首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Comment on: Hanse EA, et al. Cell Cycle 2012; 11:2681-90.  相似文献   

2.
Cancer such as hepatocellular carcinoma (HCC) is characterized by complex perturbations in multiple signaling pathways, including the phosphoinositide-3-kinase (PI3K/AKT) pathways. Herein we investigated the role of PI3K catalytic isoforms, particularly class II isoforms in HCC proliferation. Among the siRNAs tested against the eight known catalytic PI3K isoforms, specific ablation of class II PI3K alpha (PIK3C2α) was the most effective in impairing cell growth and this was accompanied by concomitant decrease in PIK3C2α mRNA and protein levels. Colony formation ability of cells deficient for PIK3C2α was markedly reduced and growth arrest was associated with increased caspase 3 levels. A small but significant difference in gene dosage and expression levels was detected between tumor and non-tumor tissues in a cohort of 19 HCC patients. Taken together, these data suggest for the first time that in addition to class I PI3Ks in cancer, class II PIK3C2α can modulate HCC cell growth.  相似文献   

3.
4.
5.
Numerous studies exploring oncogenic Ras or manipulating physiological Ras signalling have established an irrefutable role for Ras as driver of cell cycle progression. Despite this wealth of information the precise signalling timeline and effectors engaged by Ras, particularly during G1, remain obscure as approaches for Ras inhibition are slow-acting and ill-suited for charting discrete Ras signalling episodes along the cell cycle. We have developed an approach based on the inducible recruitment of a Ras-GAP that enforces endogenous Ras inhibition within minutes. Applying this strategy to inhibit Ras stepwise in synchronous cell populations revealed that Ras signaling was required well into G1 for Cyclin D induction, pocket protein phosphorylation and S-phase entry, irrespective of whether cells emerged from quiescence or G2/M. Unexpectedly, Erk, and not PI3K/Akt or Ral was activated by Ras at mid-G1, albeit PI3K/Akt signalling was a necessary companion of Ras/Erk for sustaining cyclin-D levels and G1/S transition. Our findings chart mitogenic signaling by endogenous Ras during G1 and identify limited effector engagement restricted to Raf/MEK/Erk as a cogent distinction from oncogenic Ras signalling.  相似文献   

6.
The establishment of a polarized morphology is an essential event in the differentiation of neurons into a single axon and dendrites. We previously showed that glycogen synthase kinase-3beta (GSK-3beta) is critical for specifying axon/dendrite fate by the regulation of the phosphorylation of collapsin response mediator protein-2 (CRMP-2). Here, we found that the overexpression of the small GTPase Ras induced the formation of multiple axons in cultured hippocampal neurons, whereas the ectopic expression of the dominant negative form of Ras inhibited the formation of axons. Inhibition of phosphatidylinositol-3-kinase (PI3-kinase) or extracellular signal-related kinase (ERK) kinase (MEK) suppressed the Ras-induced formation of multiple axons. The expression of the constitutively active form of PI3-kinase or Akt (also called protein kinase B) induced the formation of multiple axons. The overexpression of Ras prevented the phosphorylation of CRMP-2 by GSK-3beta. Taken together, these results suggest that Ras plays critical roles in establishing neuronal polarity upstream of the PI3-kinase/Akt/GSK-3beta/CRMP-2 pathway and mitogen-activated protein kinase cascade.  相似文献   

7.
Nijmegen breakage syndrome (NBS) is an autosomal recessive disorder, characterized by progressive microcephaly, growth retardation, immunodeficiency, and pre-disposition to tumor formation. To investigate the functions of the NBS gene product, NBS1, on neurons, PC12 cells overexpressing NBS1 and related mutants and primary cortical neuronal culture were used in the present study. Small interfering RNA (siRNA) was applied to repress the expression of endogenous Nbs1 in PC12 cells and primary cortical neurons. We demonstrated that overexpression of NBS1 increases cellular proliferation and decreases the apoptosis of PC12 cells in serum withdrawal and ionizing irradiation, through the activation of phosphatidylinositol 3-kinase (PI 3-kinase)/Akt pathway. Overexpression of NBS1 also decreases neurite elongation on PC12 cells under nerve growth factor stimulation. Transfection of NBS1-overexpressing PC12 cells with a dominant negative Akt mutant attenuates the neuroprotection and cellular proliferation effects of NBS1 while having no effect on neurite elongation. PC12 cells overexpressing NBS657del5 and NBS653 mutants, in which the major NBS1 protein in cells are truncated proteins, have decreased cellular proliferation, increased cell death, and decreased neurite elongation compared with those of control PC12 cells. Repression of Nbs1 by siRNA decreases the PI 3-kinase activity and Akt phosphorylation levels, and induces neurite elongation in PC12 cells even without nerve growth factor stimulation. Repression of Nbs1 by siRNA in primary cortical neurons also increased neurite elongation, but increased neuronal death. We conclude that NBS1 can regulate neuronal proliferation and neuroprotection via PI 3-kinase/Akt pathway while regulating neuronal differentiation in a different pathway. Excessive accumulation of truncated protein secondary to 657del5 mutation may be detrimental to neurons, leading to defective neuronal proliferation and differentiation.  相似文献   

8.
9.
We have previously demonstrated that ligand-stimulation of c-Kit induces phosphorylation of Tyr568 and Tyr570 in the juxtamembrane region of the receptor, leading to recruitment, phosphorylation and activation of members of the Src family of tyrosine kinases. In this paper, we demonstrate that members of the Src family of tyrosine kinases are able to phosphorylate c-Kit selectively on one particular tyrosine residue, Tyr900, located in the second part of the tyrosine kinase domain. In order to identify potential docking partners of Tyr900, a synthetic phosphopeptide corresponding to the amino acid sequence surrounding Tyr900 was used as an affinity matrix. By use of MALDI-TOF mass spectrometry, CrkII was identified as a protein that specifically bound to Tyr900 in a phosphorylation dependent manner, possibly via the p85 subunit of PI3-kinase. Expression of a mutant receptor where Tyr900 had been replaced with a phenylalanine residue (Y900F) resulted in a receptor with reduced ability to phosphorylate CrkII. Together these data support a model where c-Src phosphorylates the receptor, thereby creating docking sites for SH2 domain containing proteins, leading to recruitment of Crk to the receptor.  相似文献   

10.
11.
D-type cyclins are involved in the regulation of the G1/S transition of the cell cycle in various cell types cultured in vitro. Little is, however, known about the expression pattern and functional role of D-type cyclins in physiological processes in vivo. In this report, we studied whether the expression of murine D-type cyclins correlates with the states of mouse uterine cell proliferation in vivo. Time-course changes in cyclin D1 and D3 mRNA levels in the uterine tissues of immature mice primed with 17β-estradiol (E2) were examined by Northern blot hybridization. c-fos and thymidine kinase (TK) mRNA levels were also examined as markers for the transition from G0 to G1 and the onset of S phase, respectively. Cyclin D1 and D3 mRNAs were induced 2.5-fold between c-fos and TK mRNA peaks. The E2-induced cyclin D1 and D3 gene expressions were blocked by antiestrogens tamoxifen and ICI 182,780. We also investigated the effects of cycloheximide (CHX), a protein synthesis inhibitor, on cyclin D1 and D3 gene expressions. When CHX was treated alone, cyclin D3, but not cyclin D1, mRNA was immediately superinduced. The E2-induced cyclin D3 gene expression was shifted by approximately 6 h when CHX was pretreated 1 hr before E2 administration. Interestingly, the 3H-thymidine incorporation experiment showed that the mouse uterine cell cycle progression also shifted by 6 hr with pretreatment of CHX. The overall results suggest that both cyclin D1 and D3 mRNAs are constitutively expressed in uterine tissues and induced by E2 at G1 phase of the mouse uterine cell cycle. However, the superinducibility and temporal shift of cyclin D3 by CHX suggest that there is a different regulatory mechanism underlying cyclin D1 and D3 gene expressions in the mouse uterine cell cycle progression. Mol. Reprod. Dev. 46:450–458, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

12.
13.
Cellular or chemical activators for most transient receptor potential channels of the vanilloid subfamily (TRPV) have been identified in recent years. A remarkable exception to this is TRPV2, for which cellular events leading to channel activation are still a matter of debate. Diverse stimuli such as extreme heat or phosphatidylinositol-3 kinase (PI3-kinase) regulated membrane insertion have been shown to promote TRPV2 channel activity. However, some of these results have proved difficult to reproduce and may underlie different gating mechanisms depending on the cell type in which TRPV2 channels are expressed. Here, we show that expression of recombinant TRPV2 can induce cytotoxicity that is directly related to channel activity since it can be prevented by introducing a charge substitution in the pore-forming domain of the channel, or by reducing extracellular calcium. In stably transfected cells, TRPV2 expression results in an outwardly rectifying current that can be recorded at all potentials, and in an increase of resting intracellular calcium concentration that can be partly prevented by serum starvation. Using cytotoxicity as a read-out of channel activity and direct measurements of cell surface expression of TRPV2, we show that inhibition of the PI3-kinase decreases TRPV2 channel activity but does not affect the trafficking of the channel to the plasma membrane. It is concluded that PI3-kinase induces or modulates the activity of recombinant TRPV2 channels; in contrast to the previously proposed mechanism, activation of TRPV2 channels by PI3-kinase is not due to channel translocation to the plasma membrane.  相似文献   

14.
The TNF ligand family member "B cell-activating factor belonging to the TNF family" (BAFF, also called BLyS, TALL-1, zTNF-4, and THANK) is an important survival factor for B and T cells. In this study, we show that BAFF is able to induce CD4(+) spleen T cell proliferation when co-stimulated with anti-CD3. Expression of phosphorylated FOXO3A was notably down-regulated and cyclins D2 and D3 were up-regulated and higher in the CD4(+) T cells when treated with BAFF and anti-CD3, as assessed by Western blotting. Furthermore, after FOXO3A was knocked down, expression of cyclin D1 was unchanged, compared with control group levels, but the expression of cyclins D2 and D3 increased, compared with the control group. In conclusion, our results suggest that BAFF induced CD4(+) spleen T cell proliferation by down-regulating the phosphorylation of FOXO3A and then activating cyclin D2 and D3 expression, leading to CD4(+) T cell proliferation.  相似文献   

15.
16.
The molecular mechanisms by which receptors regulate the Ras Binding Domains of the PIP3-generating, class I PI3Ks remain poorly understood, despite their importance in a range of biological settings, including tumorigenesis, activation of neutrophils by pro-inflammatory mediators, chemotaxis of Dictyostelium and cell growth in Drosophila. We provide evidence that G protein-coupled receptors (GPCRs) can stimulate PLCb2/b3 and diacylglycerol- dependent activation of the RasGEF, RasGRP4 in neutrophils. The genetic loss of RasGRP4 phenocopies knock-in of a Ras-insensitive version of PI3Kc in its effects on PI3Kc-dependent PIP3 accumulation, PKB activation, chemokinesis and reactive oxygen species (ROS) formation. These results establish a new mechanism by which GPCRs can stimulate Ras, and the broadly important principle that PLCs can control activation of class I PI3Ks.  相似文献   

17.
Nerve growth factor (NGF) elicits Akt translocation into the nucleus, where it phosphorylates nuclear targets. Here, we describe that Akt phosphorylation can promote the nuclear translocation of Akt and is necessary for its nuclear retention. Overexpression of Akt-K179A, T308A, S473A-mutant failed to show either nuclear translocation or nuclear Akt phosphorylation, whereas expression of wild-type counterpart elicited profound Akt phosphorylation and induced nuclear translocation under NGF stimulation. Employing the PI3K inhibitor and a variety of mutants PI3K, we showed that nuclear translocation of Akt was mediated by activation of PI3K, and Akt phosphorylation status in the nucleus required PI3K activity. Thus the activity of PI3K might contribute to the nuclear translocation of Akt, and that Akt phosphorylation is essential for its nuclear retention under NGF stimulation conditions.  相似文献   

18.
The molecular mechanisms by which arsenic (As3+) causes human cancers remain to be fully elucidated. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of polycomb-repressive complexes 2 (PRC2) that promotes trimethylation of lysine 27 of histone H3, leading to altered expression of tumor suppressors or oncogenes. In the present study, we determined the effect of As3+ on EZH2 phosphorylation and the signaling pathways important for As3+-induced EZH2 phosphorylation in human bronchial epithelial cell line BEAS-2B. The involvement of kinases in As3+-induced EZH2 phosphorylation was validated by siRNA-based gene silencing. The data showed that As3+ can induce phosphorylation of EZH2 at serine 21 in human bronchial epithelial cells and that the phosphorylation of EZH2 requires an As3+-activated signaling cascade from JNK and STAT3 to Akt. Transfection of the cells with siRNA specific for JNK1 revealed that JNK silencing reduced serine727 phosphorylation of STAT3, Akt activation and EZH2 phosphorylation, suggesting that JNK is the upstream kinase involved in As3+-induced EZH2 phosphorylation. Because As3+ is capable of inducing miRNA-21 (miR-21), a STAT3-regulated miRNA that represses protein translation of PTEN or Spry2, we also tested the role of STAT3 and miR-21 in As3+-induced EZH2 phosphorylation. Ectopic overexpression of miR-21 promoted Akt activation and phosphorylation of EZH2, whereas inhibiting miR-21 by transfecting the cells with anti-miR-21 inhibited Akt activation and EZH2 phosphorylation. Taken together, these results demonstrate a contribution of the JNK, STAT3 and Akt signaling axis to As3+-induced EZH2 phosphorylation. Importantly, these findings may reveal new molecular mechanisms underlying As3+-induced carcinogenesis.  相似文献   

19.
20.
Signet-ring cell carcinoma is one of the most malignant tumors, classified histologically as a poorly differentiated adenocarcinoma. The ErbB2/ErbB3 complex is often constitutively activated, which suggests that the ErbB2/ErbB3 signaling pathway may be important for malignancy of this tumor. However, the mechanism underlying this activation has not been understood. Here, we show that ErbB2 and Muc4 bind in signet ring carcinoma cells, which was not seen in highly differentiated adenocarcinoma cell lines. ErbB3 was suggested to be a substrate of ErbB2 because knockdown of ErbB2 resulted in less phosphorylation of ErbB3. Inhibition of expression of Muc4 at the cell surface by the treatment of the cells with benzyl-GalNac, an inhibitor of mucin secretion, blocked phosphorylation of ErbB3, suggesting that activity of ErbB2 depends on the expression of Muc4. These results supply the biochemical backgrounds in recent studies suggesting the contribution of Muc4 in the tumorigenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号