首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Widespread positive selection in synonymous sites of mammalian genes   总被引:5,自引:0,他引:5  
Evolution of protein sequences is largely governed by purifying selection, with a small fraction of proteins evolving under positive selection. The evolution at synonymous positions in protein-coding genes is not nearly as well understood, with the extent and types of selection remaining, largely, unclear. A statistical test to identify purifying and positive selection at synonymous sites in protein-coding genes was developed. The method compares the rate of evolution at synonymous sites (Ks) to that in intron sequences of the same gene after sampling the aligned intron sequences to mimic the statistical properties of coding sequences. We detected purifying selection at synonymous sites in approximately 28% of the 1,562 analyzed orthologous genes from mouse and rat, and positive selection in approximately 12% of the genes. Thus, the fraction of genes with readily detectable positive selection at synonymous sites is much greater than the fraction of genes with comparable positive selection at nonsynonymous sites, i.e., at the level of the protein sequence. Unlike other genes, the genes with positive selection at synonymous sites showed no correlation between Ks and the rate of evolution in nonsynonymous sites (Ka), indicating that evolution of synonymous sites under positive selection is decoupled from protein evolution. The genes with purifying selection at synonymous sites showed significant anticorrelation between Ks and expression level and breadth, indicating that highly expressed genes evolve slowly. The genes with positive selection at synonymous sites showed the opposite trend, i.e., highly expressed genes had, on average, higher Ks. For the genes with positive selection at synonymous sites, a significantly lower mRNA stability is predicted compared to the genes with negative selection. Thus, mRNA destabilization could be an important factor driving positive selection in nonsynonymous sites, probably, through regulation of expression at the level of mRNA degradation and, possibly, also translation rate. So, unexpectedly, we found that positive selection at synonymous sites of mammalian genes is substantially more common than positive selection at the level of protein sequences. Positive selection at synonymous sites might act through mRNA destabilization affecting mRNA levels and translation.  相似文献   

2.
We expand current methods for calculating selection coefficients using path analysis and demonstrate how to analyse nonlinear selection. While this incorporation is a straightforward extension of current procedures, the rules for combining these traits to calculate selection coefficients can be complex. We demonstrate our method with an analysis of selection in an experimental population of Arabidopsis thaliana consisting of 289 individuals. Multiple regression analyses found positive directional selection and positive nonlinear selection only for inflorescence height. In contrast, the path analyses also revealed positive directional selection for number of rosette leaves and positive nonlinear selection for leaf number and time of inflorescence initiation. These changes in conclusions came about because indirect selection was converted into direct selection with the change in causal structure. Path analysis has great promise for improving our understanding of natural selection but must be used with caution since coefficient estimates depend on the assumed causal structure.  相似文献   

3.
Inferring the intensity of positive selection in protein-coding genes is important since it is used to shed light on the process of adaptation. Recently, it has been reported that overlapping genes, which are ubiquitous in all domains of life, seem to exhibit inordinate degrees of positive selection. Here, we present a new method for the simultaneous estimation of selection intensities in overlapping genes. We show that the appearance of positive selection is caused by assuming that selection operates independently on each gene in an overlapping pair, thereby ignoring the unique evolutionary constraints on overlapping coding regions. Our method uses an exact evolutionary model, thereby voiding the need for approximation or intensive computation. We test the method by simulating the evolution of overlapping genes of different types as well as under diverse evolutionary scenarios. Our results indicate that the independent estimation approach leads to the false appearance of positive selection even though the gene is in reality subject to negative selection. Finally, we use our method to estimate selection in two influenza A genes for which positive selection was previously inferred. We find no evidence for positive selection in both cases.  相似文献   

4.
高远    田李  秦松 《植物学报》2008,25(4):401-406
正选择是指将因含有有利突变而提高个体适合度的等位基因固定下来的选择作用, 研究正选择对理解生物进化过程具有重要意义。本文回顾了近年来在植物基因中发现的正选择作用, 分别对陆生植物和藻类中经历正选择作用的基因进行了总结, 其中在陆生植物中发现的正选择位点主要集中在与生殖相关及与抗逆相关的基因上, 这为以后对植物中正选择作用的研究提供了线索。  相似文献   

5.
In the present study, the possible evidence of positive selection was analyzed for the neuraminidase (NA) sequences of Guangxi H5N1 strains of China. Based on an overall site-specific positive selection analysis, it was found that NA gene of H5N1 Guangxi strains underwent purifying selection and no significant positively selected sites were identified. For the branch-specific positive selection analysis, there was no positive selection evidence for the branches leading to different poultry hosts (chicken, duck and goose). Conclusively, positive selection seems not possible (if not rare) for the NA gene in influenza H5N1 subtype, at least for the samples found in Guangxi Province of China.  相似文献   

6.
Fertilization proteins of marine broadcast spawning species often show signals of positive selection. Among geographically isolated populations, positive selection within populations can lead to differences between them, and may result in reproductive isolation upon secondary contact. Here, we test for positive selection in the reproductive compatibility locus, bindin, in two populations of a sea star on either side of a phylogeographic break. We find evidence for positive selection at codon sites in both populations, which are under neutral or purifying selection in the reciprocal population. The signal of positive selection is stronger and more robust in the population where effective population size is larger and bindin diversity is greater. In addition, we find high variation in coding sequence length caused by large indels at two repetitive domains within the gene, with greater length diversity in the larger population. These findings provide evidence of population‐divergent positive selection in a fertilization compatibility locus, and suggest that sexual selection can lead to reproductive divergence between conspecific marine populations.  相似文献   

7.
Positive selection vectors   总被引:4,自引:0,他引:4  
This review describes information concerning positive selection vectors on their mechanism, classification, property, and limitation. A total of 72 positive selection vectors collected were discussed. Positive selection vectors can reduce background and directly screen transformants containing cloned DNA fragments. The mechanisms to perform positive selection include insertional inactivation and the replacement of functional genes of the vectors. In general, the former is much more convenient than the latter. The functional genes are controlled either by their promoters or by heterologous promoters introduced. On the basis of the structures, positive selection vectors could be classified into five groups. The positive selection vectors are commonly based on the mechanisms of lethal genes and the sensitivity of compounds. The vectors, with molecular weights ranging from 2.6 to 17.0 kb, have diverse genetic markers and wide host ranges, including Escherichia coli, Bacillus, Streptomyces, lactic acid bacteria, yeasts, and mammalian cells. Although some limitations exist for using some positive selection vectors, they are useful in recombinant DNA experiments.  相似文献   

8.
During thymocyte development, high-affinity/avidity TCR engagement leads to the induction of negative selection and apoptosis, while lower TCR affinity-avidity interactions lead to positive selection and survival. To elucidate how these extracellular interactions are translated into intracellular signals that distinguish between positive and negative selection, we developed a culture system in which naive double-positive thymocytes were either induced to differentiate along the CD8(+) lineage pathway or were triggered for clonal deletion. Using this system, we show that sustained low level activation of extracellular signal-regulated kinases (ERKs) promotes positive selection, whereas strong but transient ERK activation is coupled with negatively selecting stimuli. Importantly, similar ERK activation profiles were demonstrated during positive selection for strong agonist ligands presented at low concentrations or weak agonist ligands. This is consistent with the affinity/avidity model and a role for strong or weak agonists during positive selection. Surprisingly, the addition of a pharmacological inhibitor which blocks ERK activation prevented the induction of negative selection. These data suggest that the duration and strength of the TCR signal is involved in discriminating between positive and negative selection.  相似文献   

9.
A scan for positively selected genes in the genomes of humans and chimpanzees   总被引:17,自引:3,他引:14  
Since the divergence of humans and chimpanzees about 5 million years ago, these species have undergone a remarkable evolution with drastic divergence in anatomy and cognitive abilities. At the molecular level, despite the small overall magnitude of DNA sequence divergence, we might expect such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their chimpanzee orthologs to identify genes that show evidence of positive selection. Many of the genes that present a signature of positive selection tend to be involved in sensory perception or immune defenses. However, the group of genes that show the strongest evidence for positive selection also includes a surprising number of genes involved in tumor suppression and apoptosis, and of genes involved in spermatogenesis. We hypothesize that positive selection in some of these genes may be driven by genomic conflict due to apoptosis during spermatogenesis. Genes with maximal expression in the brain show little or no evidence for positive selection, while genes with maximal expression in the testis tend to be enriched with positively selected genes. Genes on the X chromosome also tend to show an elevated tendency for positive selection. We also present polymorphism data from 20 Caucasian Americans and 19 African Americans for the 50 annotated genes showing the strongest evidence for positive selection. The polymorphism analysis further supports the presence of positive selection in these genes by showing an excess of high-frequency derived nonsynonymous mutations.  相似文献   

10.
Two commonly used methods based on likelihood-ratio tests (LRTs) for detecting positive Darwinian selection at the molecular level were applied to a data set of 604 gene families containing two members in the human genome and two members in the mouse genome. These methods detected positive selection in a very high proportion of families; in over 50% of families, there was significant evidence of positive selection by one or both methods. However, less than a third of families showing evidence for positive selection by at least one of the methods showed evidence of positive selection by both methods. The outcome of these tests was predicted better by sequence length, G+C content at third-codon positions, and the level of synonymous substitution than by the level of nonsynonymous substitution or the ratio of nonsynonymous to synonymous substitution. These results suggested that LRT-based tests for positive selection may be sensitive to certain factors that make it difficult to reconstruct the true pattern of nucleotide substitution.  相似文献   

11.
Detecting positive Darwinian selection at the DNA sequence level has been a subject of considerable interest. However, positive selection is difficult to detect because it often operates episodically on a few amino acid sites, and the signal may be masked by negative selection. Several methods have been developed to test positive selection that acts on given branches (branch methods) or on a subset of sites (site methods). Recently, Yang, Z., and R. Nielsen (2002. Codon-substitution models for detecting molecular adaptation at individual sites along specific lineages. Mol. Biol. Evol. 19:908-917) developed likelihood ratio tests (LRTs) based on branch-site models to detect positive selection that affects a small number of sites along prespecified lineages. However, computer simulations suggested that the tests were sensitive to the model assumptions and were unable to distinguish between relaxation of selective constraint and positive selection (Zhang, J. 2004. Frequent false detection of positive selection by the likelihood method with branch-site models. Mol. Biol. Evol. 21:1332-1339). Here, we describe a modified branch-site model and use it to construct two LRTs, called branch-site tests 1 and 2. We applied the new tests to reanalyze several real data sets and used computer simulation to examine the performance of the two tests by examining their false-positive rate, power, and robustness. We found that test 1 was unable to distinguish relaxed constraint from positive selection affecting the lineages of interest, while test 2 had acceptable false-positive rates and appeared robust against violations of model assumptions. As test 2 is a direct test of positive selection on the lineages of interest, it is referred to as the branch-site test of positive selection and is recommended for use in real data analysis. The test appeared conservative overall, but exhibited better power in detecting positive selection than the branch-based test. Bayes empirical Bayes identification of amino acid sites under positive selection along the foreground branches was found to be reliable, but lacked power.  相似文献   

12.
Zhang J 《Genetics》2005,169(1):495-501
Volatility of a codon is defined as the probability that a random point mutation in the codon generates a nonsynonymous change. It has been proposed that higher-than-expected mean codon volatility of a gene indicates that positive selection for nonsynonymous changes has acted on the gene in the recent past. I show that strong frequency-dependent selection (minority advantage) in large populations can increase codon volatility slightly, whereas directional positive selection has no effect on volatility. Factors unrelated to positive selection, such as expression-related or GC-content-related codon usage bias, also affect volatility. These and other considerations suggest that codon volatility has only limited utility for detecting positive selection at the DNA sequence level.  相似文献   

13.
ABSTRACT:?

This review describes information concerning positive selection vectors on their mechanism, classification, property, and limitation. A total of 72 positive selection vectors collected were discussed. Positive selection vectors can reduce background and directly screen transformants containing cloned DNA fragments. The mechanisms to perform positive selection include insertional inacti-vation and the replacement of functional genes of the vectors. In general, the former is much more convenient than the latter. The functional genes are controlled either by their promoters or by heter-ologous promoters introduced. On the basis of the structures, positive selection vectors could be classified into five groups. The positive selection vectors are commonly based on the mechanisms of lethal genes and the sensitivity of compounds. The vectors, with molecular weights ranging from 2.6 to 17.0?kb, have diverse genetic markers and wide host ranges, including Escherichia coli, Bacillus, Streptomyces, lactic acid bacteria, yeasts, and mammalian cells. Although some limitations exist for using some positive selection vectors, they are useful in recombinant DNA experiments.  相似文献   

14.
Positive selection during thymocyte development is driven by the affinity and avidity of the TCR for MHC-peptide complexes expressed in the thymus. In this study, we show that programmed death-1 (PD-1), a member of the B7/CD28 family of costimulatory receptors, inhibits TCR-mediated positive selection through PD-1 ligand 1 (PD-L1):PD-1 interactions. Transgenic mice that constitutively overexpress PD-1 on CD4+CD8+ thymocytes display defects in positive selection in vivo. Using an in vitro model system, we find that PD-1 is up-regulated following TCR engagement on CD4+CD8+ murine thymocytes. Coligation of TCR and PD-1 on CD4+CD8+ thymocytes with a novel PD-1 agonistic mAb inhibits the activation of ERK and up-regulation of bcl-2, both of which are downstream mediators essential for positive selection. Inhibitory signals through PD-1 can overcome the ability of positive costimulators, such as CD2 and CD28, to facilitate positive selection. Finally, defects in positive selection that result from PD-1 overexpression in thymocytes resolve upon elimination of PD-L1, but not PD-1 ligand 2, expression. PD-L1-deficient mice have increased numbers of CD4+CD8+ and CD4+ thymocytes, indicating that PD-L1 is involved in normal thymic selection. These data demonstrate that PD-1:PD-L1 interactions are critical to positive selection and play a role in shaping the T cell repertoire.  相似文献   

15.
The fire ant Solenopsis invicta and its close relatives are highly invasive. Enhanced social cooperation may facilitate invasiveness in these and other invasive ant species. We investigated whether invasiveness in Solenopsis fire ants was accompanied by positive selection on sociobiological traits by applying a phylogenomics approach to infer ancient selection, and a population genomics approach to infer recent and ongoing selection in both native and introduced S. invicta populations. A combination of whole‐genome sequencing of 40 haploid males and reduced‐representation genomic sequencing of 112 diploid workers identified 1,758,116 and 169,682 polymorphic markers, respectively. The resulting high‐resolution maps of genomic polymorphism provide high inference power to test for positive selection. Our analyses provide evidence of positive selection on putative ion channel genes, which are implicated in neurological functions, and on vitellogenin, which is a key regulator of development and caste determination. Furthermore, molecular functions implicated in pheromonal signalling have experienced recent positive selection. Genes with signatures of positive selection were significantly more often those overexpressed in workers compared with queens and males, suggesting that worker traits are under stronger selection than queen and male traits. These results provide insights into selection pressures and ongoing adaptation in an invasive social insect and support the hypothesis that sociobiological traits are under more positive selection than nonsocial traits in such invasive species.  相似文献   

16.
Positive Darwinian selection promotes fixations of advantageous mutations during gene evolution and is probably responsible for most adaptations. Detecting positive selection at the DNA sequence level is of substantial interest because such information provides significant insights into possible functional alterations during gene evolution as well as important nucleotide substitutions involved in adaptation. Efficient detection of positive selection, however, has been difficult because selection often operates on only a few sites in a short period of evolutionary time. A likelihood-based method with branch-site models was recently introduced to overcome such difficulties. Here I examine the accuracy of the method using computer simulation. I find that the method detects positive selection in 20%-70% of cases when the DNA sequences are generated by computer simulation under no positive selection. Although the frequency of such false detection varies depending on, among other things, the tree topology, branch length, and selection scheme, the branch-site likelihood method generally gives misleading results. Thus, detection of positive selection by this method alone is unreliable. This unreliability may have resulted from its over-sensitivity to violations of assumptions made in the method, such as certain distributions of selective strength among sites and equal transition/transversion ratios for synonymous and nonsynonymous substitutions.  相似文献   

17.
PIG-mediated cassava transformation using positive and negative selection   总被引:4,自引:0,他引:4  
 In order to develop new selection systems for production of transgenic cassava (Manihot esculenta Crantz), two different selection regimes were assessed for their efficiency on regeneration of transgenic cassava plants: positive selection using mannose and negative selection using hygromycin. Explants from somatic cotyledons and embryogenic suspensions were used as target tissues in the transformation experiments and bombarded using the particle inflow gun. Different culture and selection strategies were assessed to optimise the selection protocols. For the first time transgenic plants could be obtained using positive, and in the case of embryogenic suspensions, hygromycin-based negative selection. The stably transformed nature of the regenerated cassava plant lines and the expression of the transgenes were verified with PCR, RT-PCR, Southern and northern analyses. A rooting test for transgenic plants on a medium supplemented with mannose was developed to further improve the efficacy of the positive selection system. Our results demonstrate that it is possible to obtain transgenic cassava plants using non-antibiotic positive selection. Received: 21 February 2000 / Revision received: 2 May 2000 / Accepted: 5 May 2000  相似文献   

18.
The extent that both positive and negative selection vary across different portions of plant genomes remains poorly understood. Here, we sequence whole genomes of 13 Capsella grandiflora individuals and quantify the amount of selection across the genome. Using an estimate of the distribution of fitness effects, we show that selection is strong in coding regions, but weak in most noncoding regions, with the exception of 5′ and 3′ untranslated regions (UTRs). However, estimates of selection on noncoding regions conserved across the Brassicaceae family show strong signals of selection. Additionally, we see reductions in neutral diversity around functional substitutions in both coding and conserved noncoding regions, indicating recent selective sweeps at these sites. Finally, using expression data from leaf tissue we show that genes that are more highly expressed experience stronger negative selection but comparable levels of positive selection to lowly expressed genes. Overall, we observe widespread positive and negative selection in coding and regulatory regions, but our results also suggest that both positive and negative selection on plant noncoding sequence are considerably rarer than in animal genomes.  相似文献   

19.
Finding genes that are under positive selection is a difficult task, especially in non-model organisms. Here, we have analyzed expressed sequence tag (EST) data from 4 species (Pinus pinaster, Pinus taeda, Picea glauca, and Pseudotsuga menziesii) to investigate selection patterns during their evolution and to identify genes likely to be under positive selection. To confirm selection, population samples of these genes have been sequenced in Pinus sylvestris, a species that was not included in the EST data set. The estimates of branch-specific Ka/Ks (nonsynonymous/synonymous substitution rates) across all genes in the EST data set were similar or smaller than estimates from other higher plant species. There was no evidence for the traditional indication of positive selection, Ka/Ks above 1. However, several lines of evidence based on polymorphism patterns suggest that genes with high Ka/Ks (0.20-0.52) in the EST data set are in fact more affected by positive selection in P. sylvestris than genes with low Ka/Ks (0.01-0.04). The high Ka/Ks genes have a lower level of polymorphism and more negative Tajima's D than the low Ka/Ks genes. Further, in the high Ka/Ks group, the Hudson-Kreitman-Aguade test is significant. This suggests that the EST data set is a good starting point for finding genes under positive selection in conifers and that even moderate Ka/Ks values could be indicative of selection. A group of 5 genes with high Ka/Ks collectively show evidence for positive selection within P. sylvestris.  相似文献   

20.
Pervasive adaptive evolution in primate seminal proteins   总被引:1,自引:0,他引:1       下载免费PDF全文
Seminal fluid proteins show striking effects on reproduction, involving manipulation of female behavior and physiology, mechanisms of sperm competition, and pathogen defense. Strong adaptive pressures are expected for such manifestations of sexual selection and host defense, but the extent of positive selection in seminal fluid proteins from divergent taxa is unknown. We identified adaptive evolution in primate seminal proteins using genomic resources in a tissue-specific study. We found extensive signatures of positive selection when comparing 161 human seminal fluid proteins and 2,858 prostate-expressed genes to those in chimpanzee. Seven of eight outstanding genes yielded statistically significant evidence of positive selection when analyzed in divergent primates. Functional clues were gained through divergent analysis, including several cases of species-specific loss of function in copulatory plug genes, and statistically significant spatial clustering of positively selected sites near the active site of kallikrein 2. This study reveals previously unidentified positive selection in seven primate seminal proteins, and when considered with findings in Drosophila, indicates that extensive positive selection is found in seminal fluid across divergent taxonomic groups.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号