a calculated molecular weight of 66,973. This is assumed to be the structural gene for the alpha subunit of Exonuclease V, recently designated recD. The proposed initiation codon of the recD gene overlaps the termination codon of the upstream recB gene by one nucleotide, suggesting that these genes may form an operon. The deduced amino acid sequence of the RecD protein contains a region which is homologous to highly conserved sequences in adenine nucleotide binding proteins.  相似文献   

20.
We previously isolated a pollen-specific gene encoding a pollen tube wall-associated glycoprotein with a globular domain and an extensin domain from maize (mPex1). To evaluate which protein domains might be important for function, we isolated a second monocot gene (mPex2) and a dicot gene (tPex). Each gene encodes a signal sequence, an N-terminal globular domain comprised of a variable region, a leucine-rich repeat (LRR) with an adjacent cysteine-rich region, a transition region and an extensin-like C-terminal domain. The LRRs of the maize and tomato Pex proteins are highly conserved. Although the extensin domains in the maize and tomato proteins vary in length and in amino acid sequence, they are likely to be structurally conserved. Additional putative Pex gene sequences were identified by either GenBank search (Arabidopsis) or PCR (sorghum and potato); all encode conserved LRRs. The presence of a conserved LRR in the known and potential Pex proteins strongly suggests that this motif is involved in the binding of a specific ligand during pollen tube growth. Gene expression studies using RNA and protein blotting as well as promoter-reporter gene fusions in transient and stable transformation indicate that the tomato Pex gene is pollen-specific.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号